Graphs

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

A long time ago....

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and included two large islands which were connected to each other and the mainland by seven bridges.

In 1752, Leonhard Euler wondered if he could wander through the entire city crossing each bridge only once.

He ended up inventing Graph Theory.

A long time ago....

We can simplify the topography a little to make the problem more clear.

We can abstract it to nothing more than vertices and edges.

Now we have a graph, " G ", which is comprised of a set of vertices ("V") and a set of edges among them ("E"), or $\mathrm{G}(\mathrm{V}, \mathrm{E})$ for short.

Graphs

It turns out that graphs are ridiculously useful.
Euler's "tour" of bridges over the Pregel river kicked off a branch of mathematics without which we would not have social media or navigation systems all these years later.

Graphs

Graphs

Graph...

as Matrix
$\begin{array}{llllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & . & 1 & . & . & 1 & 1 & . \\ 2 & 1 & . & 1 & . & 1 & 1 & . \\ 3 & . & 1 & . & 1 & . & . & . \\ 4 & . & . & 1 & . & 1 & . & . \\ 5 & 1 & 1 & . & 1 & . & 1 & 1 \\ 6 & 1 & 1 & . & . & i & . & 1 \\ 7 & . & . & . & . & 1 & 1 & .\end{array}$

Graphs

Graph ...

as Adjacency List
[1] 256
[2] 1336
[3] 24
[4] 35
[5] 122467
[6] 1257
[7] 56

Graphs

Vertex Degree

The degree of a vertex \mathbf{v} in a graph $G=(V, E)$ is the number of edges incident on \mathbf{v}.)

Graphs

Vertex Degree

The degree of a vertex \mathbf{v} in a graph $G=(V, E)$ is the number of edges incident on \mathbf{v}.)

Graphs

Independent Sets

An independent set in a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that, for all u, v in V^{\prime}, the edge $\{u, v\}$ is not in E. (I.e., no two vertices in V^{\prime} are adjacent.)

Graphs

Independent Sets

An independent set in a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that, for all u, v in V^{\prime}, the edge $\{u, v\}$ is not in E. (I.e., no two vertices in V^{\prime} are adjacent.)

A maximum independent set is an independent set of the largest possible cardinality.

Can you find one?

Graphs

Independent Sets

An independent set in a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that, for all u, v in V^{\prime}, the edge $\{u, v\}$ is not in E. (I.e., no two vertices in V^{\prime} are adjacent.)

A maximum independent set is an independent set of the largest possible cardinality.

Can you find one? 137
Can you find two?

Graphs

Independent Sets

An independent set in a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that, for all u, v in V^{\prime}, the edge $\{u, v\}$ is not in E. (I.e., no two vertices in V^{\prime} are adjacent.)

A maximum independent set is an independent set of the largest possible cardinality.

Can you find one? 137
Can you find two? 147
Can you find three?

Graphs

Independent Sets

An independent set in a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that, for all u, v in V^{\prime}, the edge $\{u, v\}$ is not in E. (I.e., no two vertices in V^{\prime} are adjacent.)

A maximum independent set is an independent set of the largest possible cardinality.

Can you find one? 137
Can you find two? 147
Can you find three? 247

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one?

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one? 2456
Really?

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one? 2456
Really? Let's test it.

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one?
2456
Really? Let's test it.
Vertex 2 covers 4 edges.

Graphs

Vertex Cover

7

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one? 2456
Really? Let's test it.
Vertex 2 covers 4 edges.
Vertex 4 covers 2 more edges.

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one? 2456
Really? Let's test it.
Vertex 2 covers 4 edges.
Vertex 4 covers 2 more edges.
Vertex 5 covers 3 more edges.

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one? 2456
Really? Let's test it.
Vertex 2 covers 4 edges.
Vertex 4 covers 2 more edges.
Vertex 5 covers 3 more edges.
Vertex 6 covers 2 more edges.

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one? 2456
Really? Let's test it.
Vertex 2 covers 4 edges.
Vertex 4 covers 2 more edges.
Vertex 5 covers 3 more edges.
Vertex 6 covers 2 more edges.
Yes, really.
Are there others?

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one? 2456
Can you find two? 2356
Can you find three?

Graphs

Vertex Cover

A vertex cover of a graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $\{u, v\}$ is an edge in G, then either u is in V^{\prime} or v is in V^{\prime} or both are. (I.e., it's a set of vertices V^{\prime} such that each edge of graph G has at least one member of V^{\prime} as an endpoint.)

A optimal vertex cover is a vertex cover of minimum size for a given graph.

Can you find one? 2456
Can you find two? 2356
Can you find three? 1356

Graphs

Vertex Cover and Independent Sets

Did you notice a relationship between vertex cover and independent set?

Graphs

Vertex Cover and Independent Sets

Independent Set

Graphs

Vertex Cover and Independent Sets

Did you notice a relationship between vertex cover and independent set?

For any graph $G=(V, E)$, if $V^{\prime} \subseteq V$ is a vertex cover for G then $V-V^{\prime}$ is an independent set in G.

Graphs

Cliques

A clique in an undirected graph $G=(V, E)$
... is a subset of the vertex set $V^{\prime} \subseteq V$, such that for every two vertices in V^{\prime} there exists an edge connecting them.
... is the subgraph induced by V ' as long as it is complete.

Graphs

Cliques

A clique in an undirected graph $G=(V, E)$
... is a subset of the vertex set $V^{\prime} \subseteq V$, such that for every two vertices in V ' there exists an edge connecting them.
... is the subgraph induced by V ' as long as it is complete.

A maximal clique is a clique that cannot be extended by including even one more adjacent vertex.

Can you find a maximal clique?

Graphