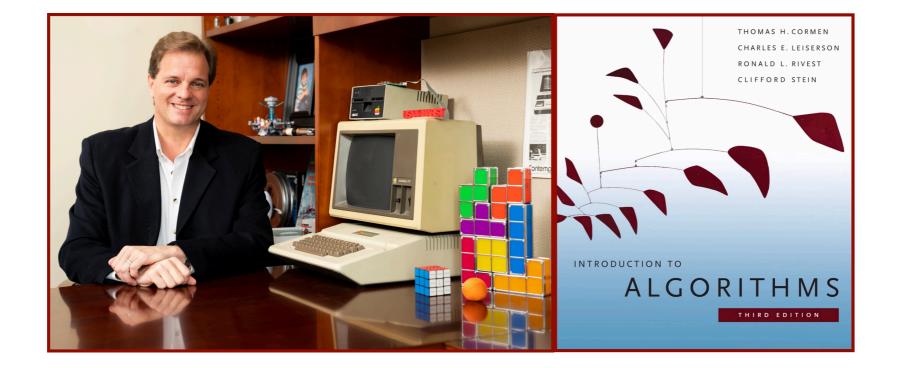
Bellman-Ford SSSP



Alan G. Labouseur, Ph.D. Alan.Labouseur@Marist.edu

Bellman-Ford SSSP

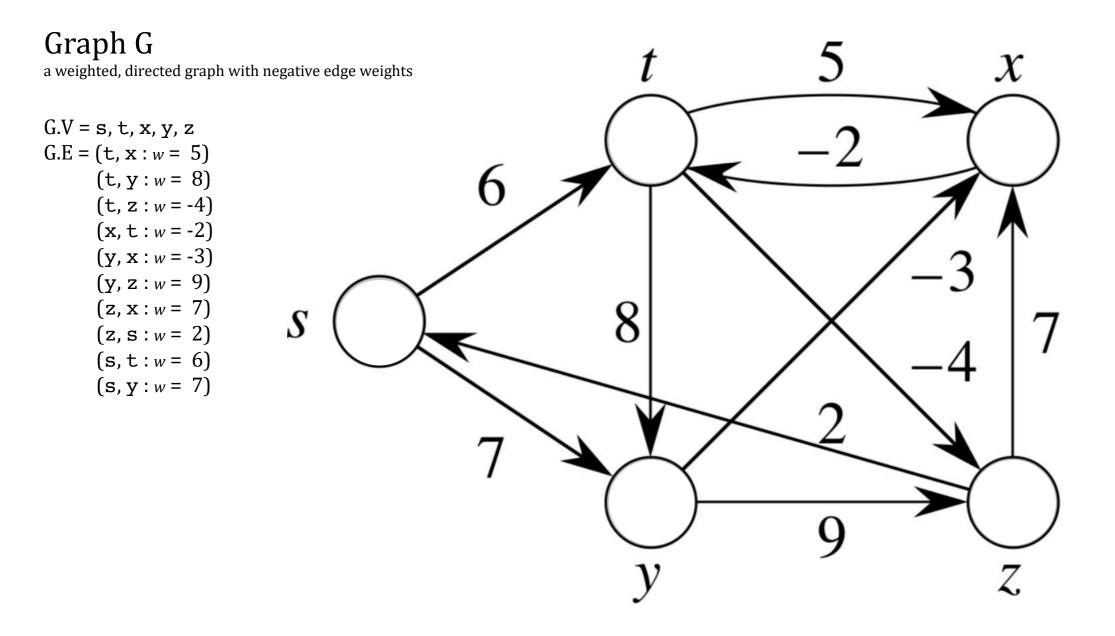
The Bellman-Ford Single-Source Shortest Path Algorithm

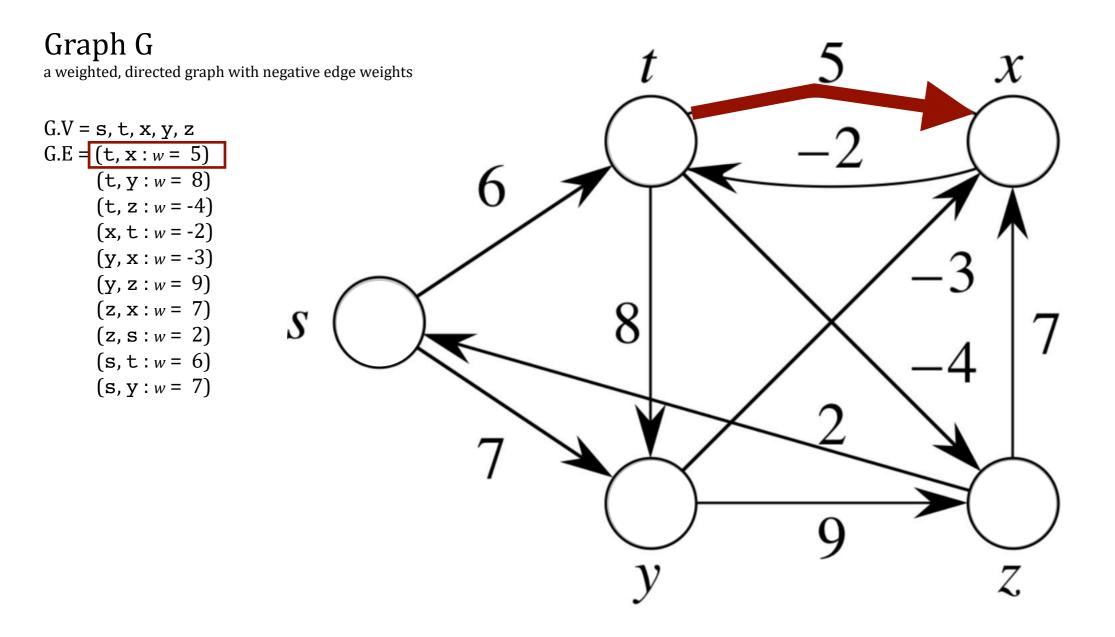
CLRS chapter 24.1

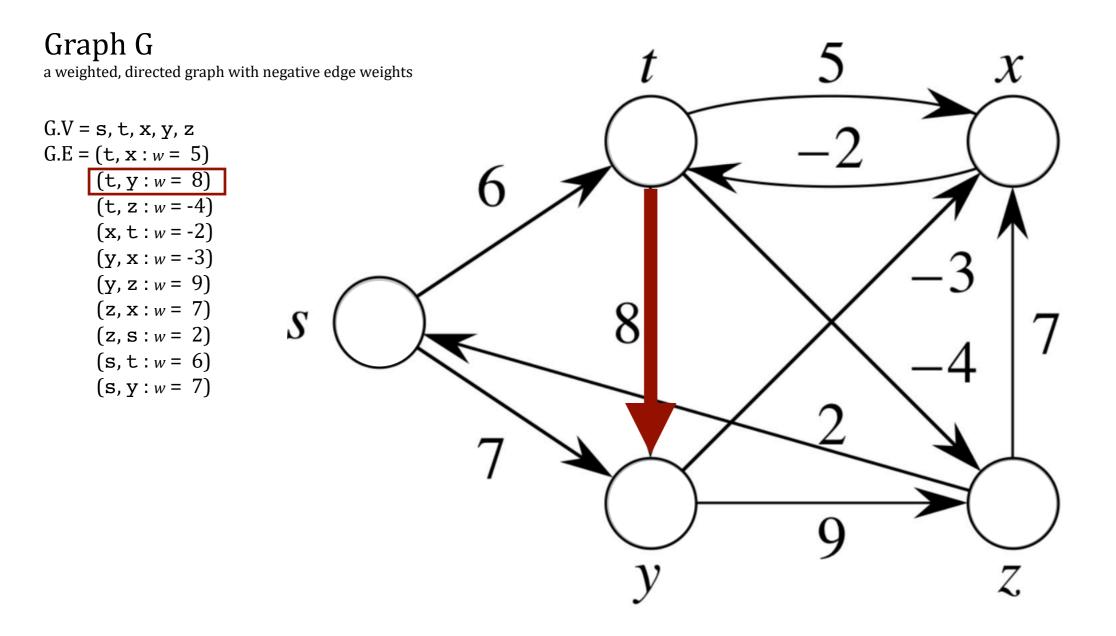
Graph G

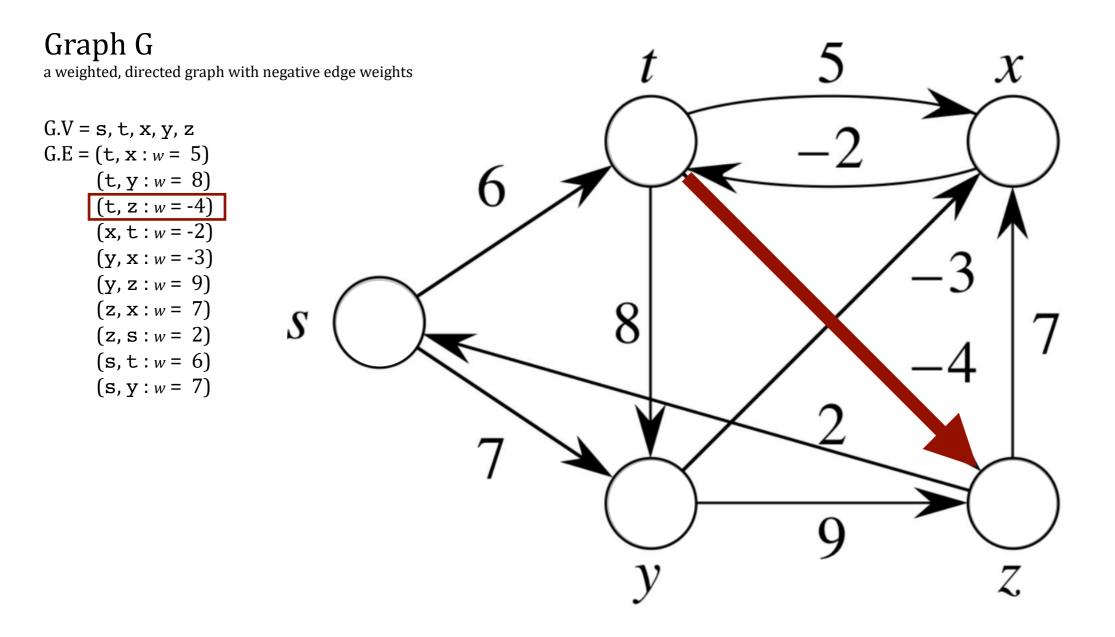
a weighted, directed graph with negative edge weights

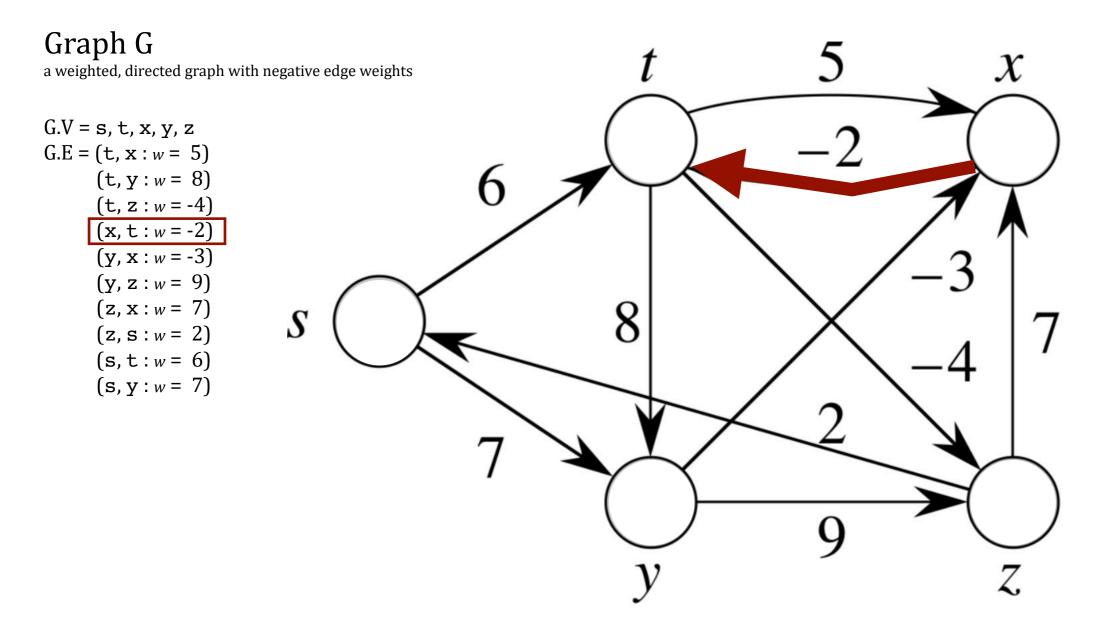
G.V = s, t, x, y, z G.E = (t, x : w = 5) (t, y : w = 8) (t, z : w = -4) (x, t : w = -2) (y, x : w = -3) (y, z : w = 9) (z, x : w = 7) (z, s : w = 2) (s, t : w = 6) (s, y : w = 7)

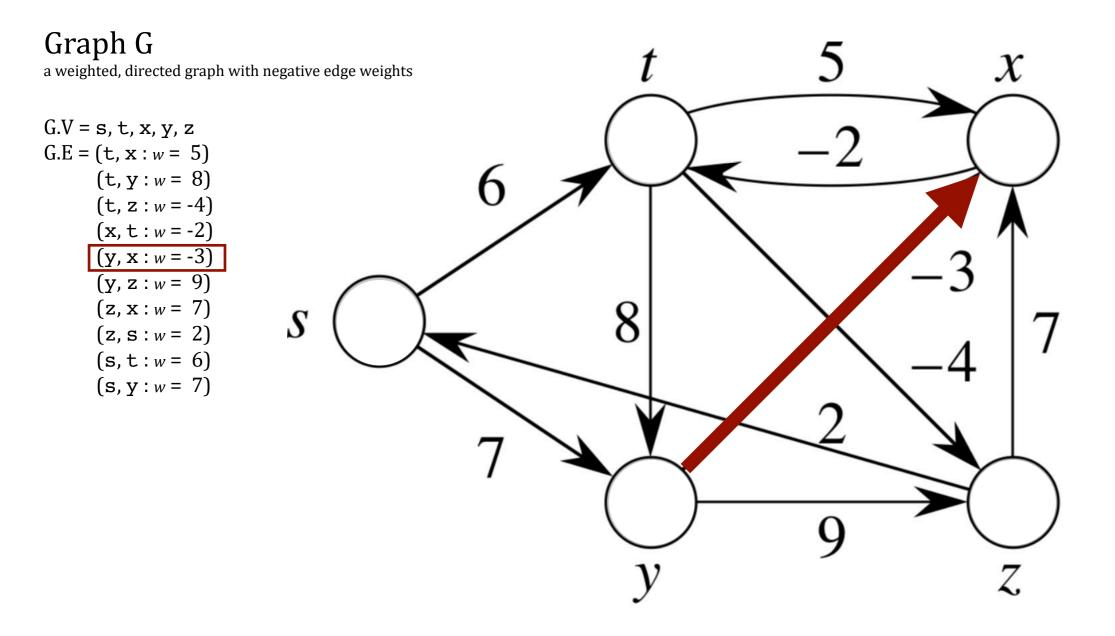


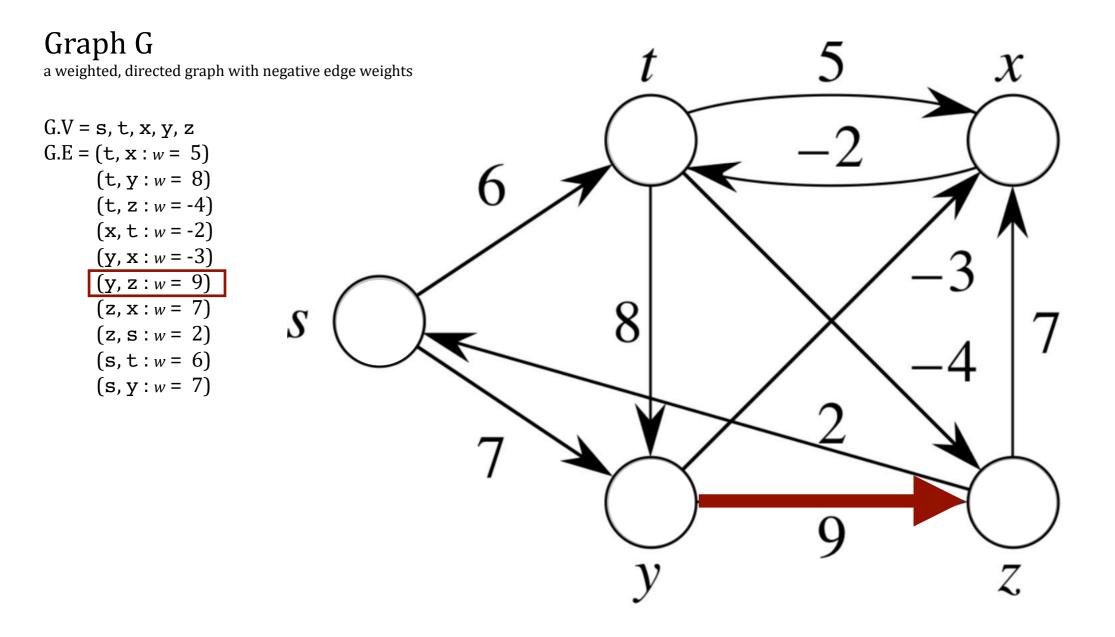


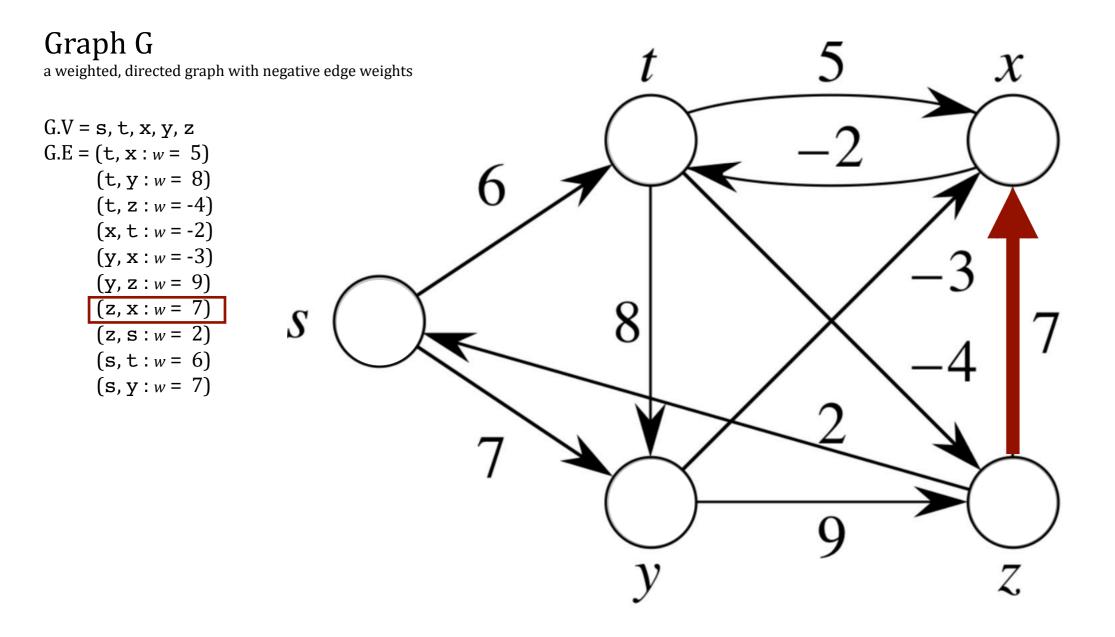


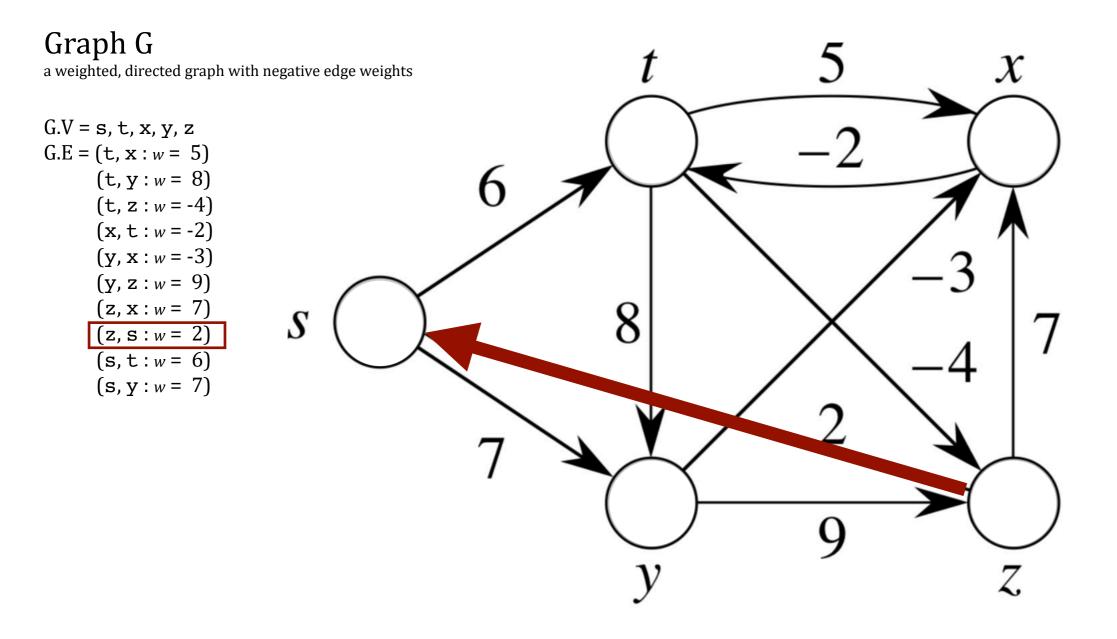


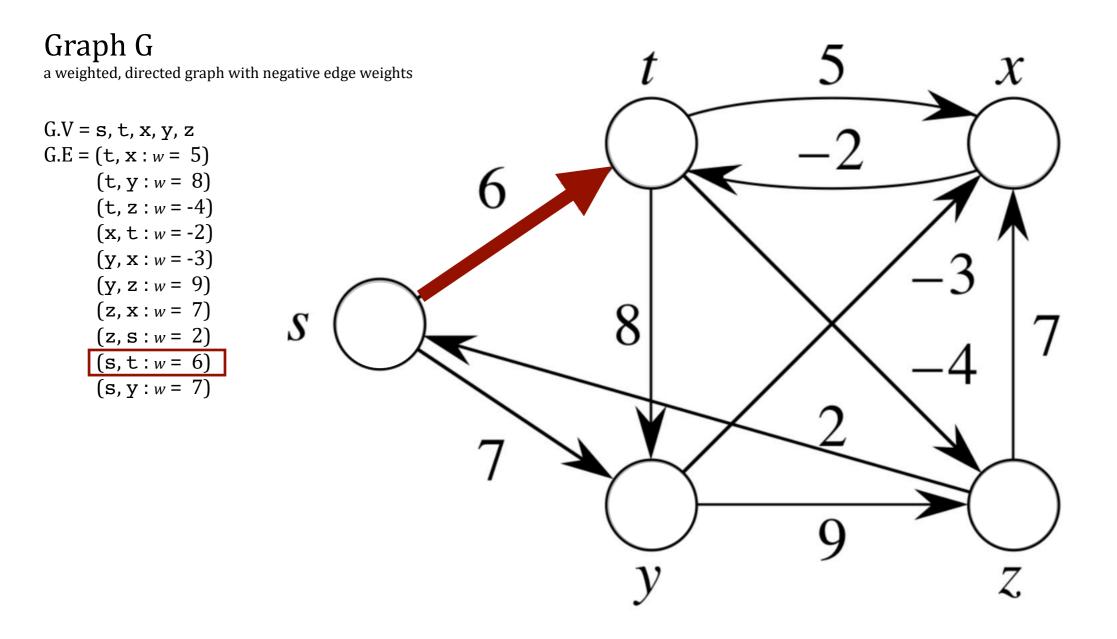


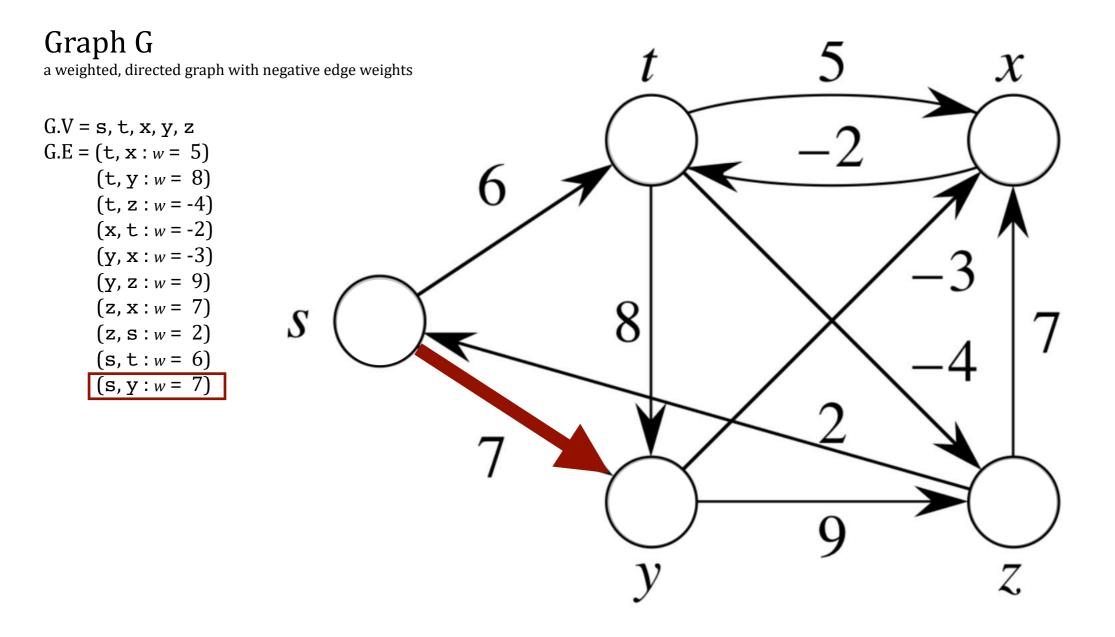


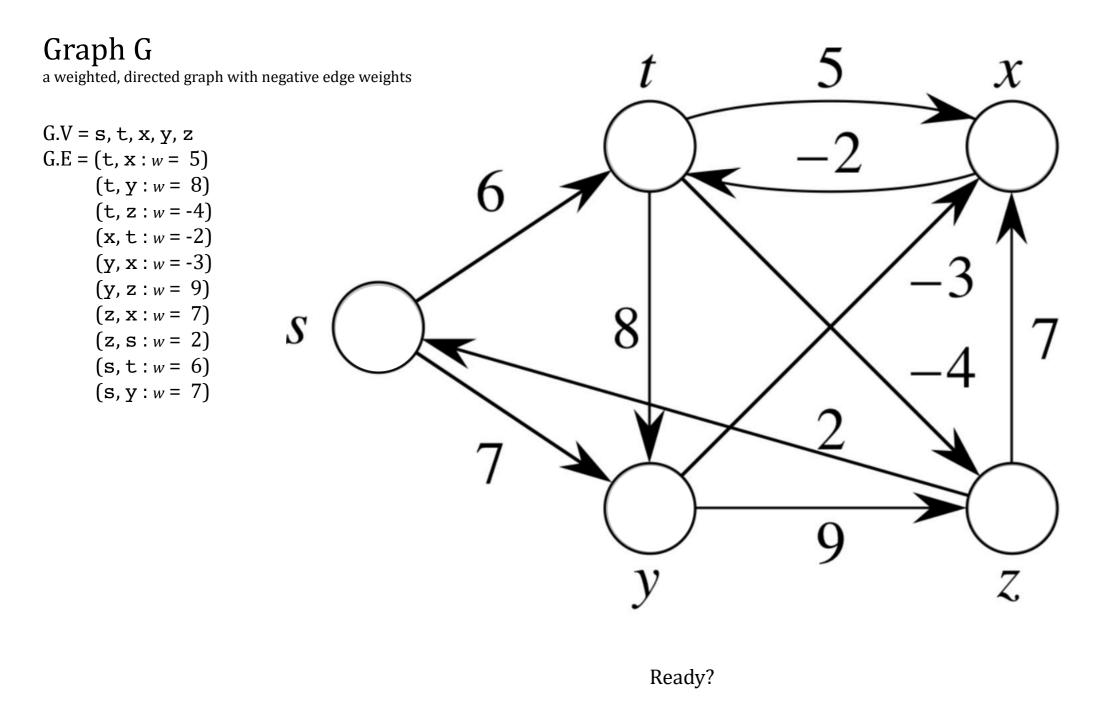




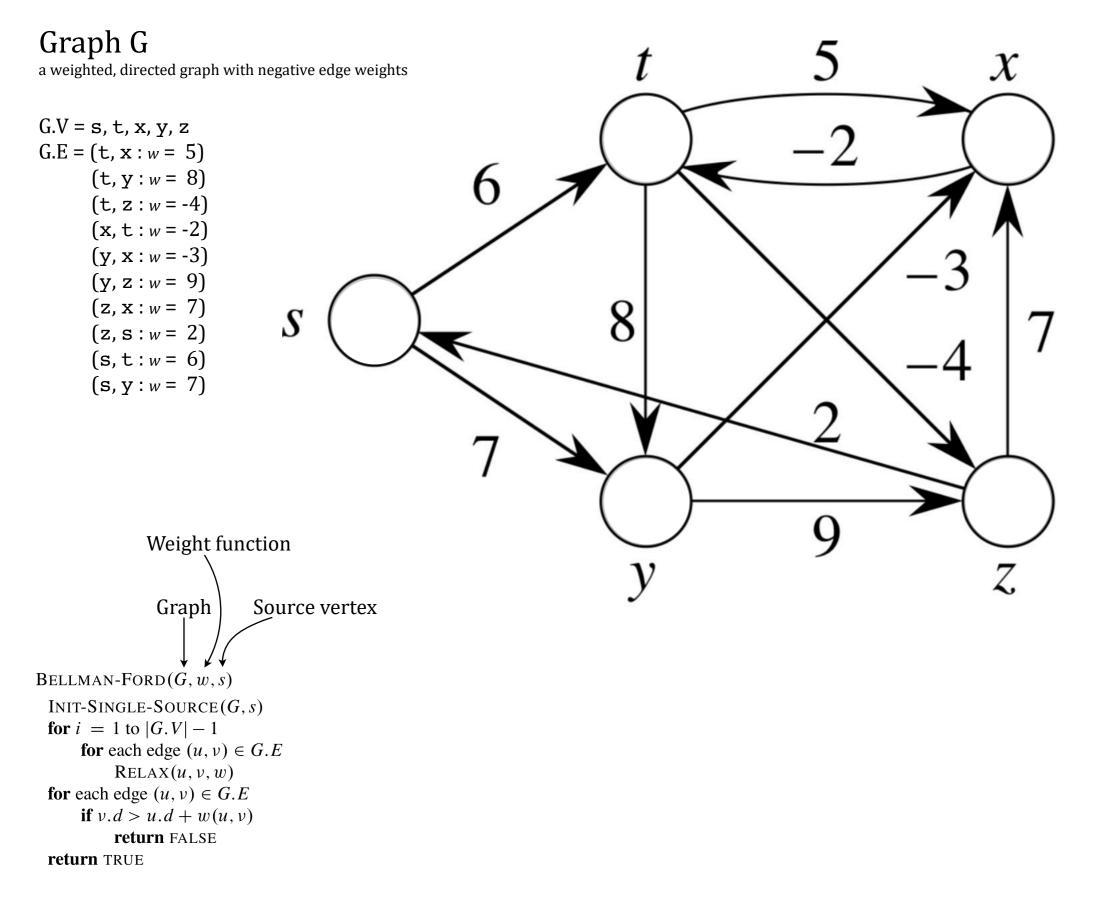


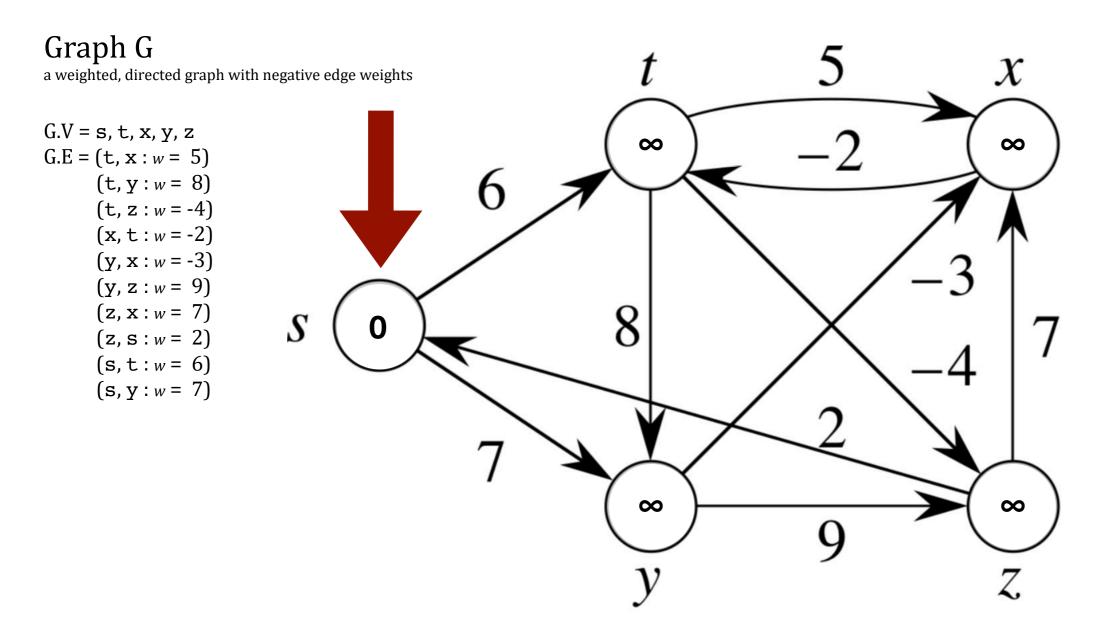


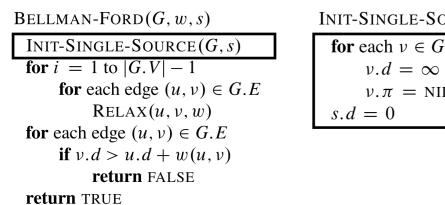




Let's go!

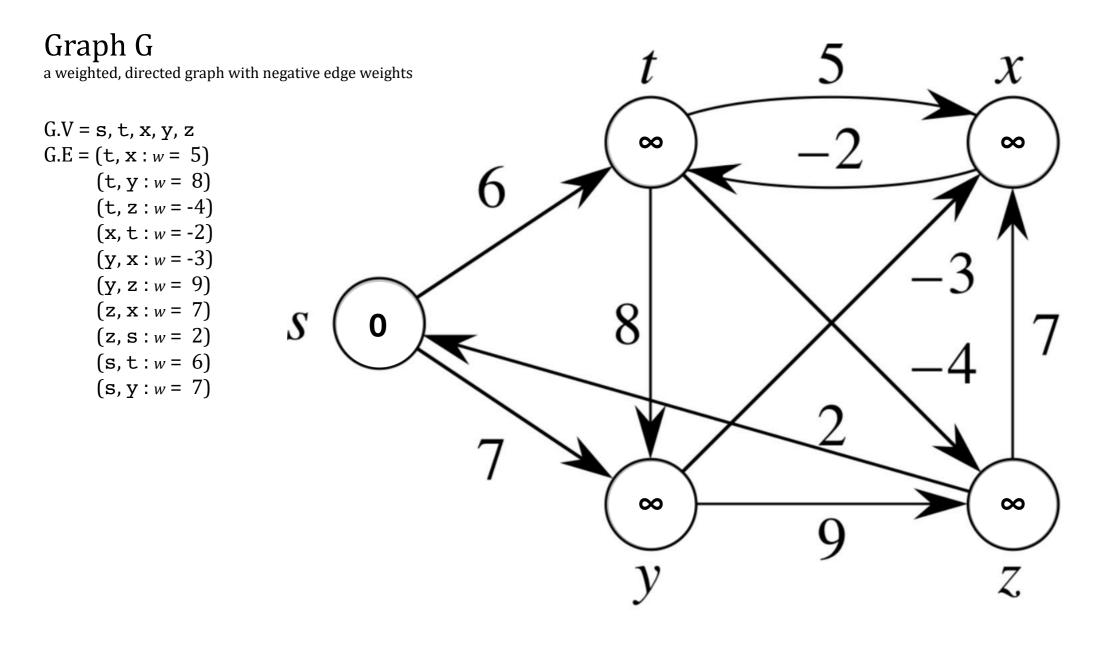




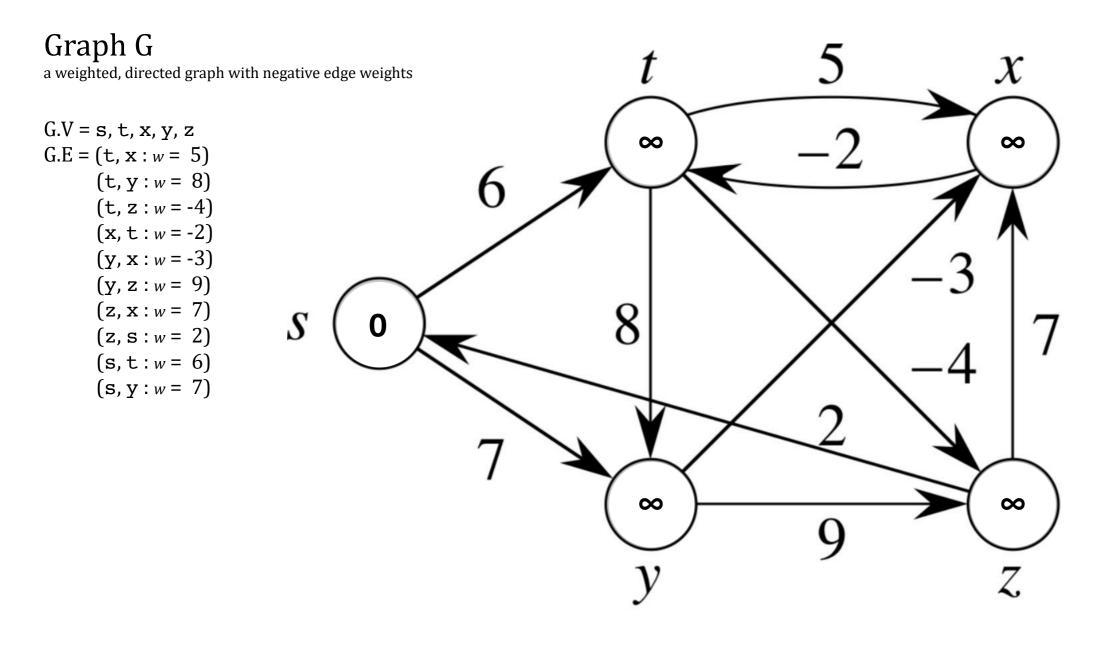


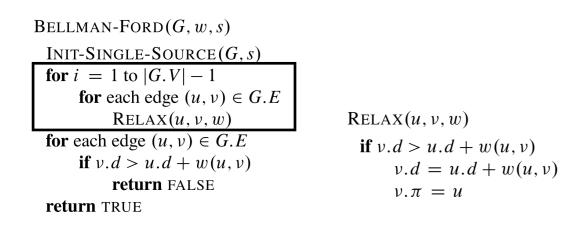
INIT-SINGLE-SOURCE(G, s) for each $v \in G.V$ $v.d = \infty$ // estimate of shortest path distance

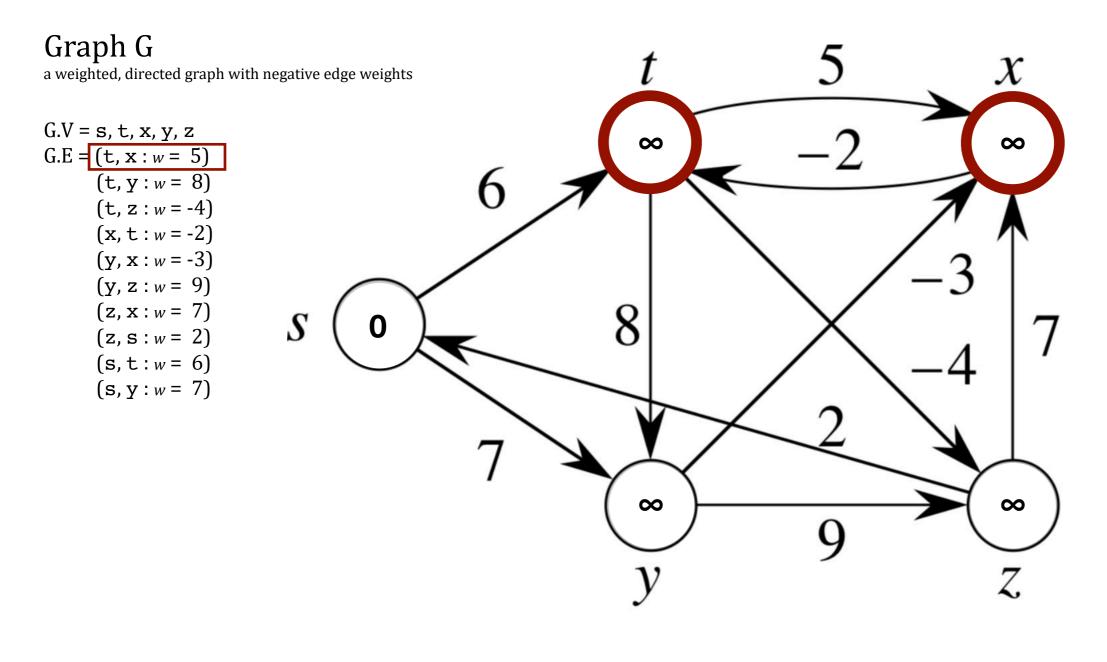
 $\nu.\pi$ = NIL // predecessor vertex

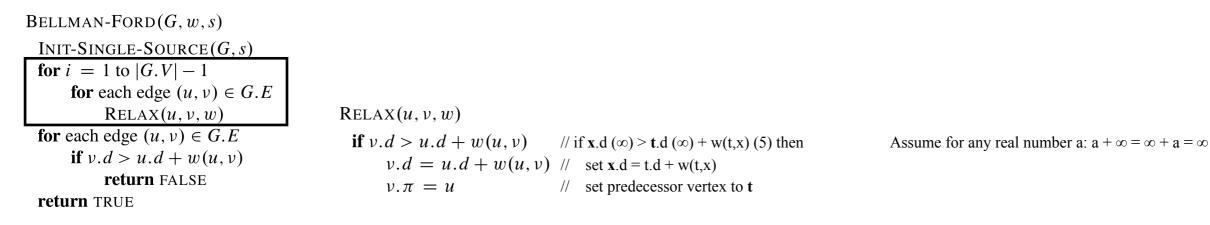


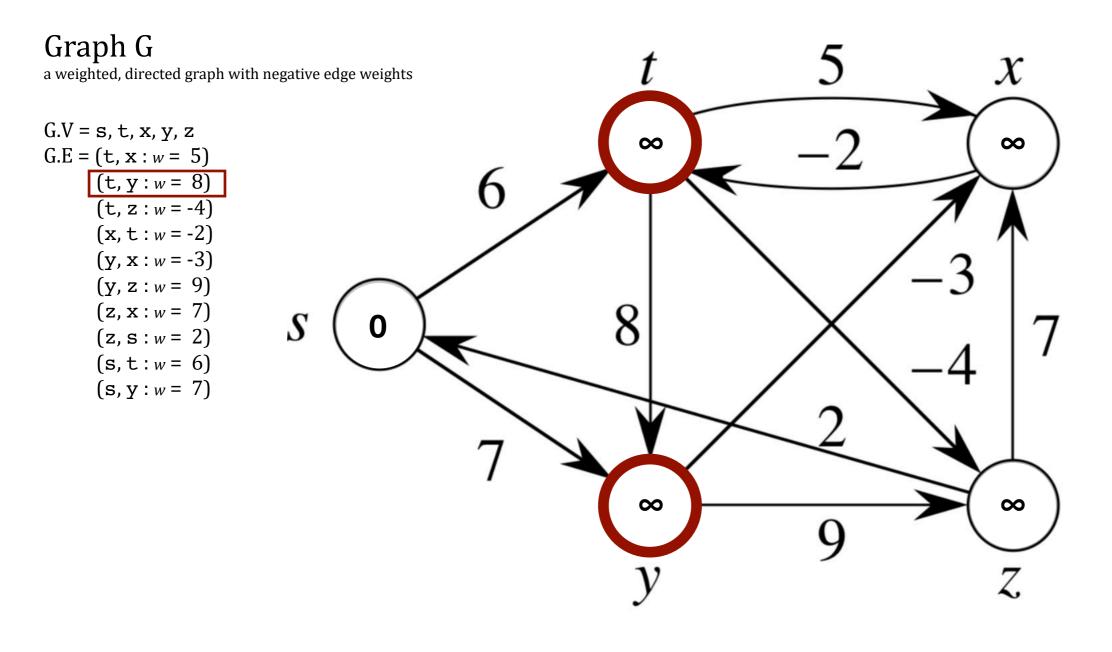
BELLMAN-FORD(G, w, s)INIT-SINGLE-SOURCE(G, s)for i = 1 to |G.V| - 1for each edge $(u, v) \in G.E$ RELAX(u, v, w)for each edge $(u, v) \in G.E$ if v.d > u.d + w(u, v)return FALSE return TRUE

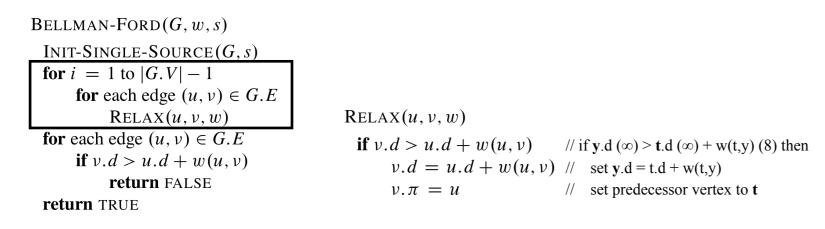


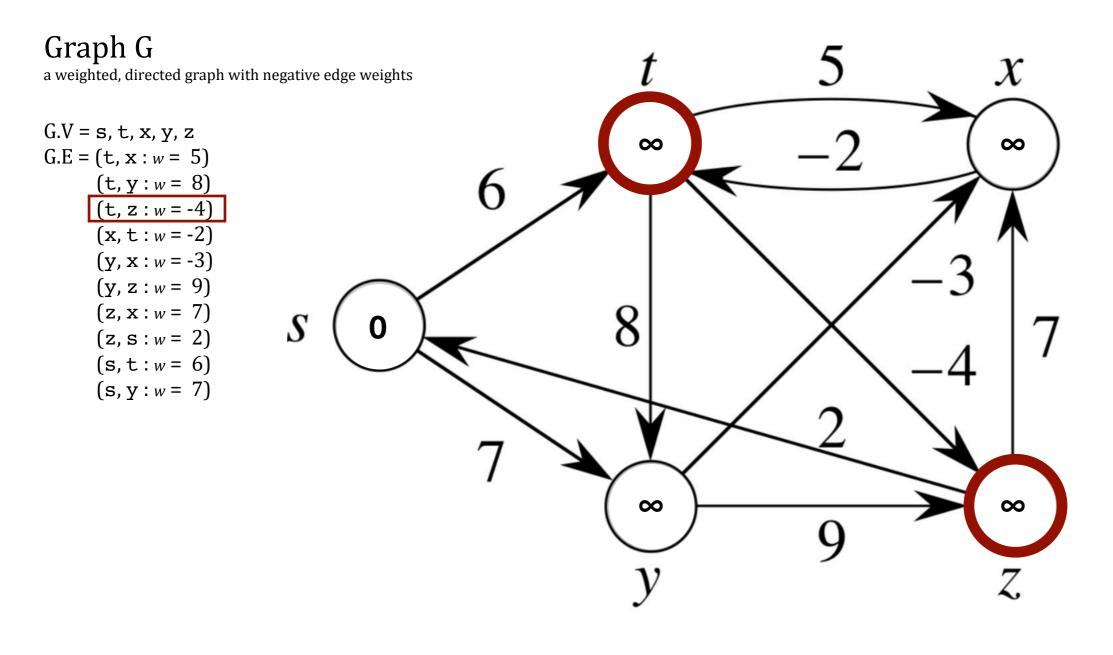


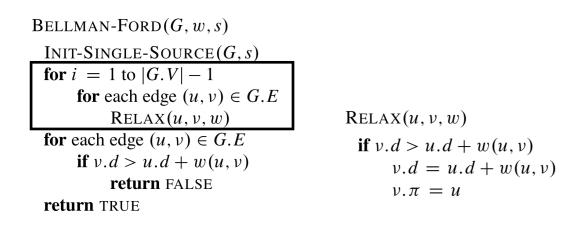


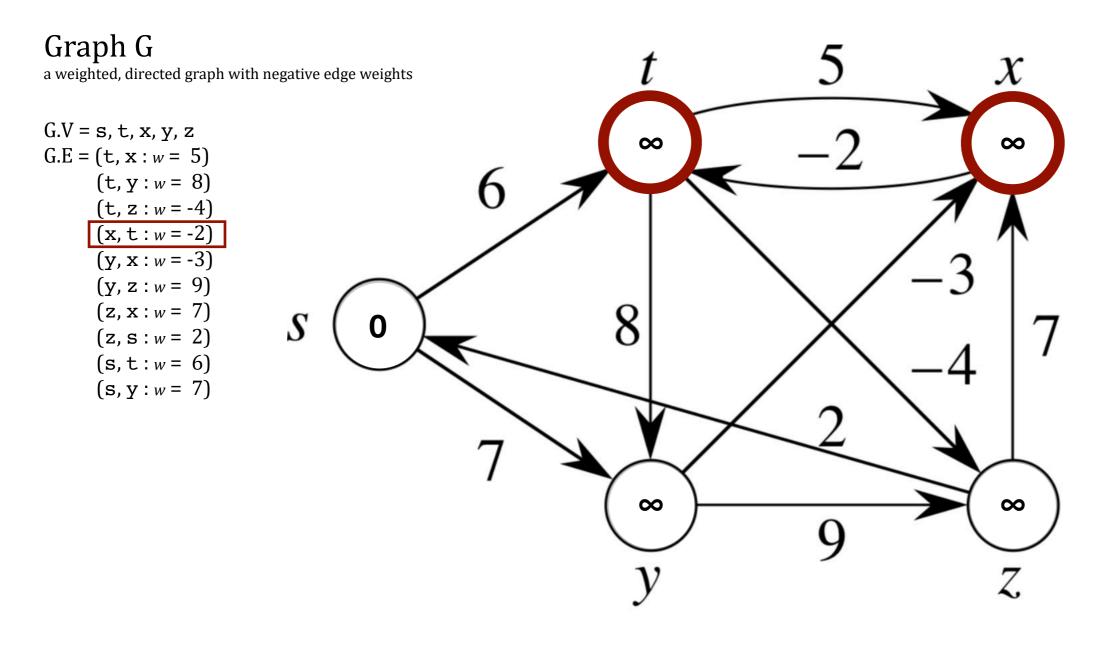


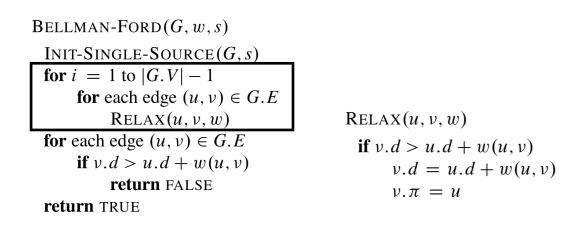


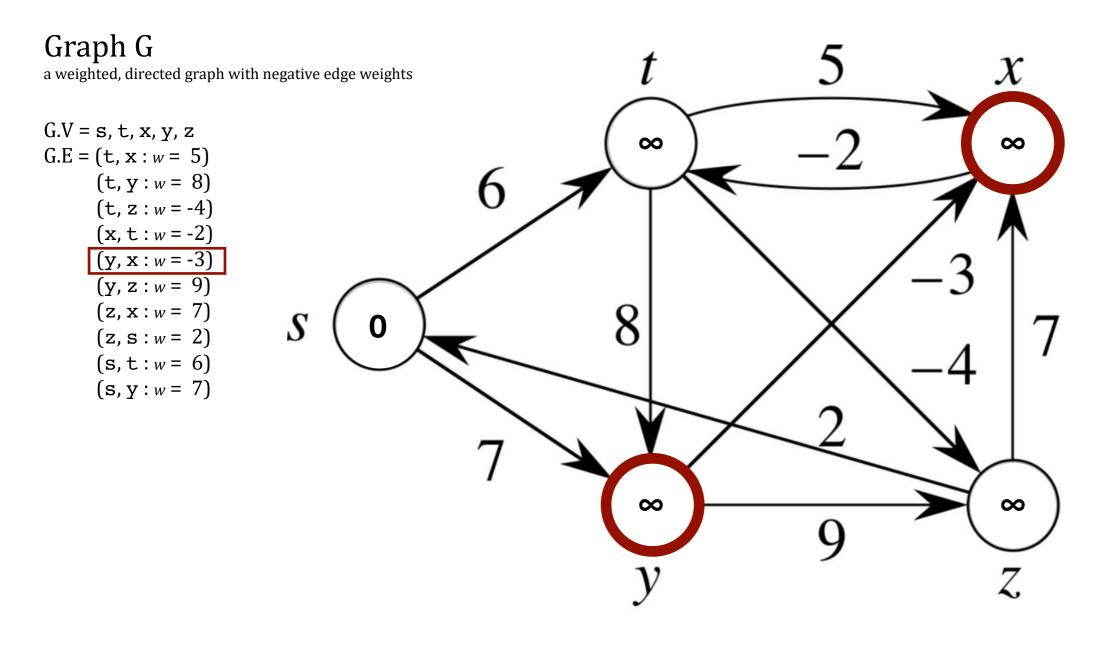


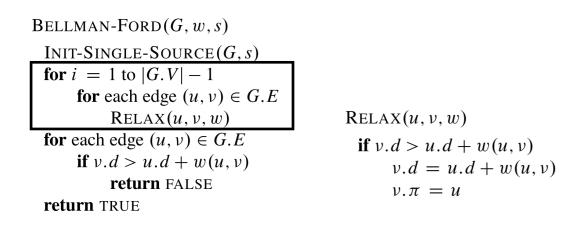


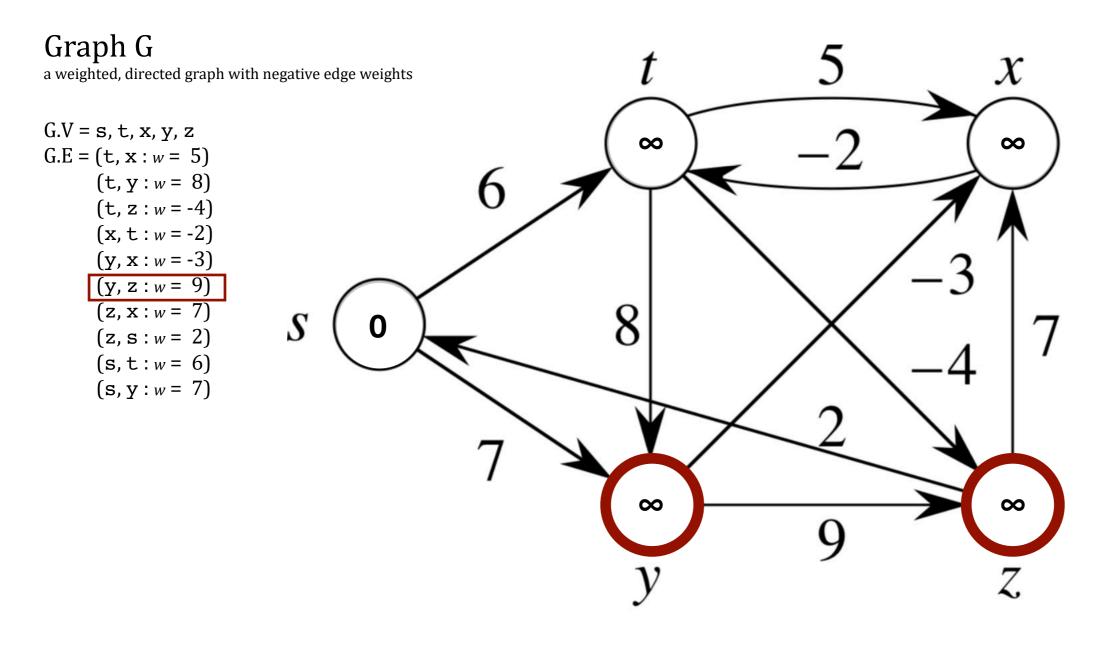


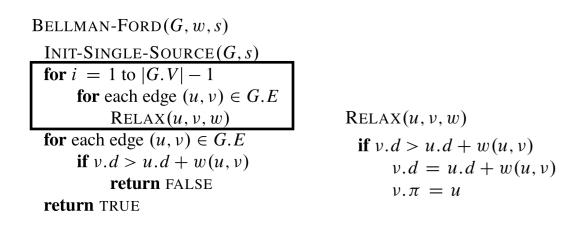


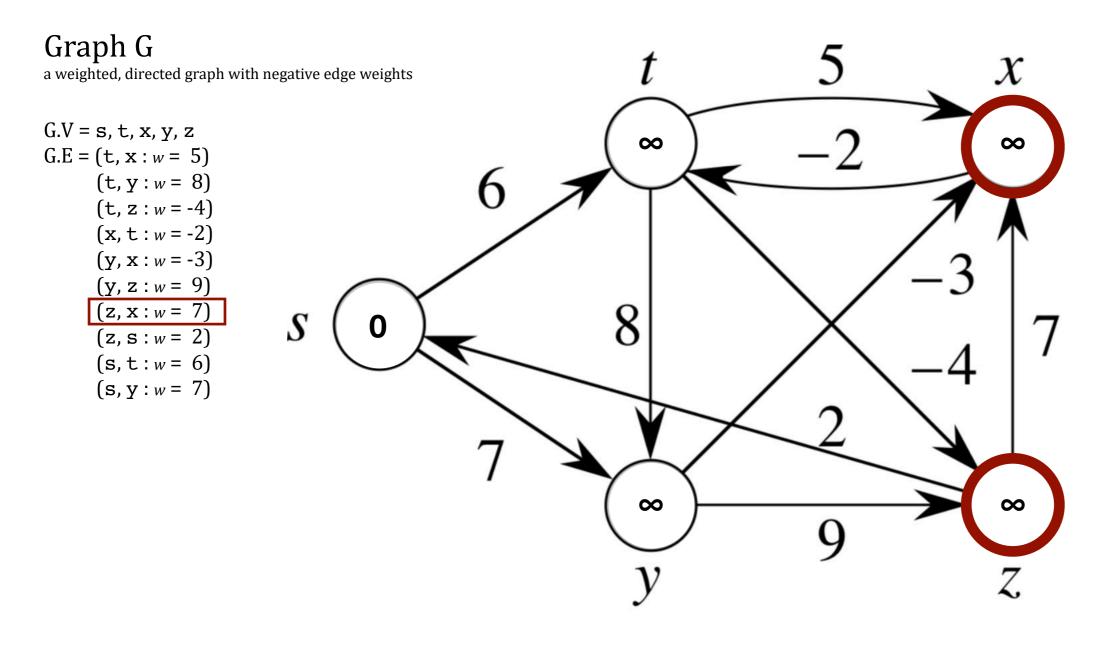


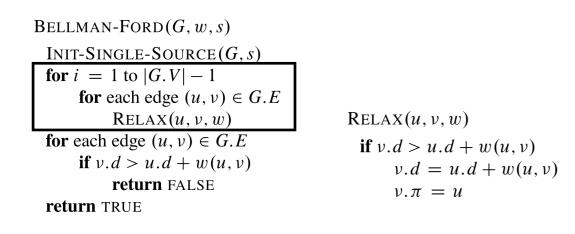


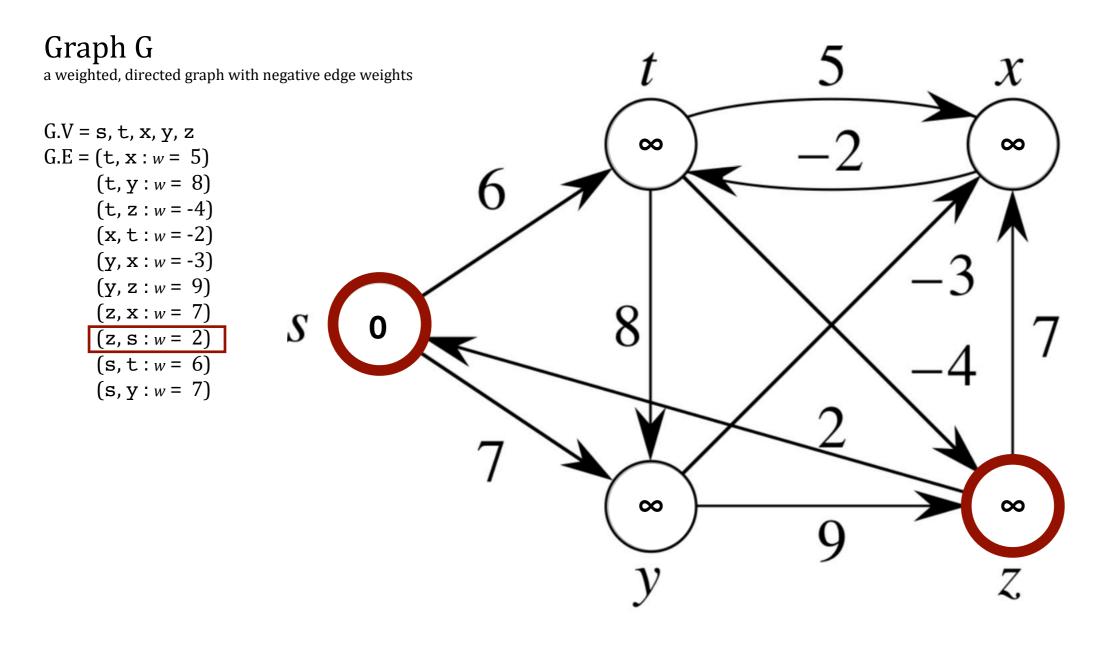




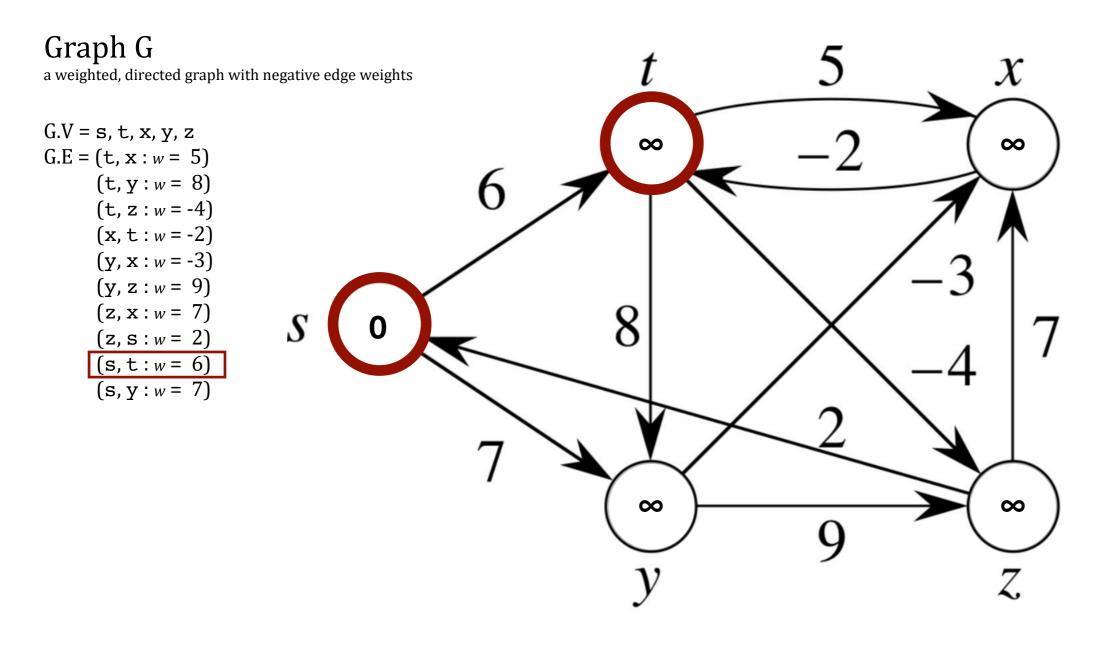


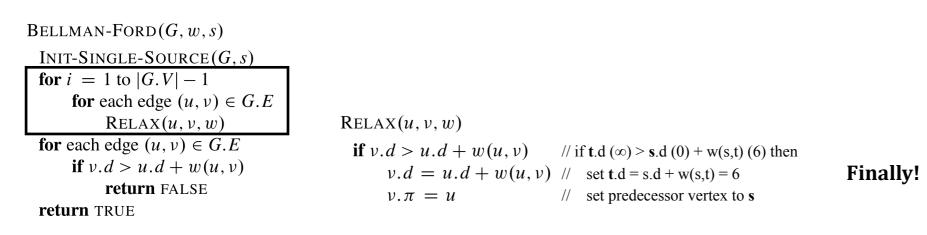


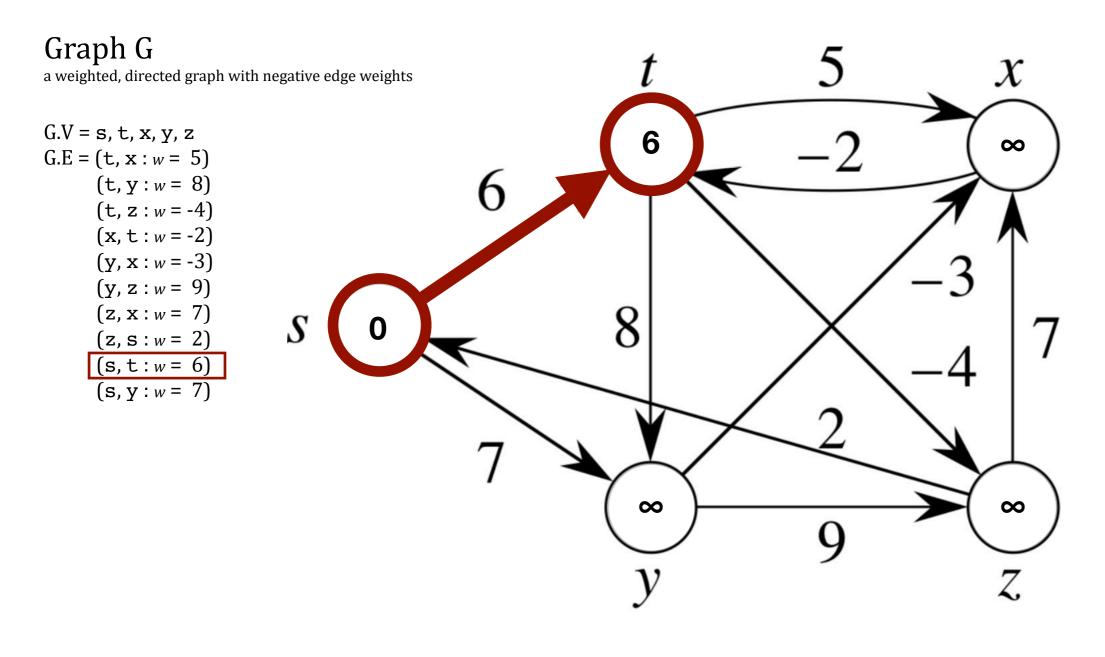


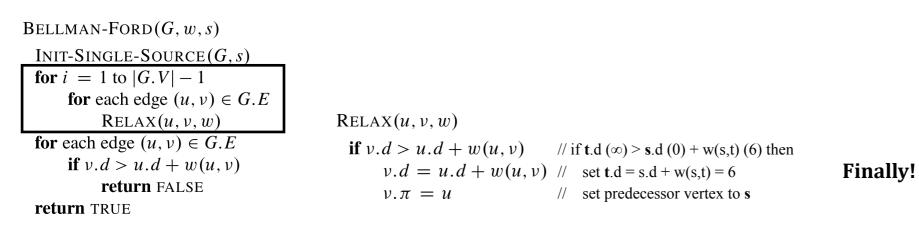


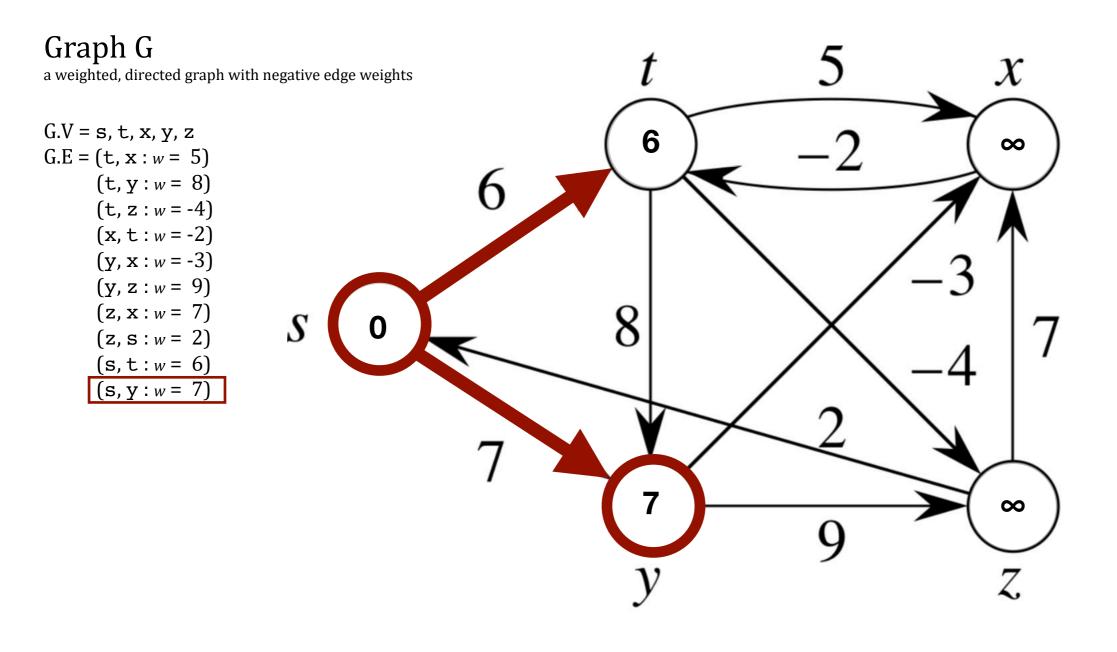


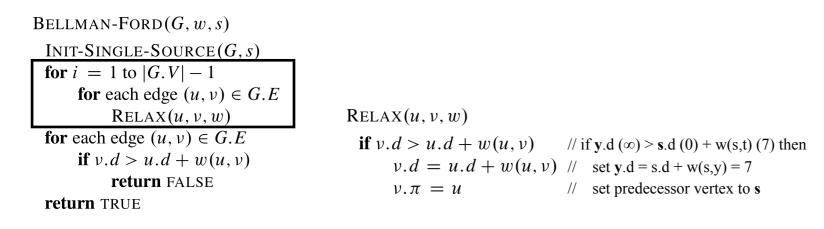


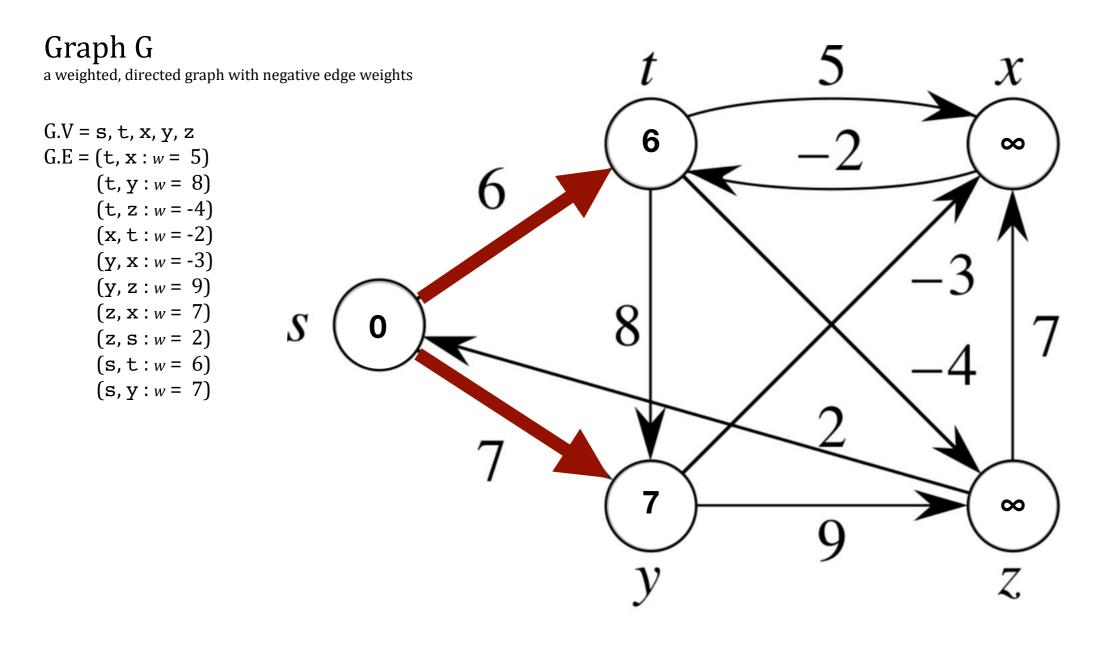


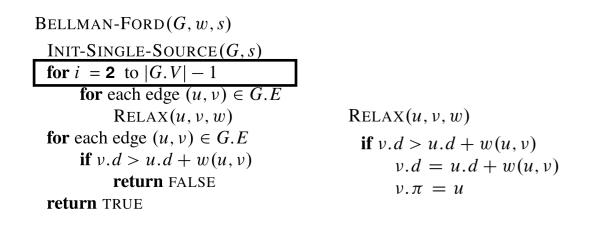


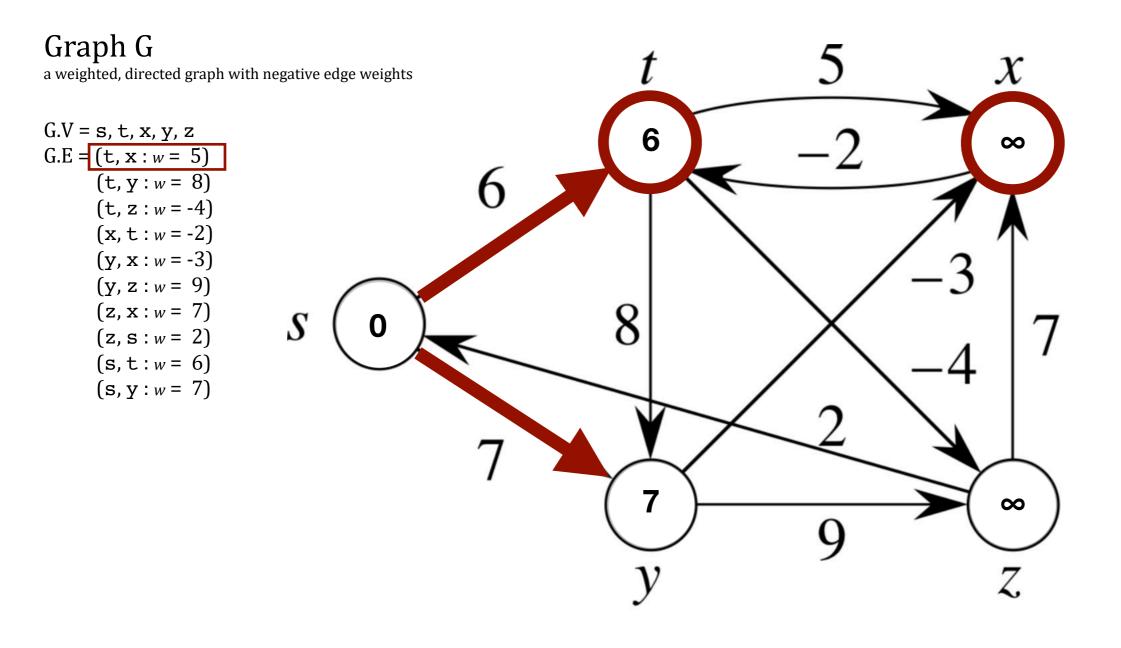


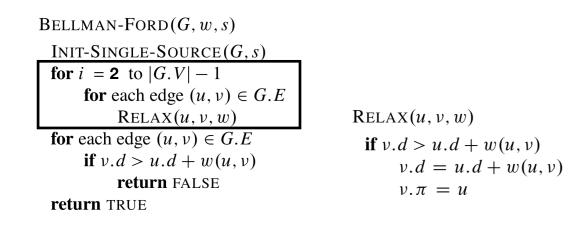


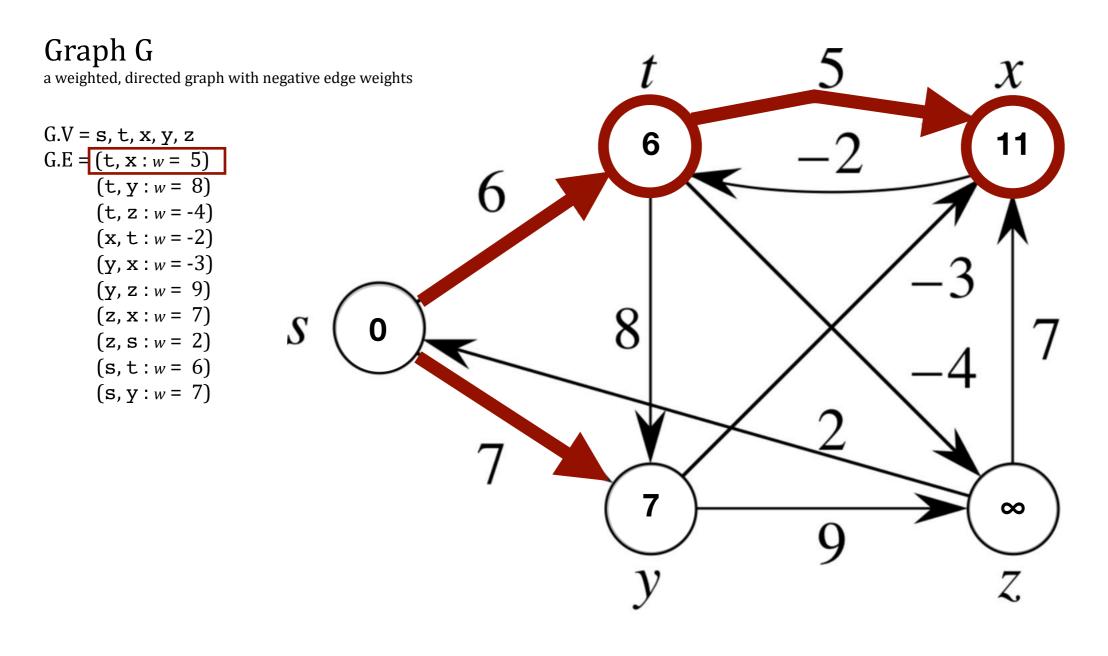






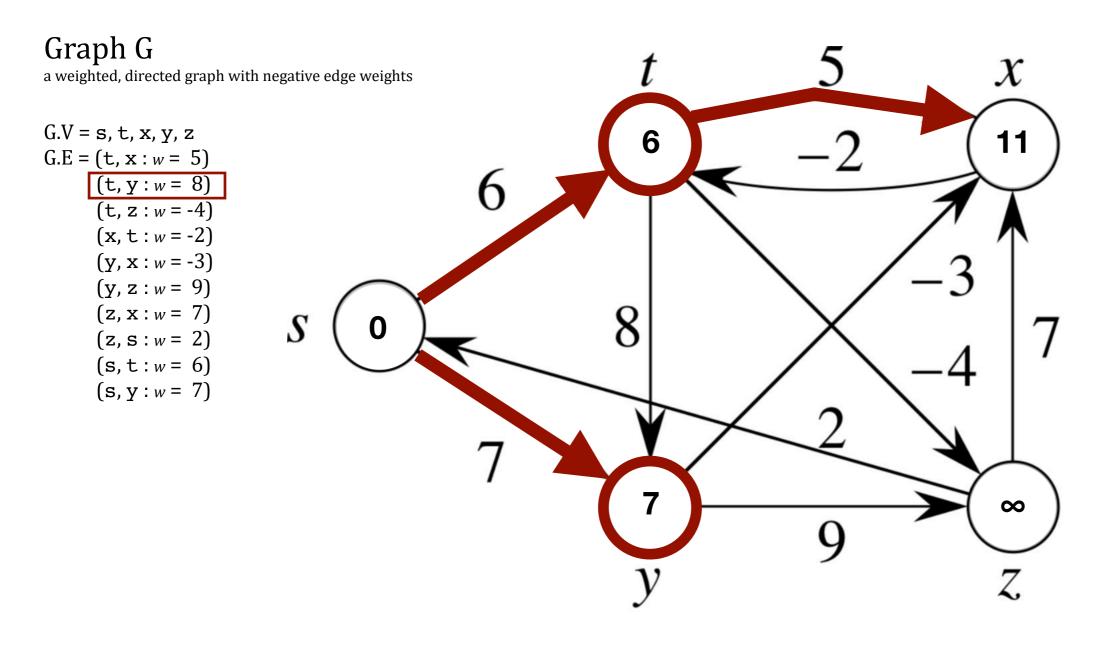


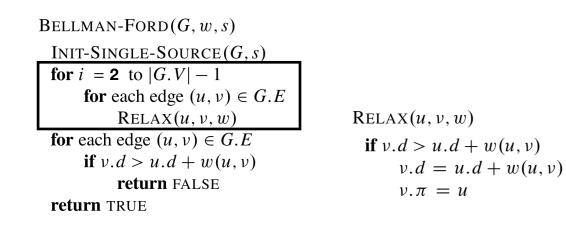


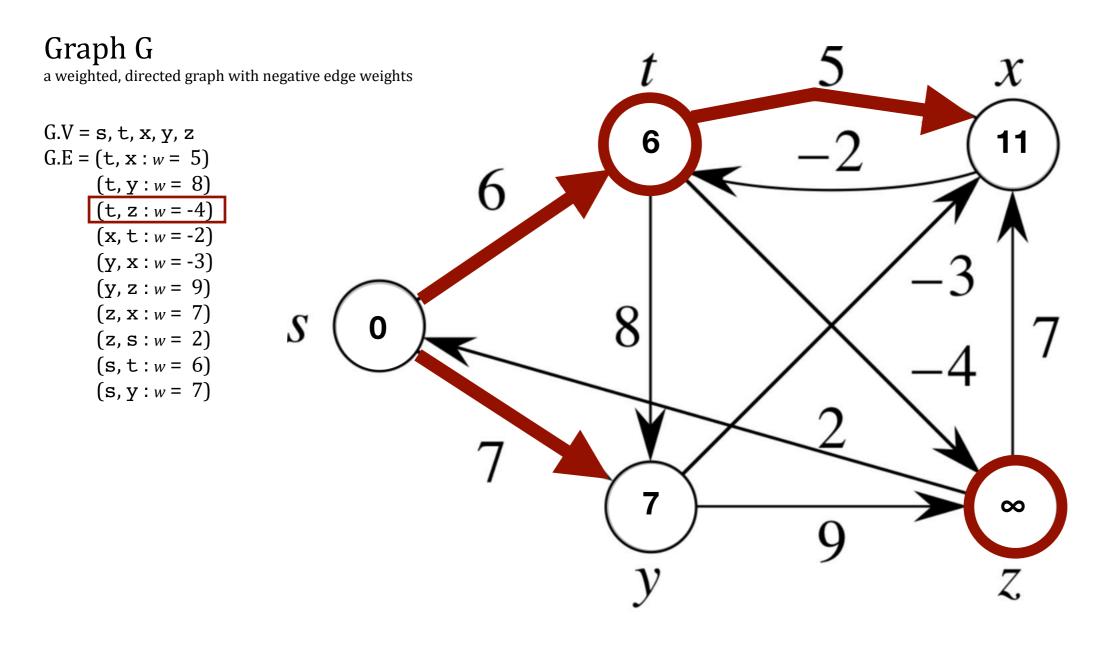


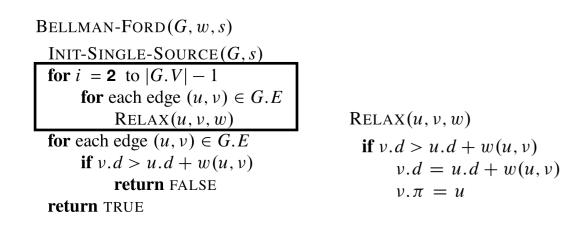
Remember, these are estimates until we finish. Can we do better?

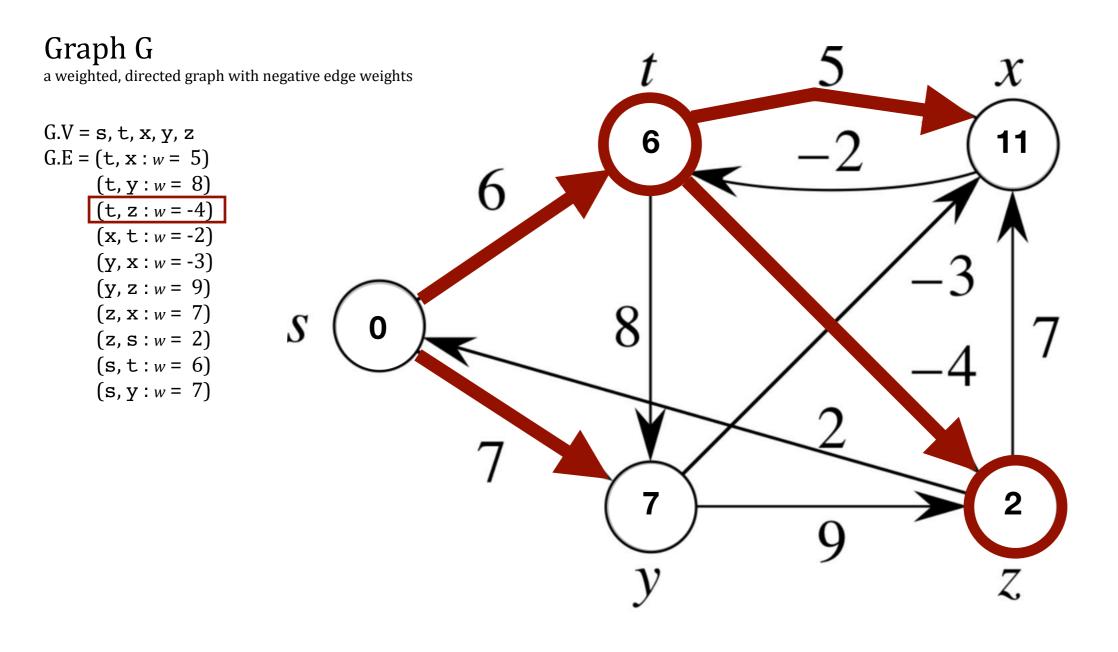
BELLMAN-FORD (G, w, s)	
INIT-SINGLE-SOURCE (G, s)	
for $i = 2$ to $ G.V - 1$	
for each edge $(u, v) \in G.E$	
$\operatorname{RELAX}(u, v, w)$	$\operatorname{ReLAX}(u, v, w)$
for each edge $(u, v) \in G.E$	if $v.d > u.d + w(u, v)$
if v.d > u.d + w(u,v)	v.d = u.d + w(u, v)
return FALSE	$v.\pi = u$
return TRUE	

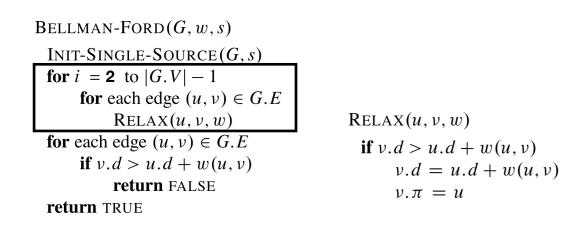


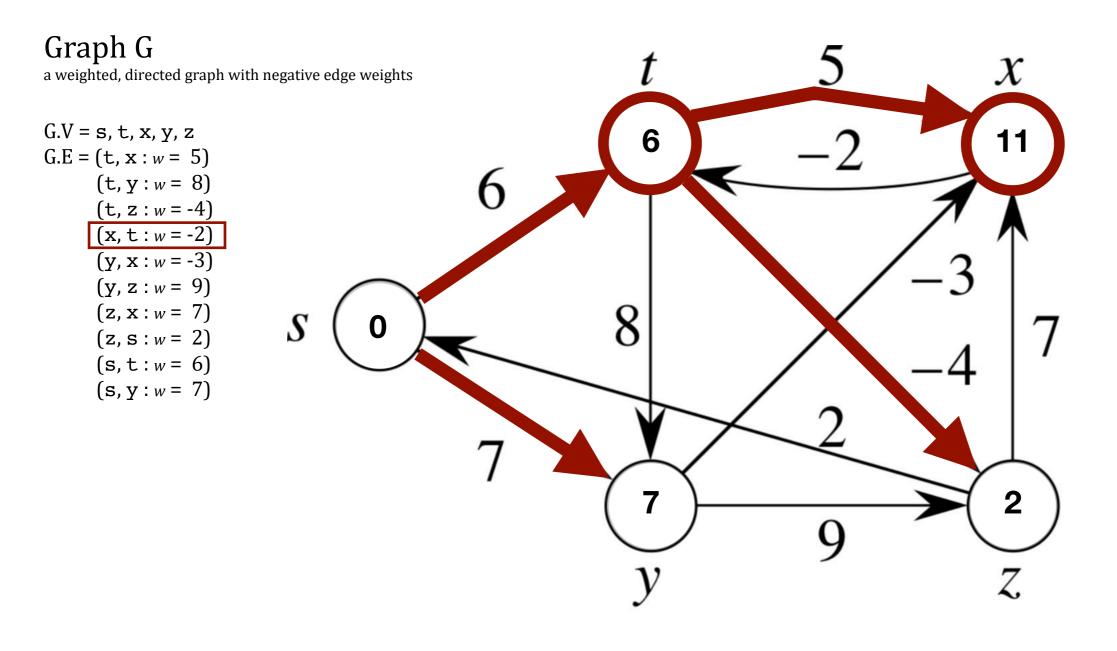


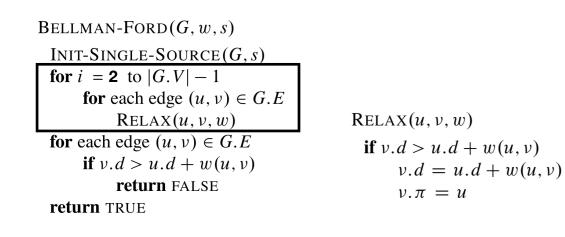


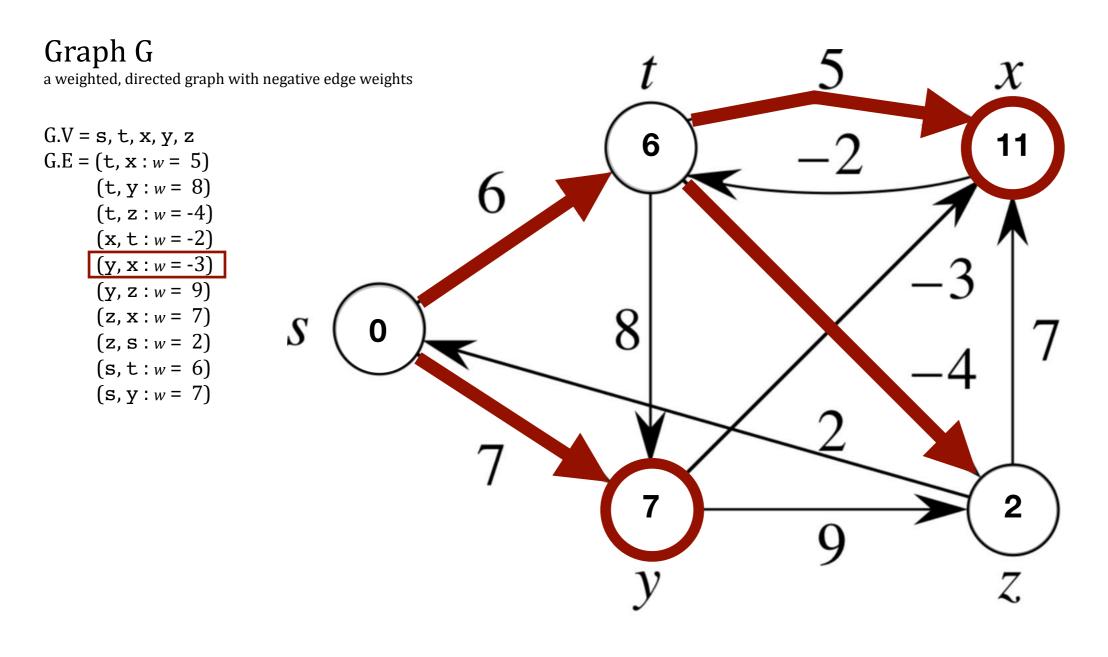








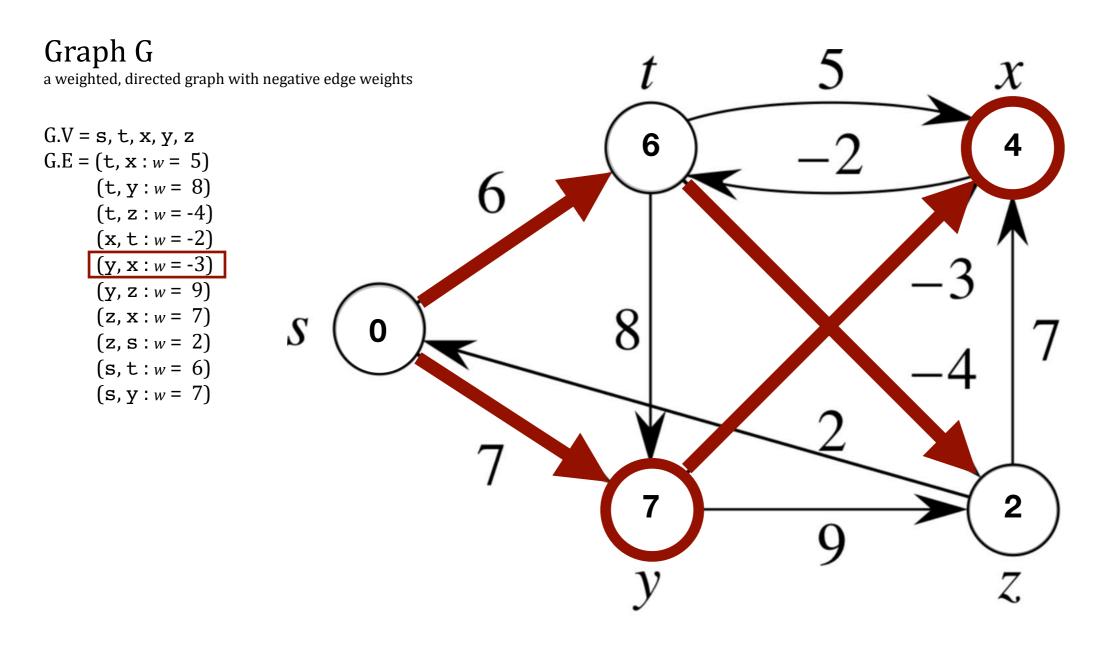




Remember, these are estimates until we finish. We CAN do better!

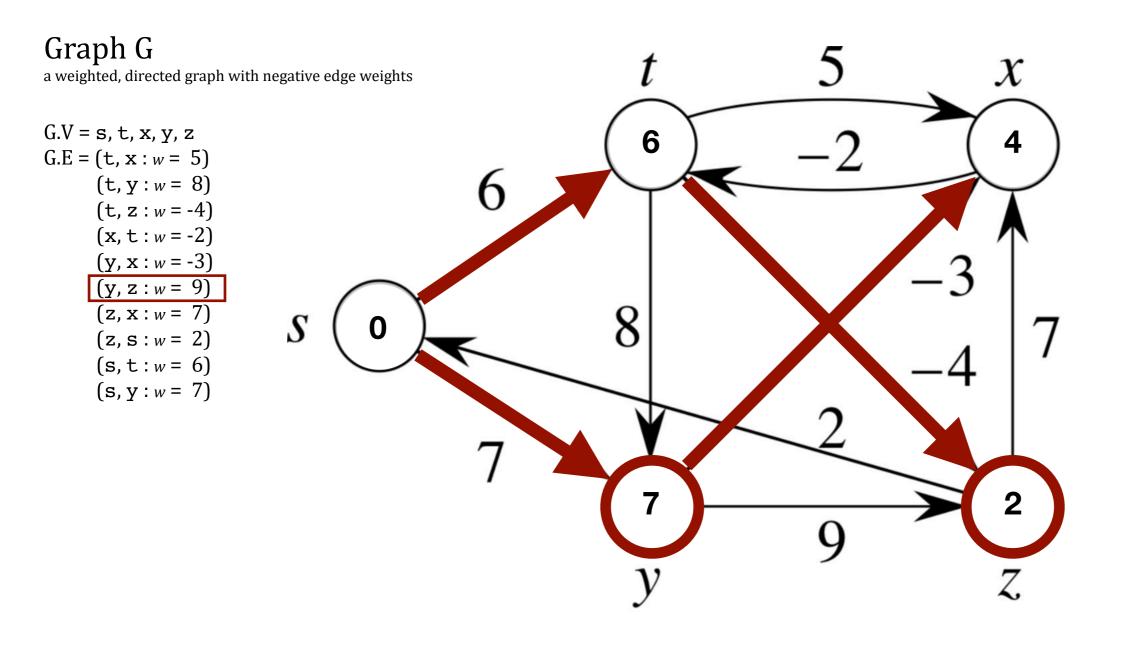
BELLMAN-FORD (G, w, s)	
INIT-SINGLE-SOURCE (G, s)	
for $i = 2$ to $ G.V - 1$	
for each edge $(u, v) \in G.E$	
$\operatorname{RELAX}(u, v, w)$	RELAX $(u, v,$
for each edge $(u, v) \in G.E$	if $v.d > u$.
if v.d > u.d + w(u,v)	v.d =
return FALSE	$\nu.\pi =$
return TRUE	

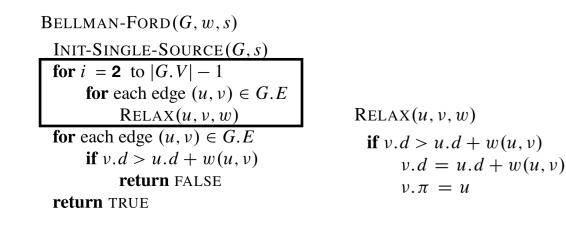
RELAX(u, v, w)if v.d > u.d + w(u, v) v.d = u.d + w(u, v) $v.\pi = u$

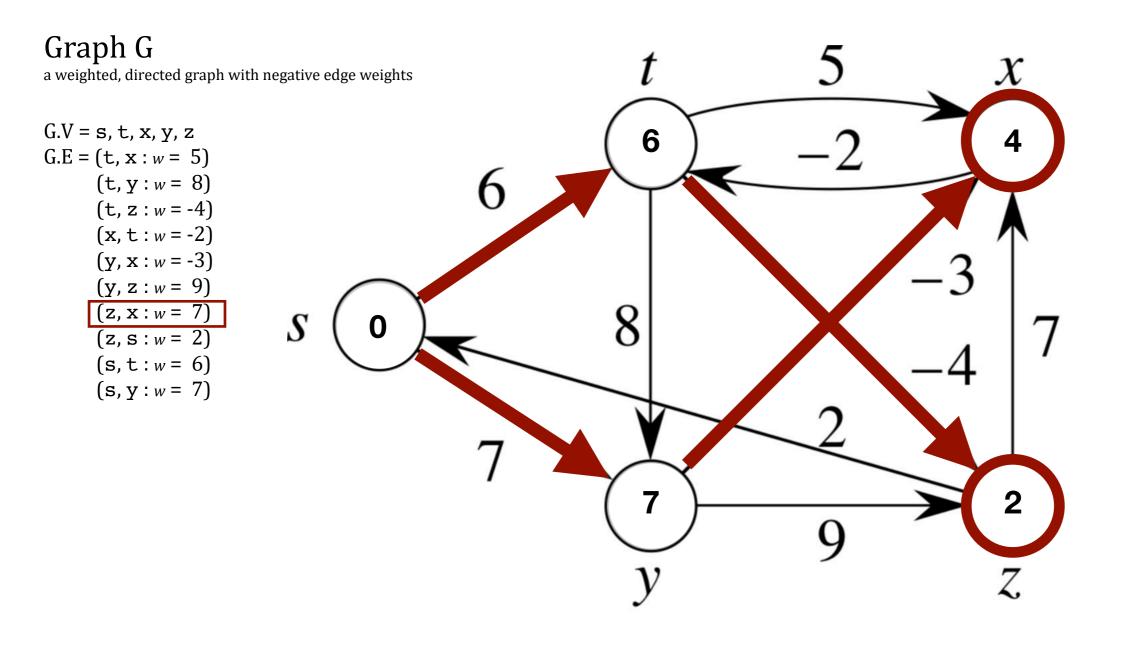


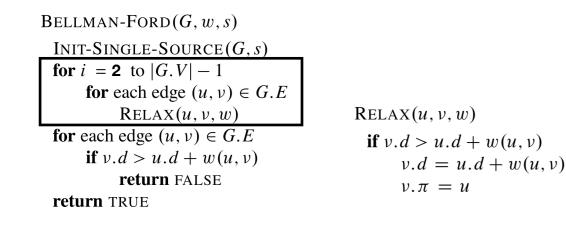
Remember, these are estimates until we finish. We CAN do better!

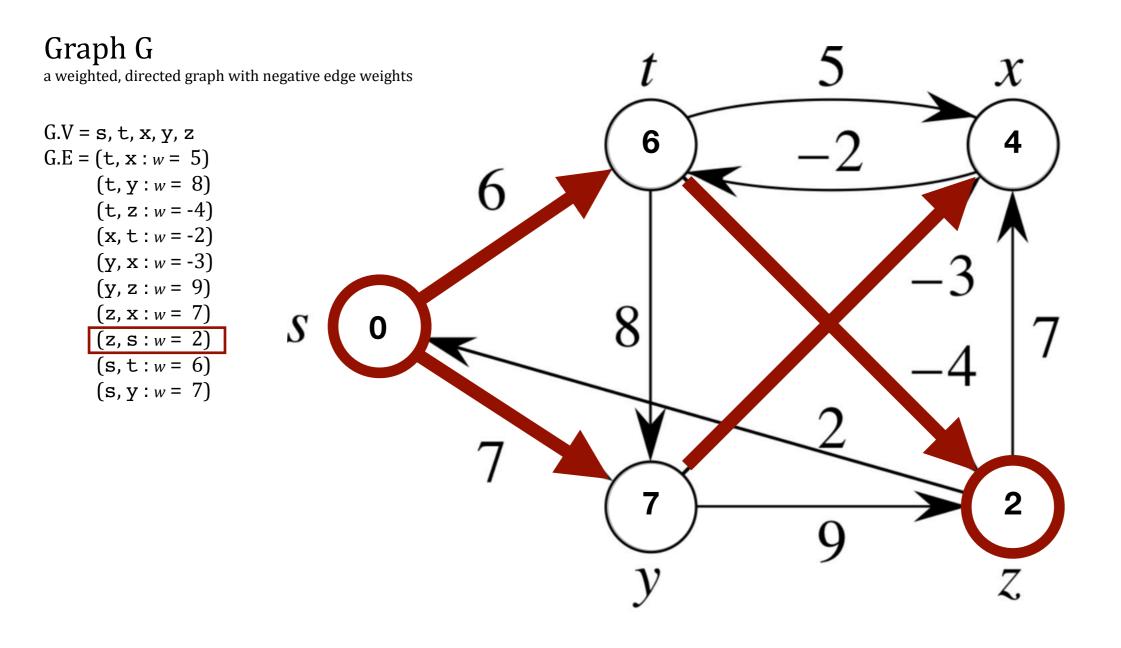
_
$\operatorname{ReLAX}(u, v, w)$
if $v.d > u.d + w(u, v)$
v.d = u.d + w(u, v)
$v.\pi = u$

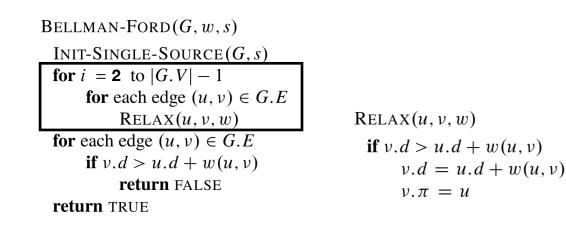


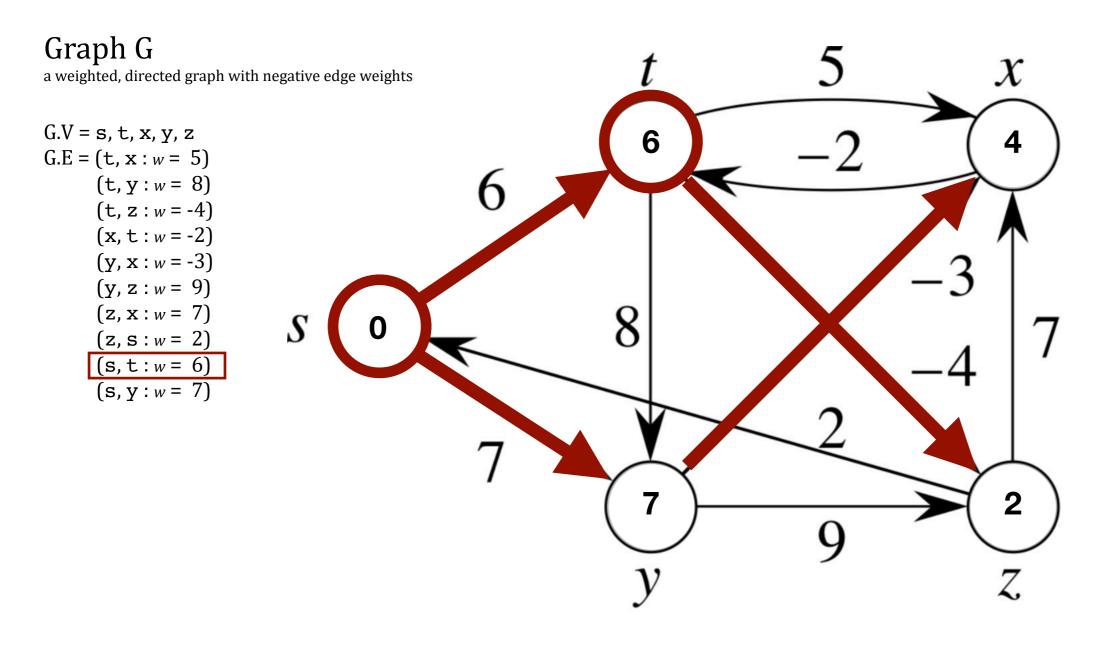


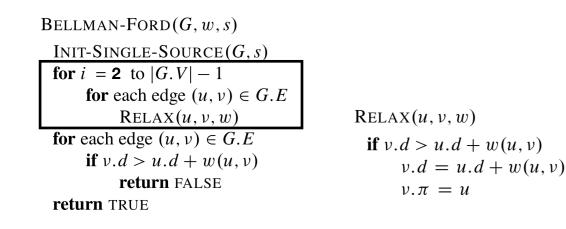


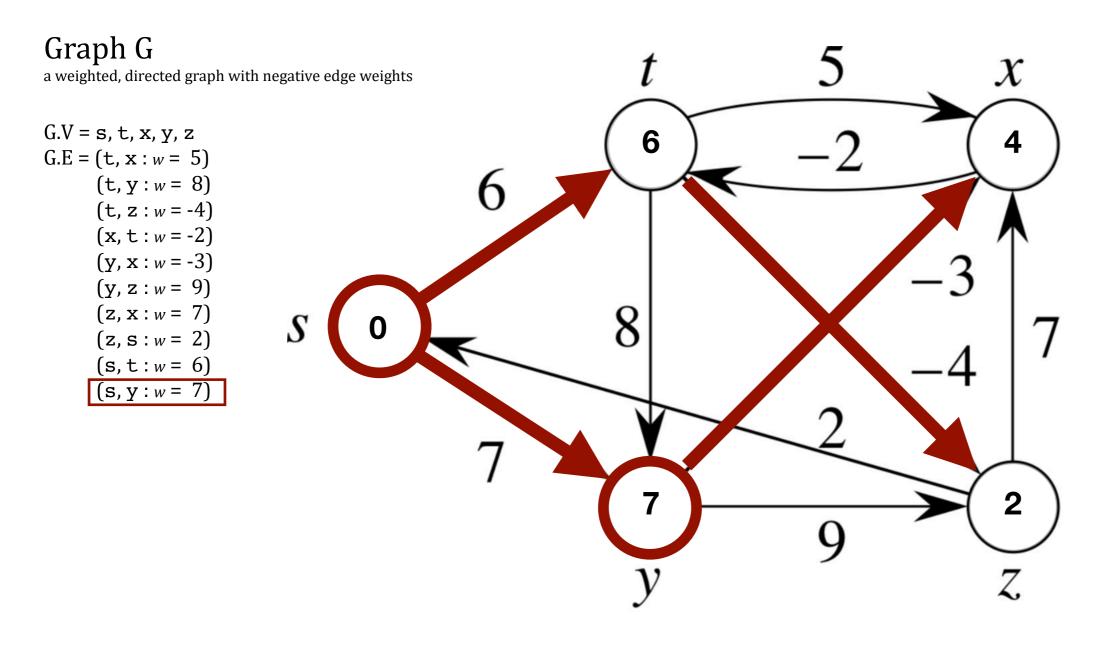


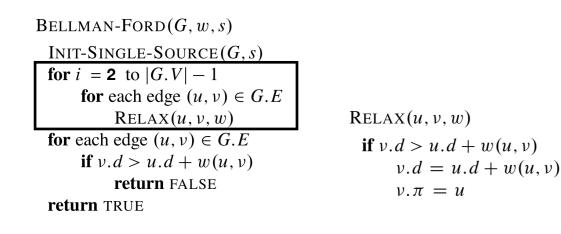


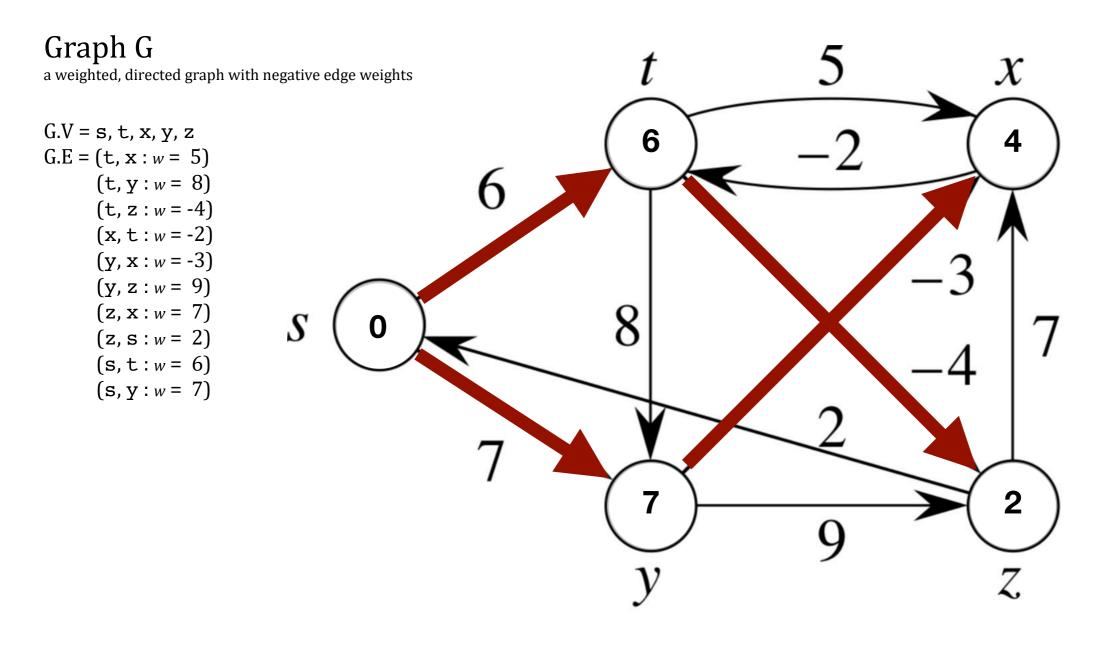


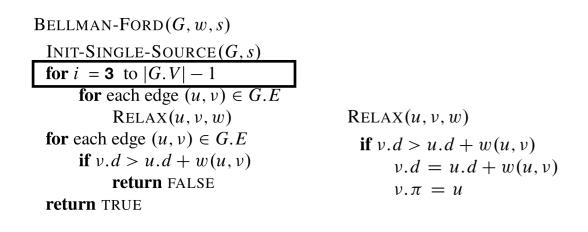


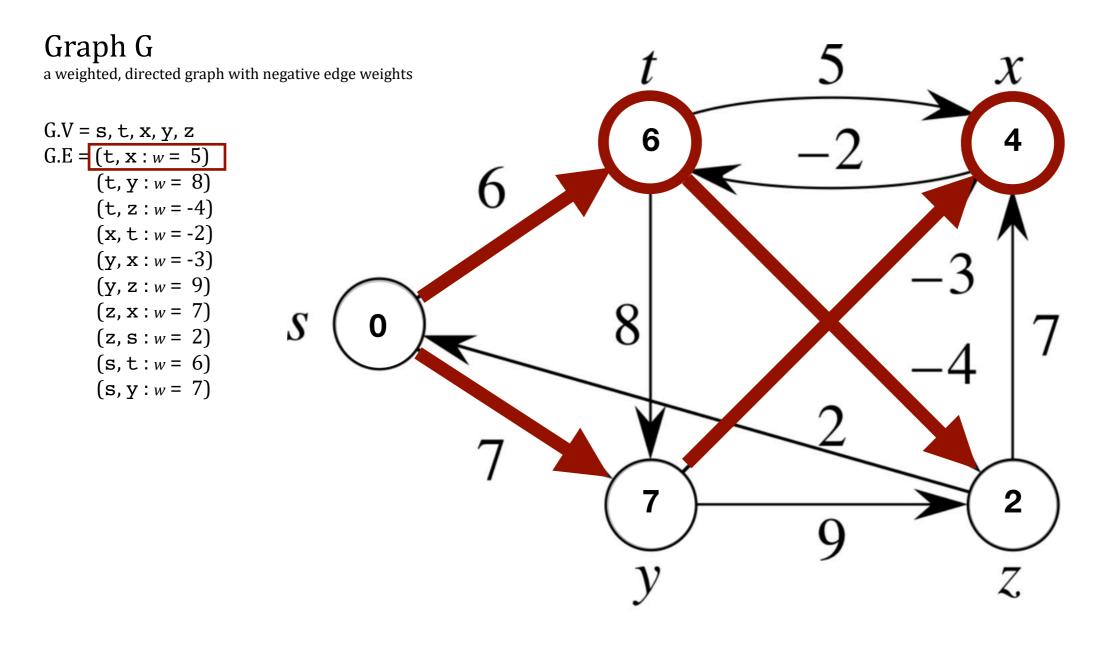


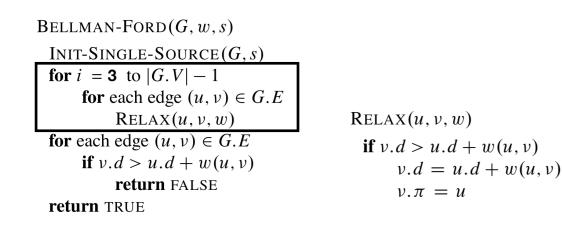


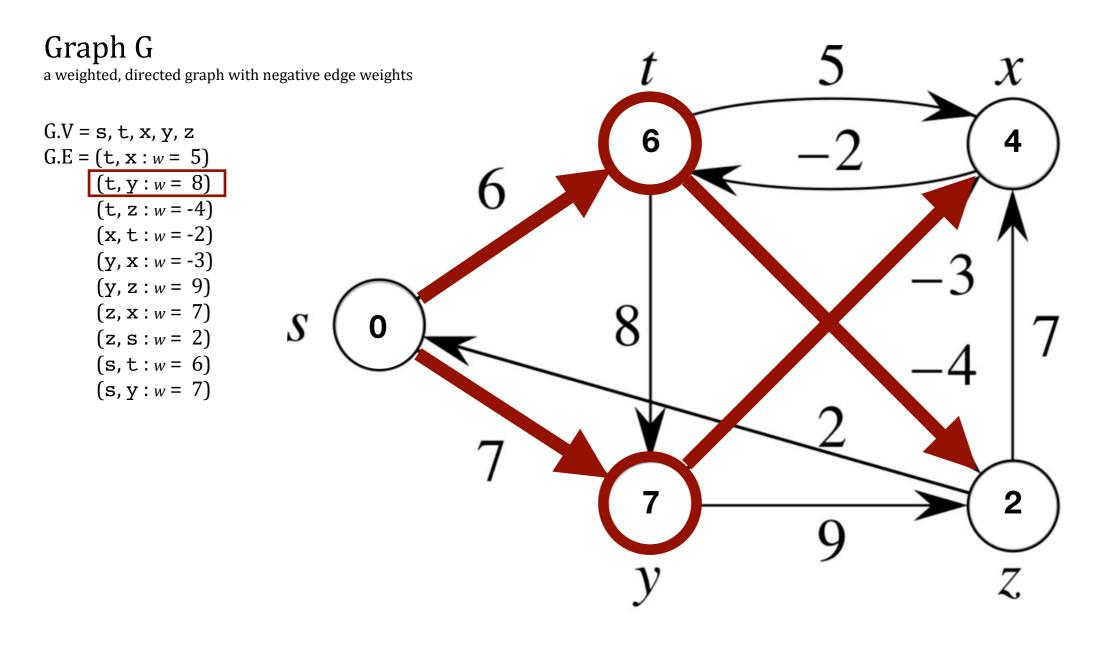


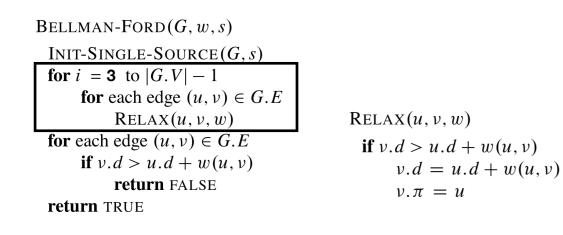


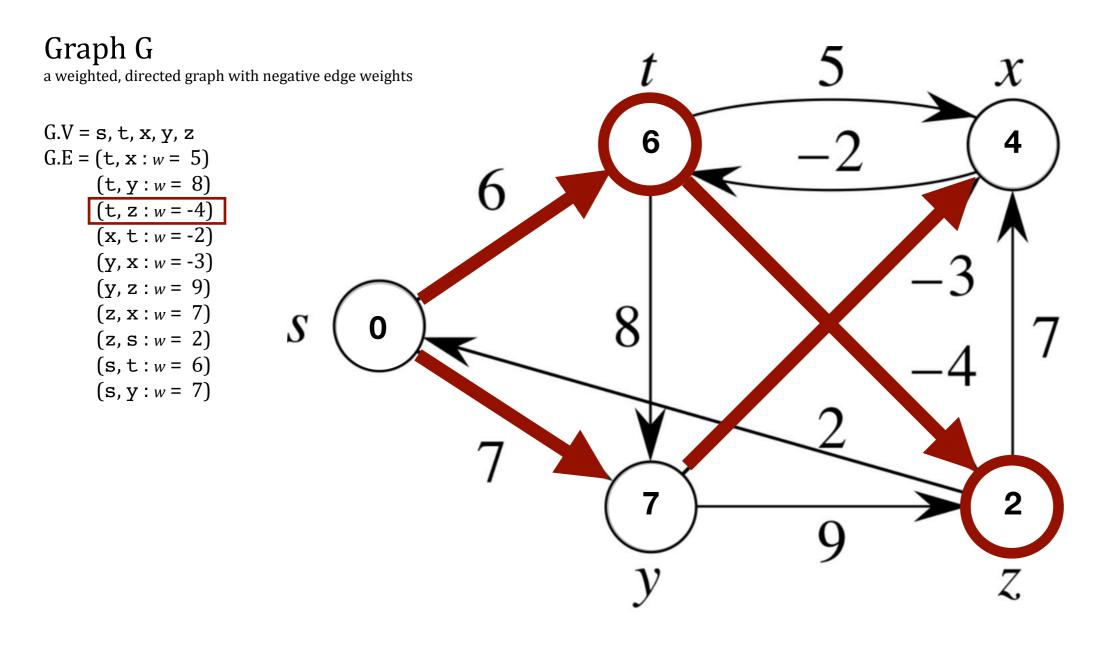


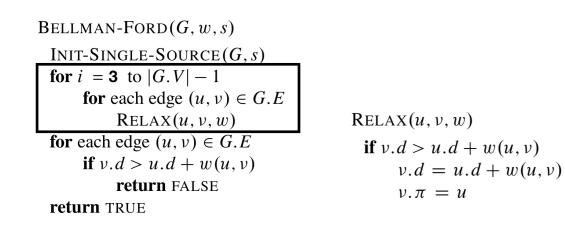


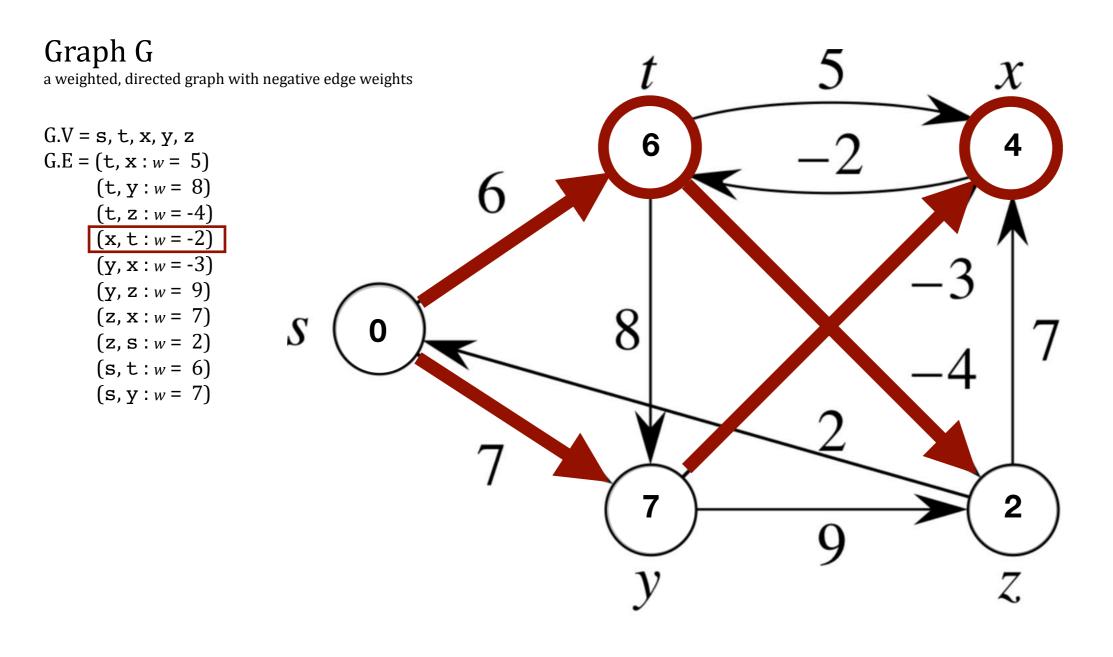






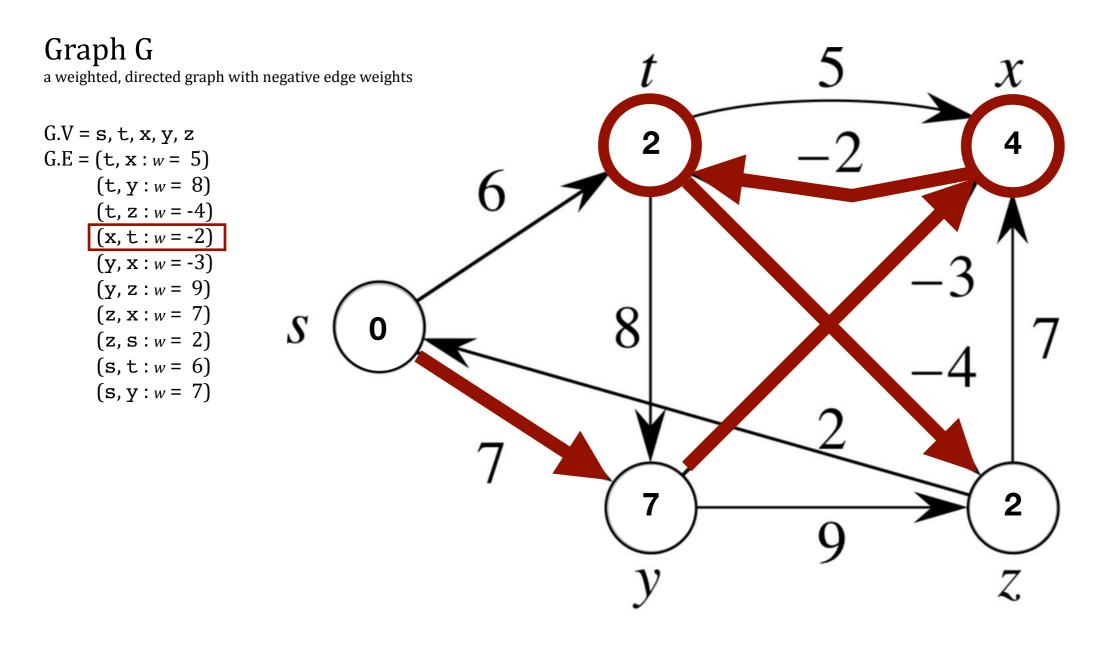






Remember, these are estimates until we finish. We CAN do better!

BELLMAN-FORD (G, w, s)	
INIT-SINGLE-SOURCE (G, s)	
for $i = 3$ to $ G.V - 1$	
for each edge $(u, v) \in G.E$	
$\operatorname{RELAX}(u, v, w)$	$\operatorname{RELAX}(u, v, w)$
for each edge $(u, v) \in G.E$	if $v.d > u.d + w(u, v)$
if v.d > u.d + w(u,v)	v.d = u.d + w(u, v)
return FALSE	$v.\pi = u$
return TRUE	



Remember, these are estimates until we finish. We CAN do better!

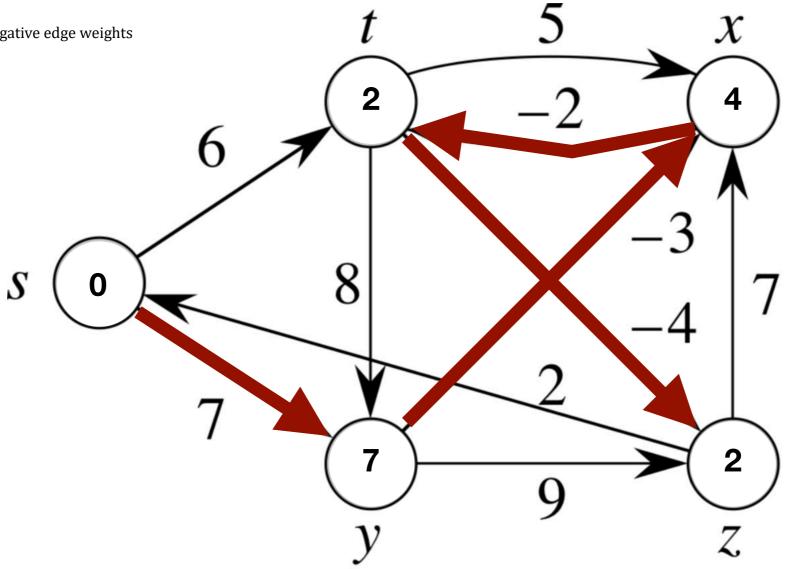
BELLMAN-FORD (G, w, s)	
INIT-SINGLE-SOURCE (G, s)	
for $i = 3$ to $ G.V - 1$	
for each edge $(u, v) \in G.E$	
$\operatorname{RELAX}(u, v, w)$	$\operatorname{ReLAX}(u, v, w)$
for each edge $(u, v) \in G.E$	if $v.d > u.d + w(u, v)$
$\mathbf{if} \ v.d > u.d + w(u,v)$	v.d = u.d + w(u, v)
return FALSE	$v.\pi = u$
return TRUE	

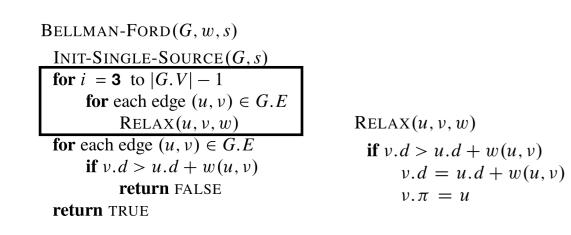
Graph G

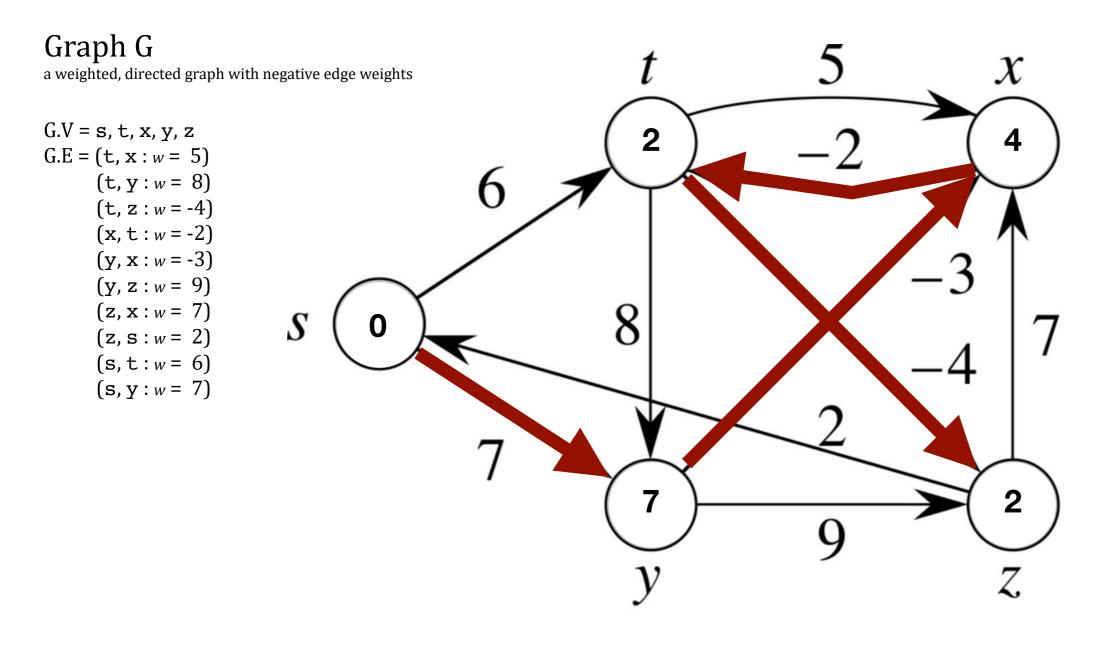
a weighted, directed graph with negative edge weights

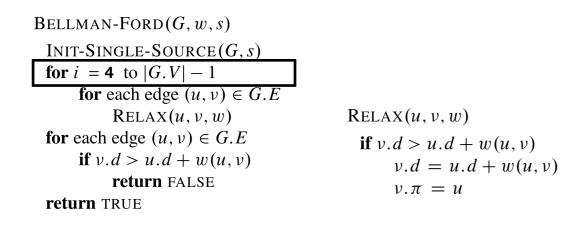
G.V = s, t, x, y, z G.E = (t, x : w = 5) (t, y : w = 8) (t, z : w = -4) (x, t : w = -2) (y, x : w = -3) (y, z : w = 9) (z, x : w = 7) (z, s : w = 2) (s, t : w = 6) (s, y : w = 7)

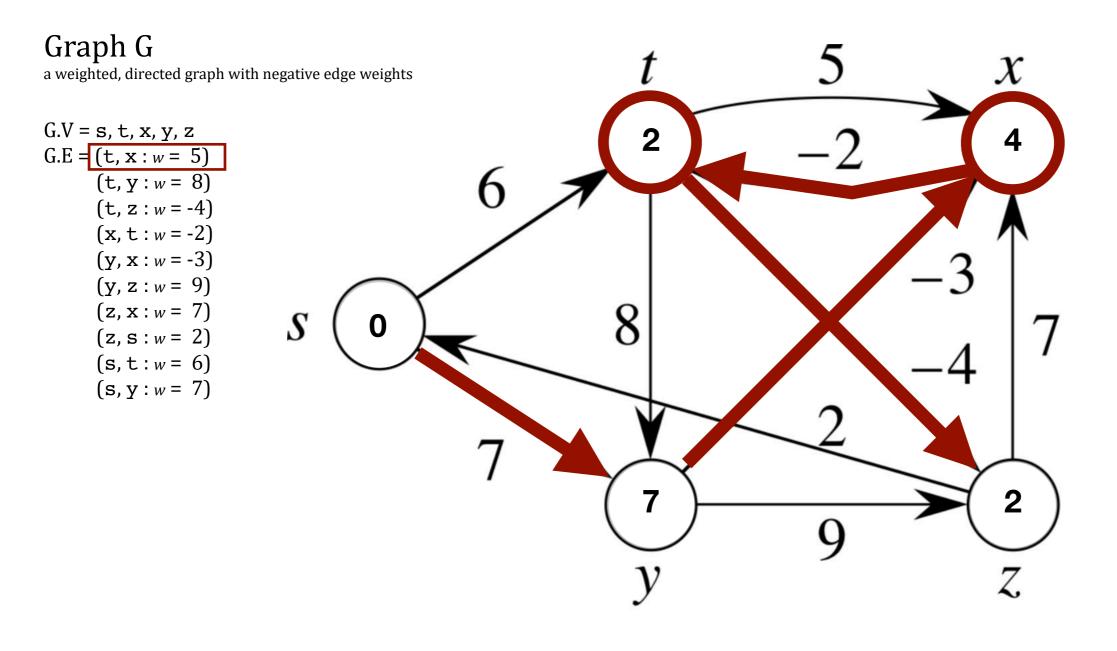
There are no changes after this point for the rest of this pass. But we're not yet done.

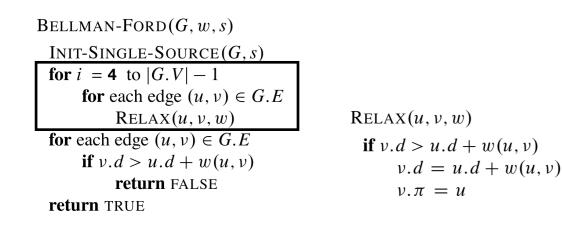


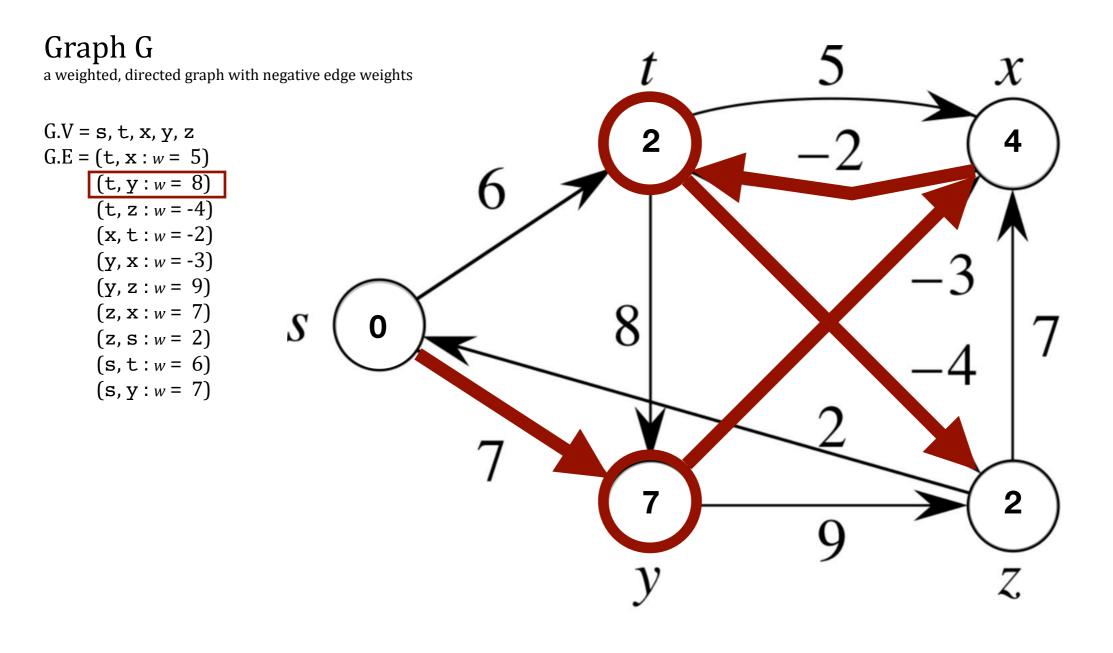


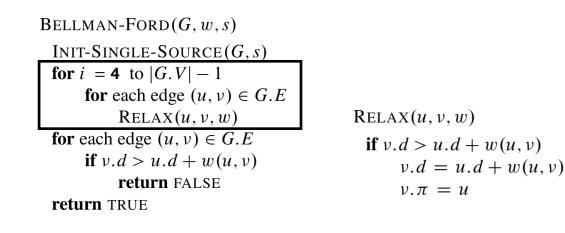


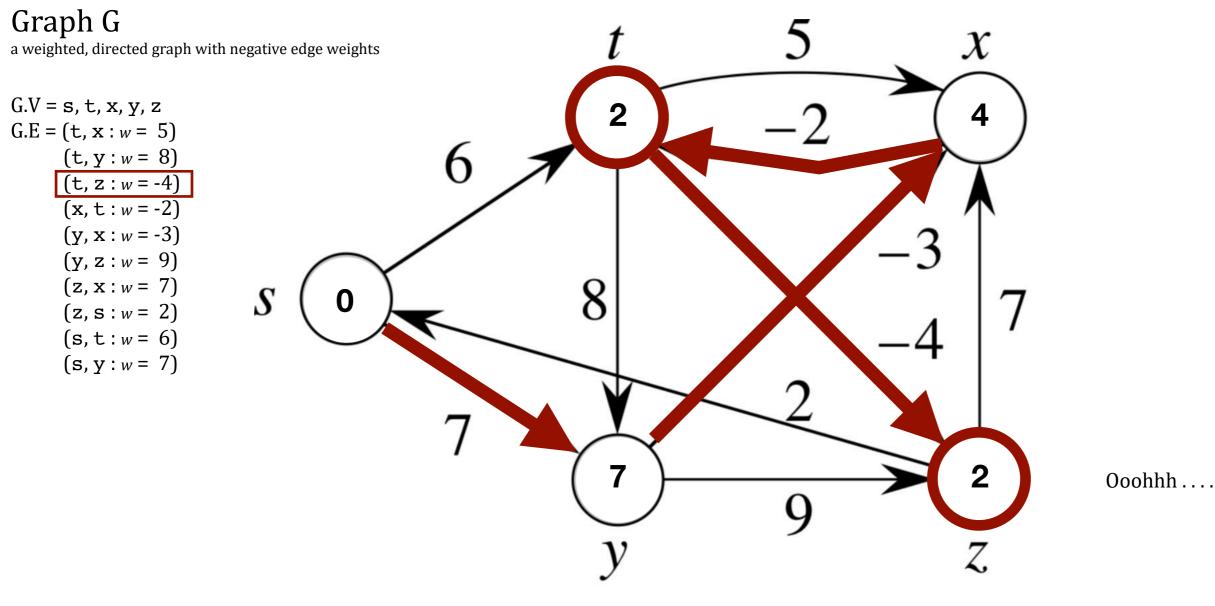


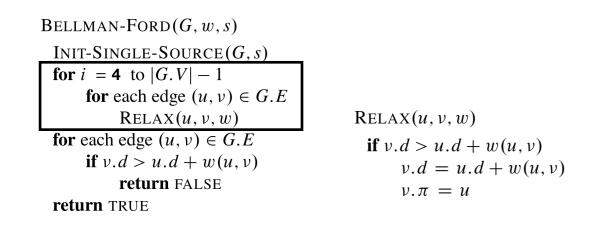


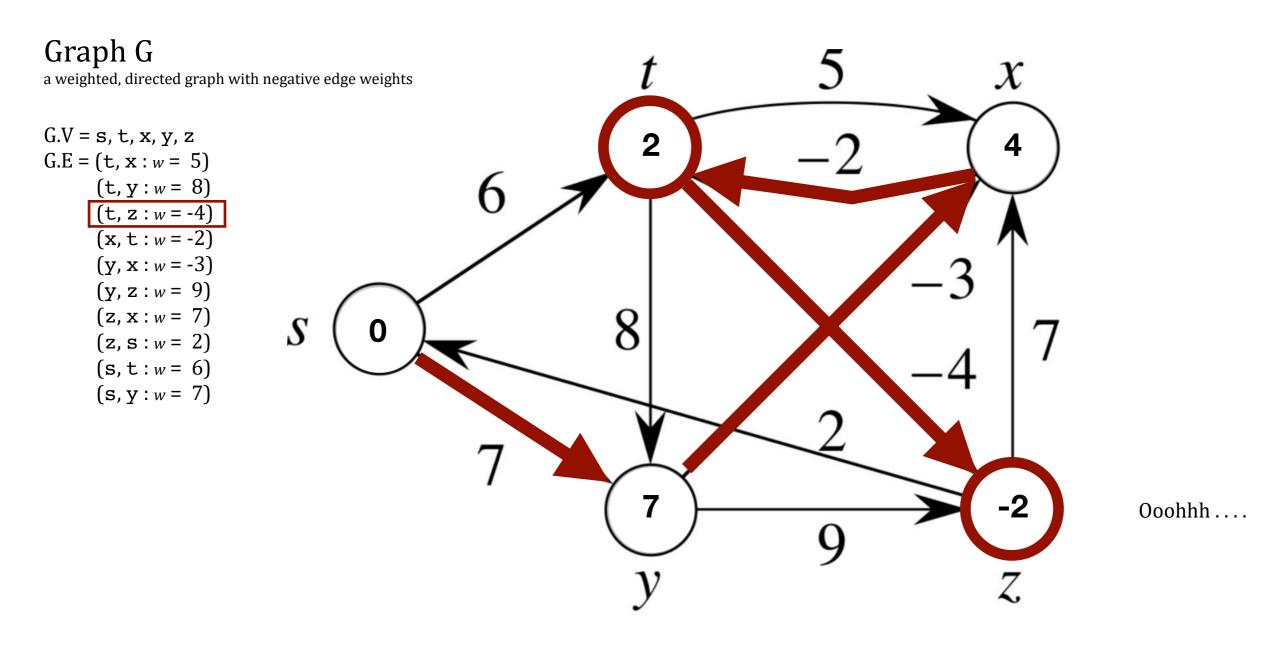


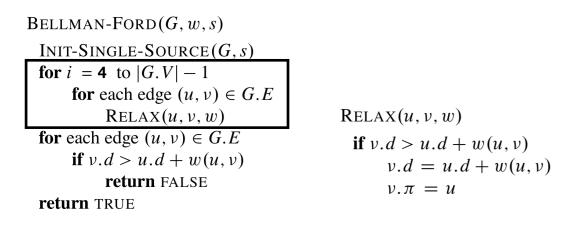












Graph G

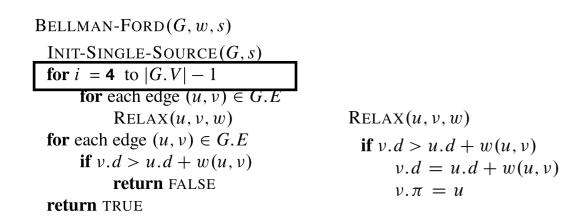
a weighted, directed graph with negative edge weights

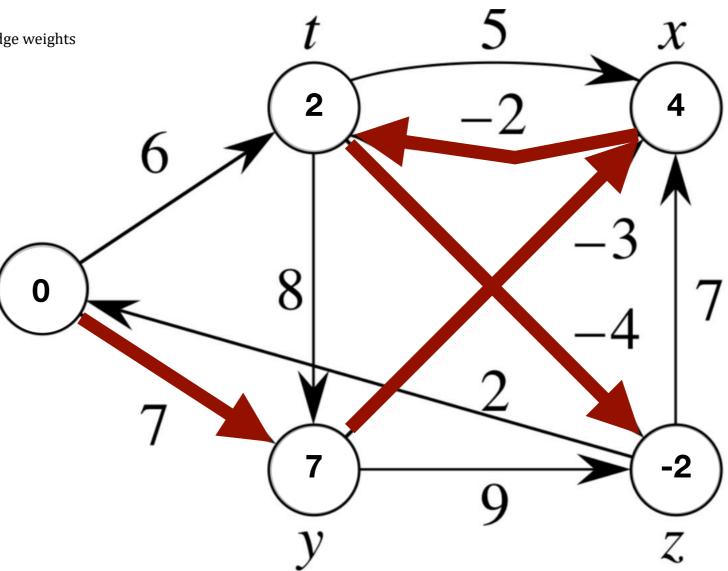
S

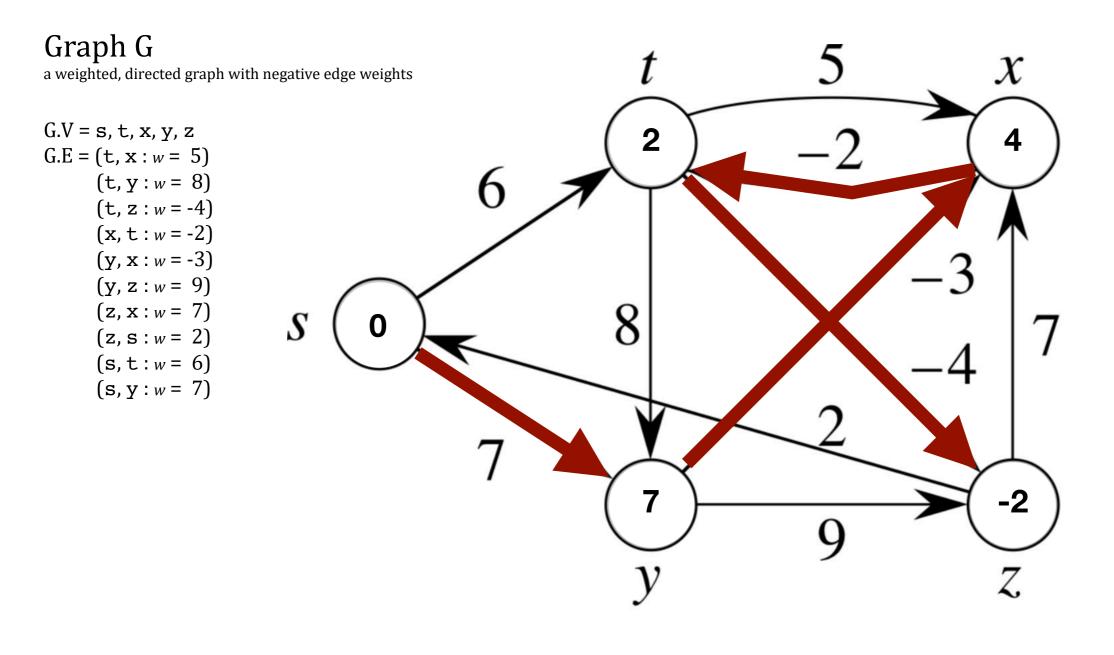
G.V = s, t, x, y, z G.E = (t, x : w = 5) (t, y : w = 8) (t, z : w = -4) (x, t : w = -2) (y, x : w = -3) (y, z : w = 9) (z, x : w = 7) (z, s : w = 2) (s, t : w = 6) (s, y : w = 7)

There are no changes after this point for the rest of this pass. And now we're done.

Almost.







```
BELLMAN-FORD (G, w, s)

INIT-SINGLE-SOURCE (G, s)

for i = 4 to |G.V| - 1

for each edge (u, v) \in G.E

RELAX(u, v, w)

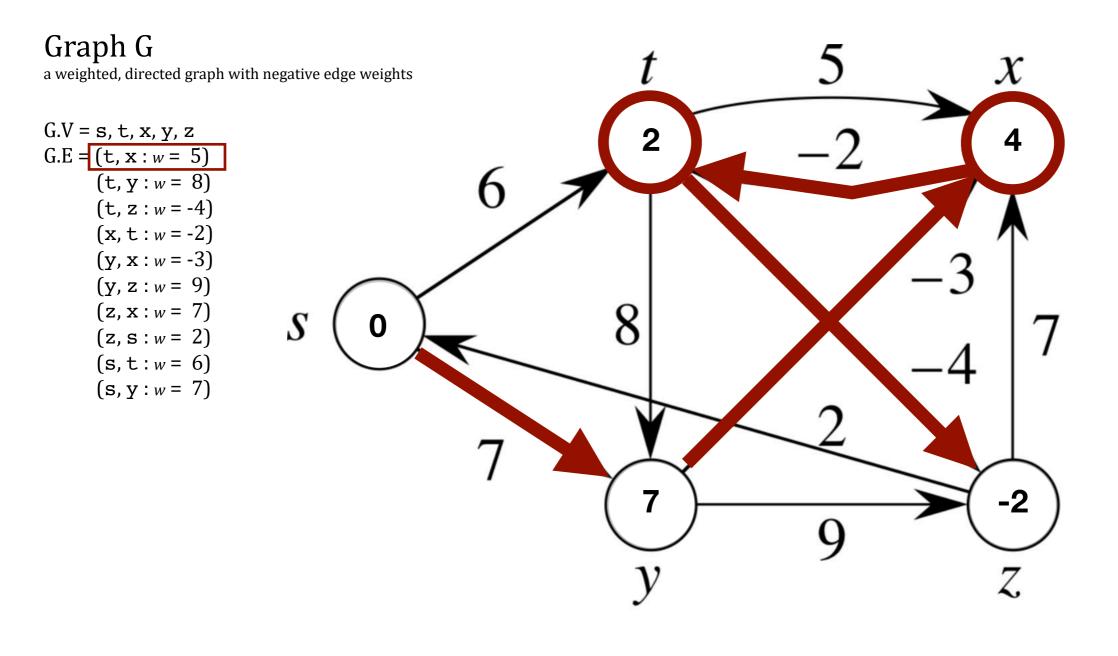
for each edge (u, v) \in G.E

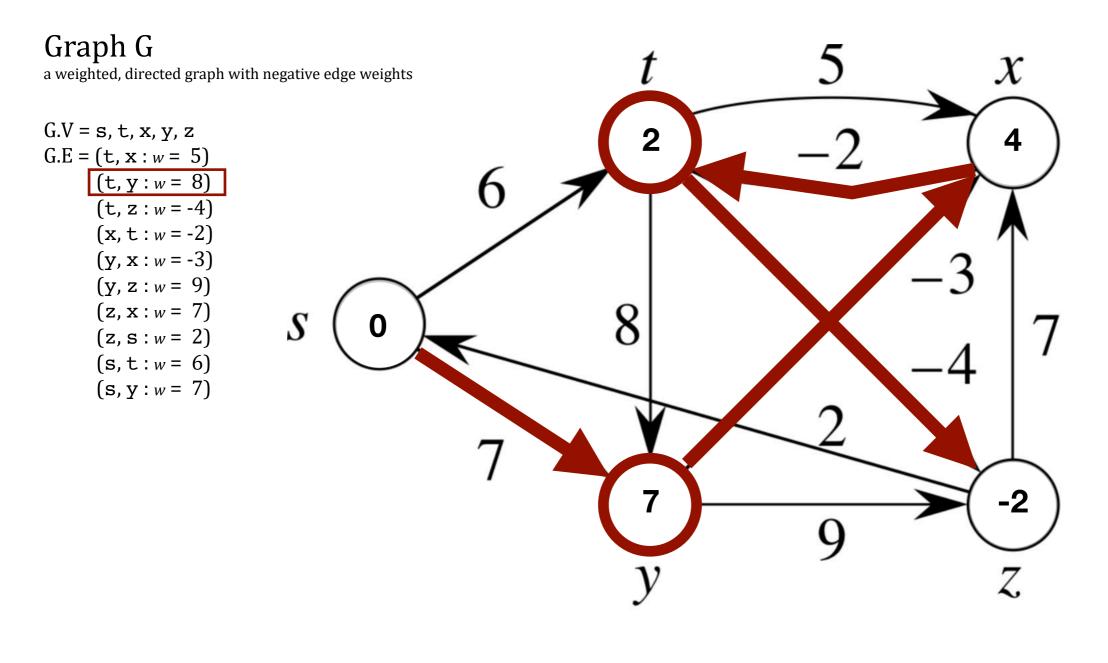
if v.d > u.d + w(u, v)

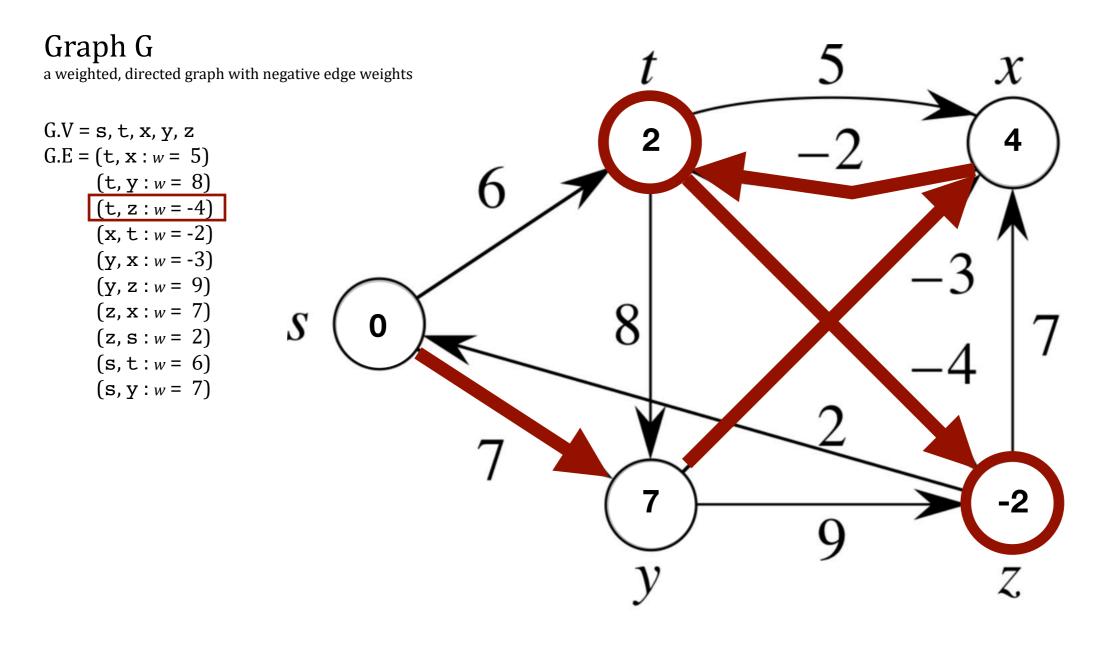
return FALSE
```

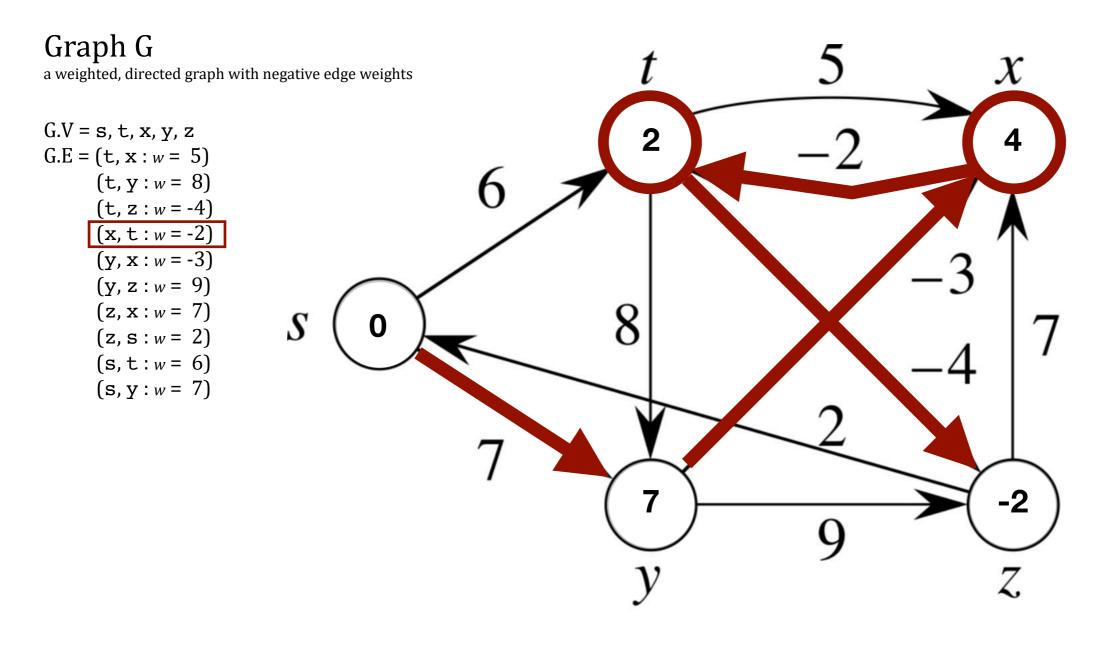
What does this do?

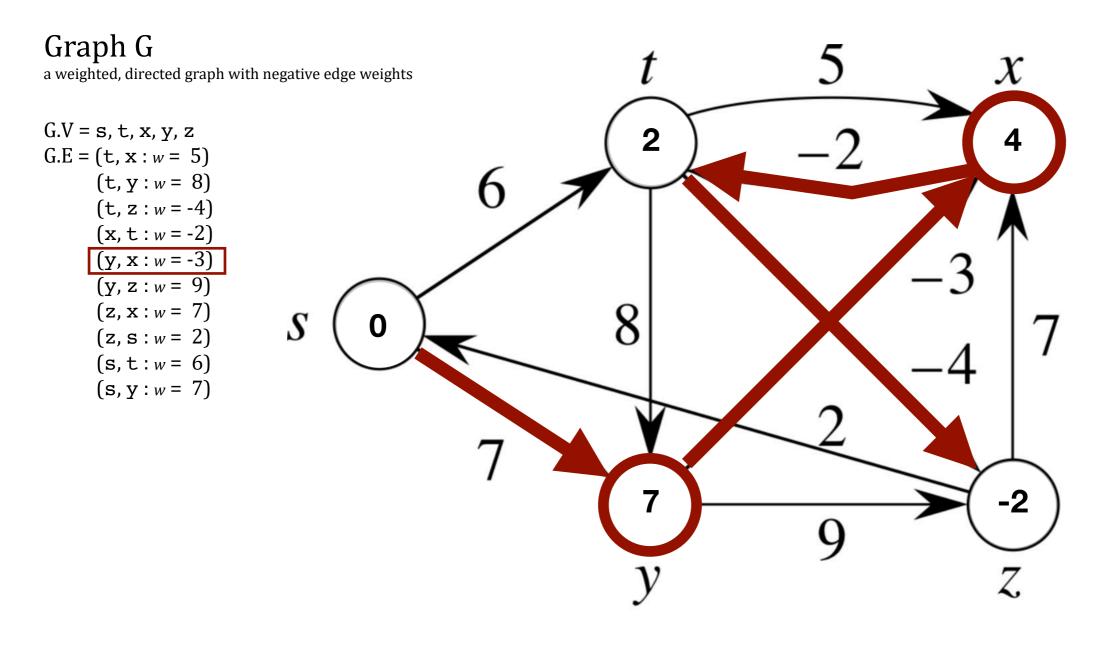
return TRUE

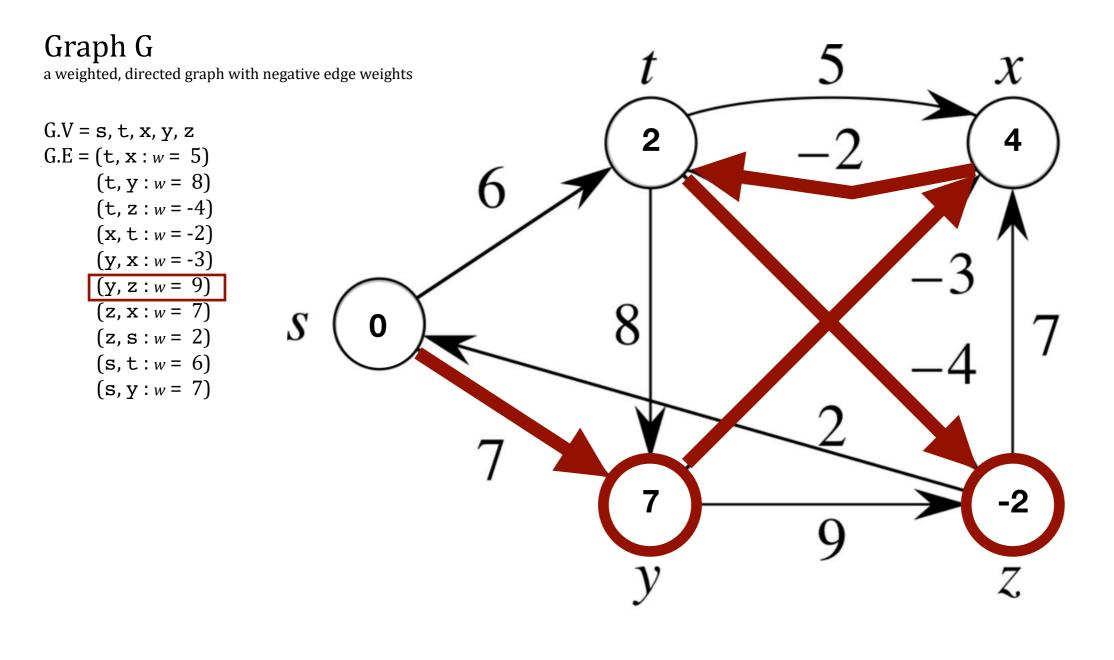


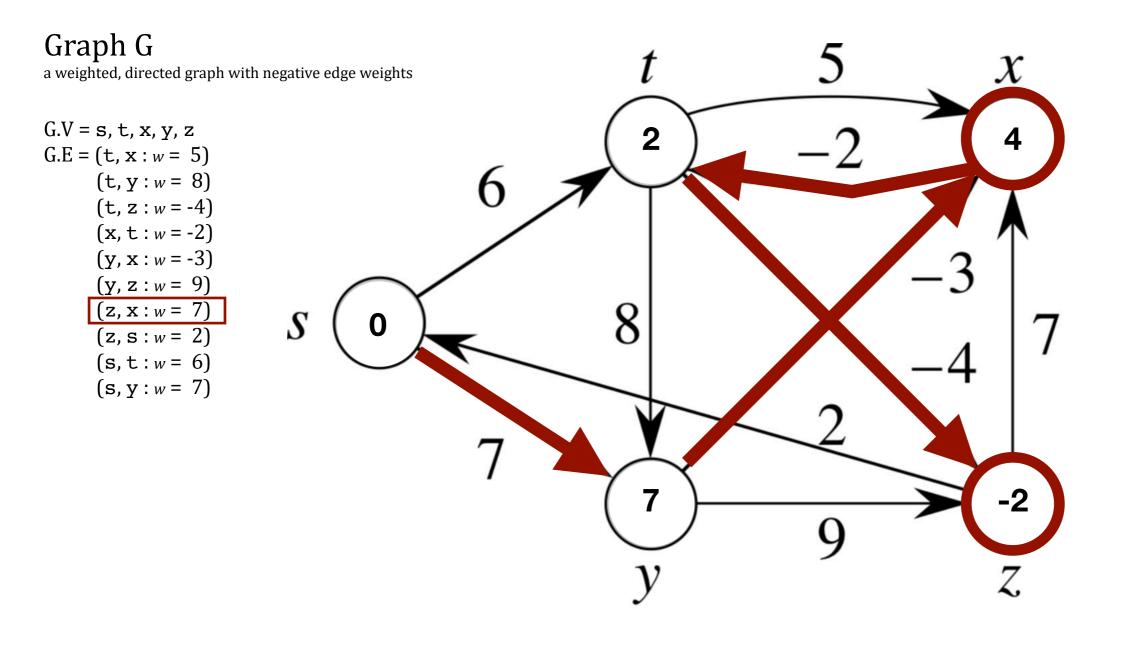


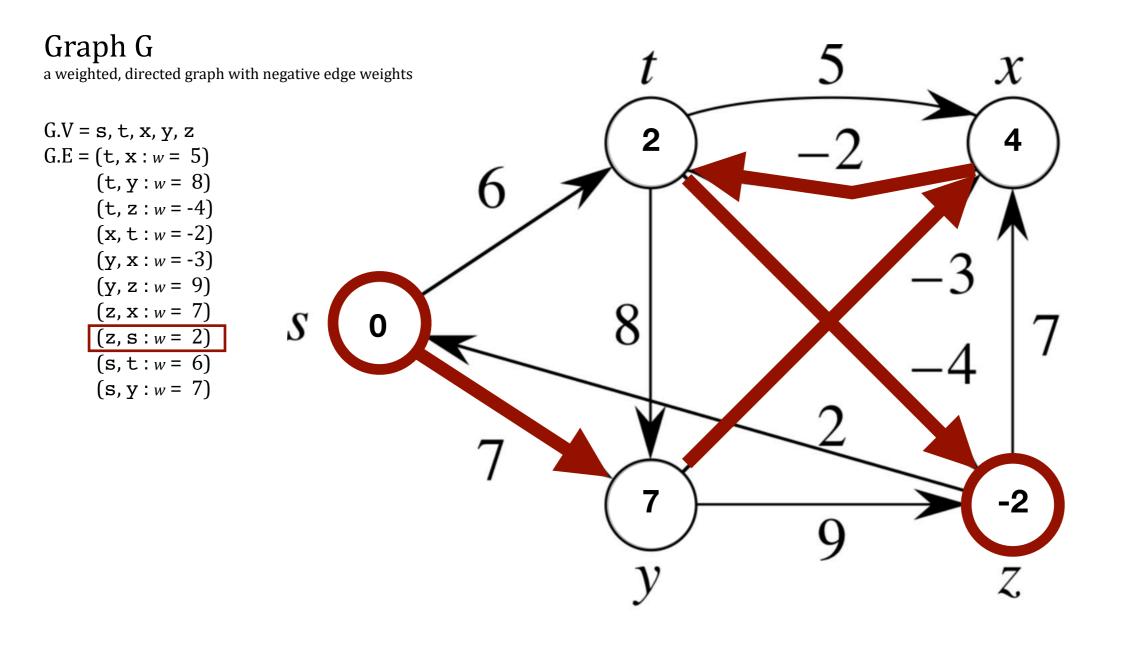


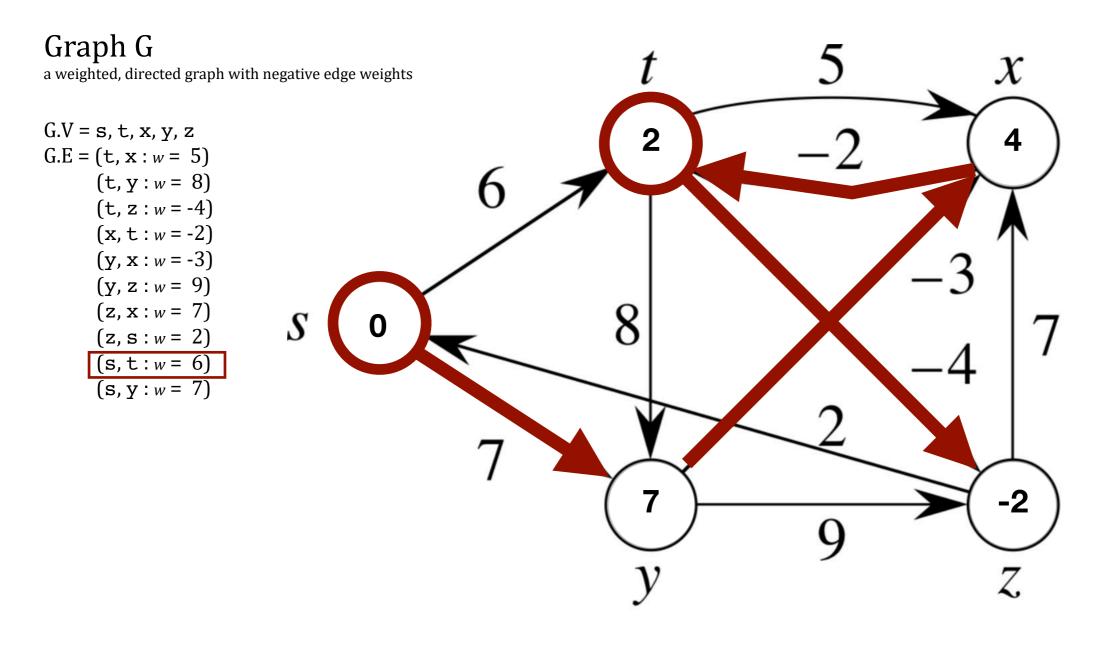


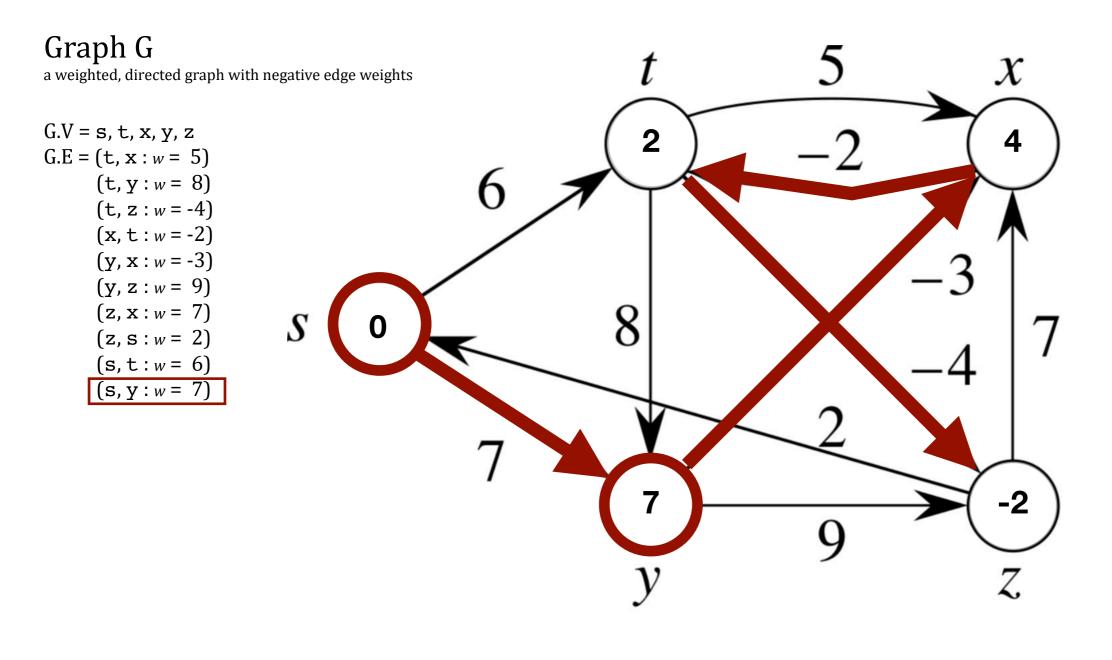


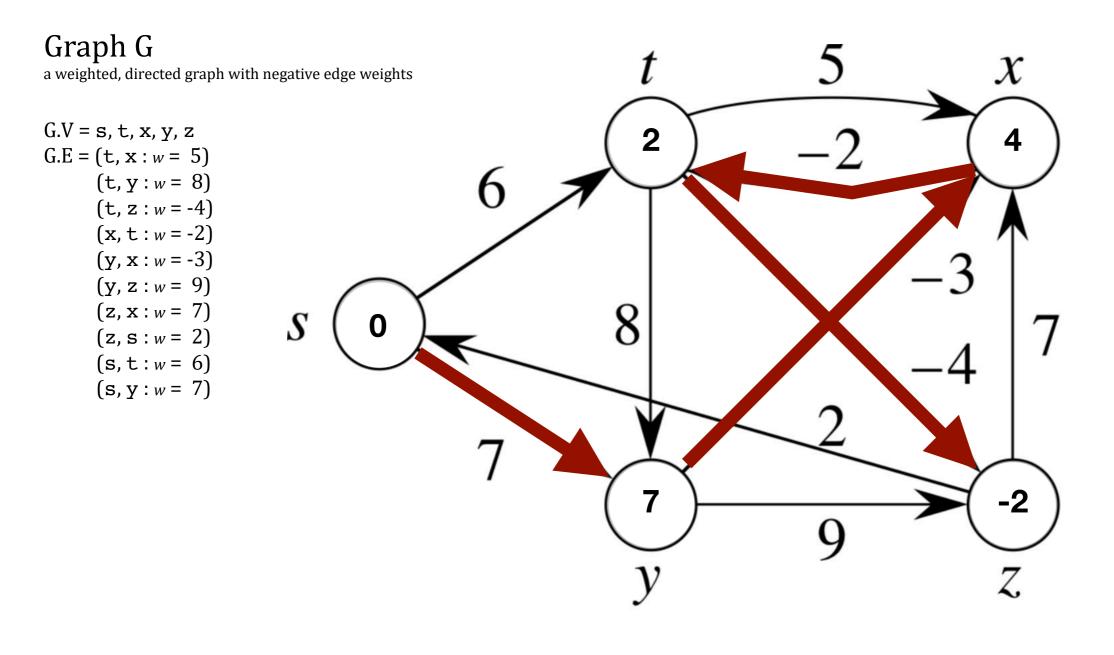












```
BELLMAN-FORD (G, w, s)

INIT-SINGLE-SOURCE (G, s)

for i = 4 to |G.V| - 1

for each edge (u, v) \in G.E

RELAX(u, v, w)

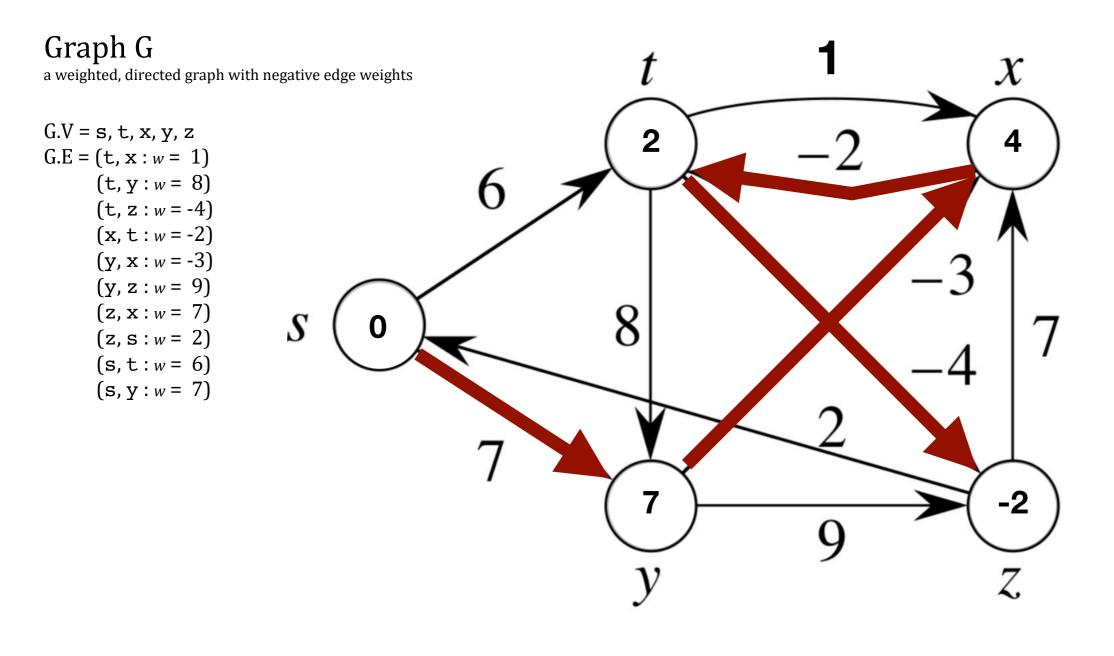
for each edge (u, v) \in G.E

if v.d > u.d + w(u, v)

return FALSE
```

What does this do?

return TRUE



```
BELLMAN-FORD (G, w, s)

INIT-SINGLE-SOURCE (G, s)

for i = 4 to |G.V| - 1

for each edge (u, v) \in G.E

RELAX(u, v, w)

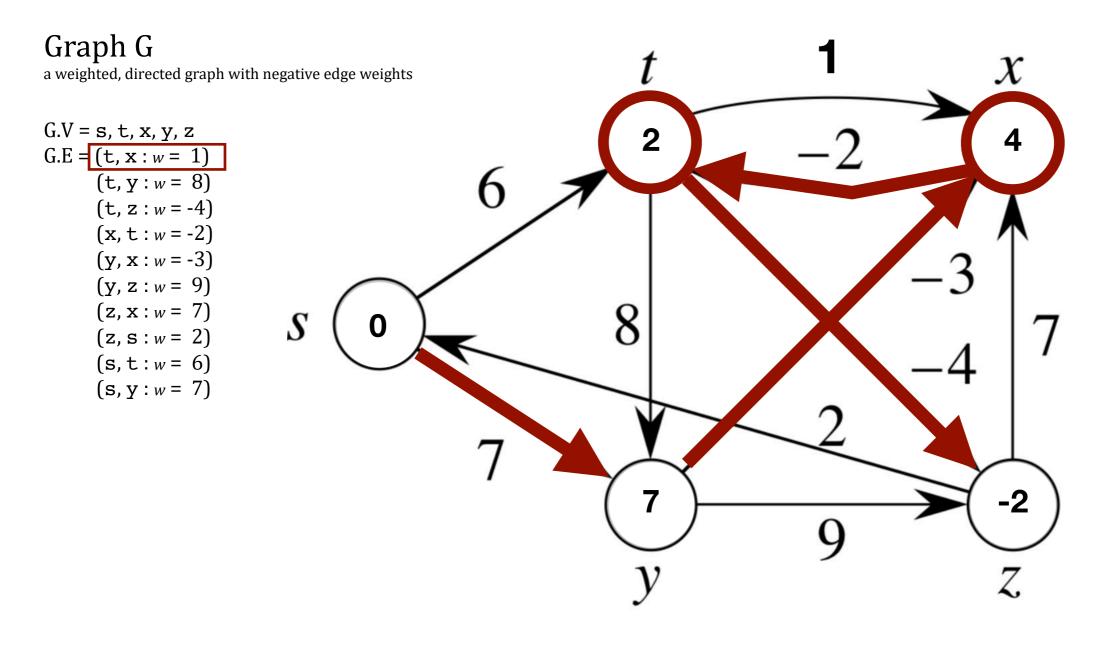
for each edge (u, v) \in G.E

if v.d > u.d + w(u, v)

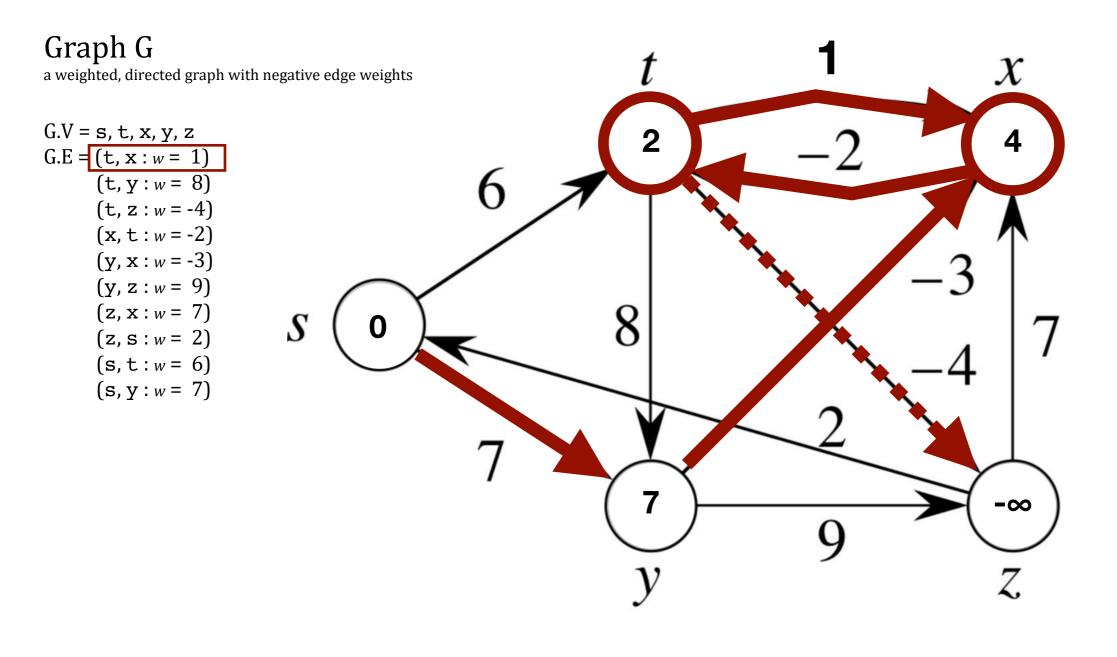
return FALSE
```

What does this do? What if *w*(t,x)=1 ?

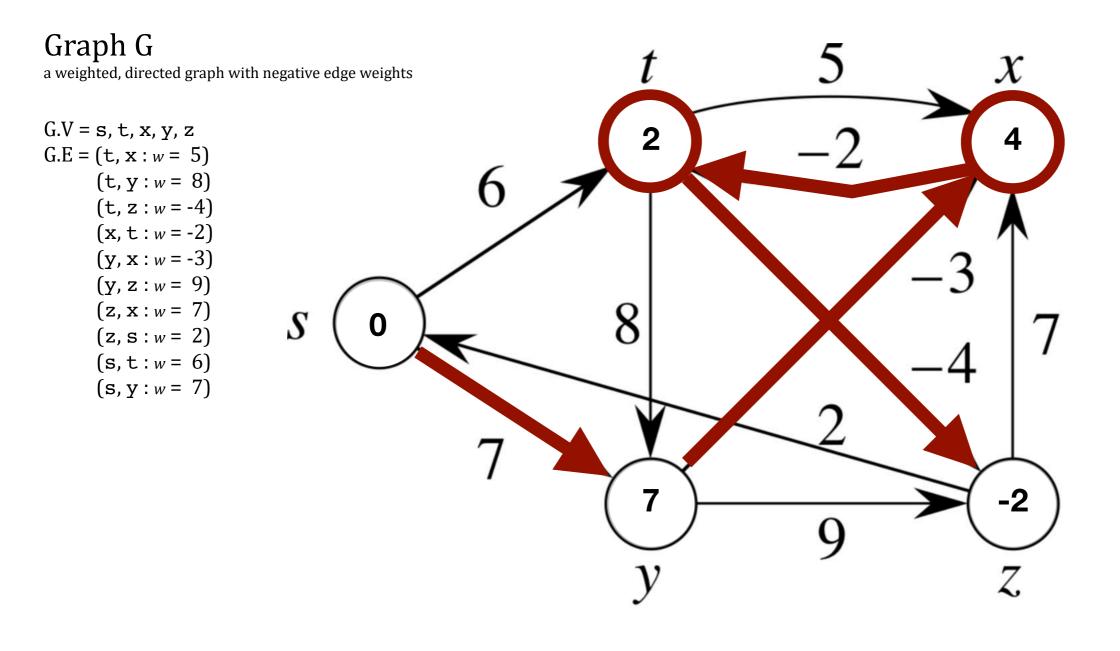
return TRUE



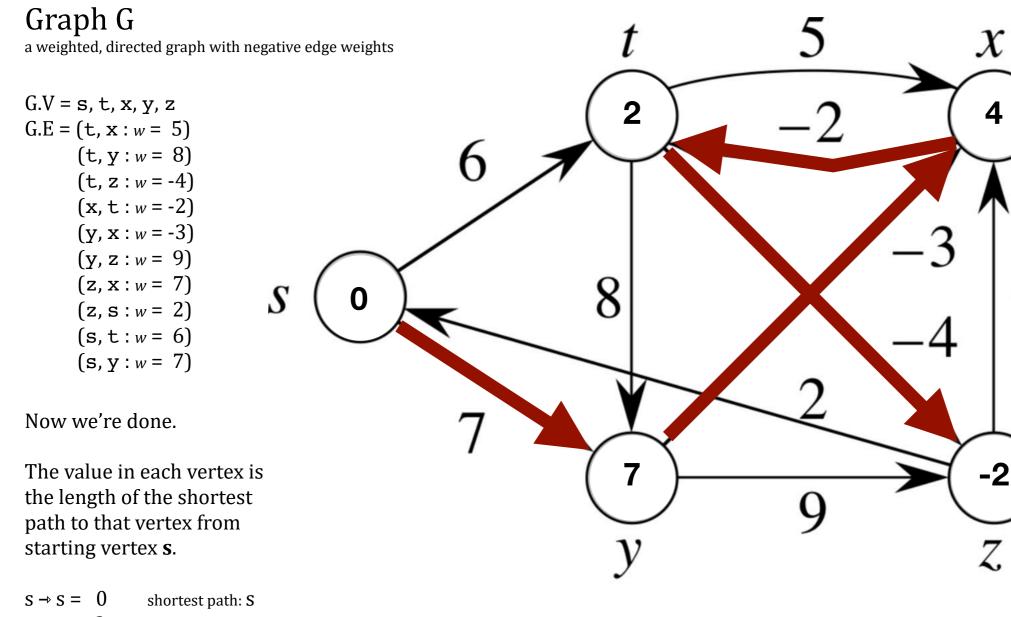
BELLMAN-FORD(G, w, s) INIT-SINGLE-SOURCE(G, s) for i = 4 to |G.V| - 1for each edge $(u, v) \in G.E$ RELAX(u, v, w)for each edge $(u, v) \in G.E$ if v.d > u.d + w(u, v) yes return FALSE What does this do? What if w(t,x)=1? return TRUE



BELLMAN-FORD(G, w, s) INIT-SINGLE-SOURCE(G, s) for i = 4 to |G.V| - 1for each edge $(u, v) \in G.E$ RELAX(u, v, w)for each edge $(u, v) \in G.E$ if v.d > u.d + w(u, v) yes return FALSE return TRUE What does this do? What if w(t,x)=1? We'd have a negative weight cycle. That's... interesting. Now $w(s,z) = -\infty$.



What does this do? It detects negative-weight cycles . . . and returns **false** is any are found.



- $s \rightarrow t = 2$ shortest path: $s \rightarrow y \rightarrow x \rightarrow t$
- $s \rightarrow x = 4$ shortest path: $s \rightarrow y \rightarrow x$
- $s \rightarrow y = 7$ shortest path: $s \rightarrow y$
- $s \rightarrow z = -2$ shortest path: $s \rightarrow y \rightarrow x \rightarrow t \rightarrow z$

Graph G Assignment 5 version with integer vertex IDs

new graph add vertex 1 add vertex 2 add vertex 3 add vertex 4 add vertex 5 add edge 2 - 3 5 add edge 2 - 4 8 add edge 2 - 5 -4 add edge 3 - 2 -2 add edge 4 - 3 -3 add edge 4 - 5 9 add edge 5 - 3 7 add edge 5 - 1 2 add edge 1 - 2 6 add edge 1 - 4 7

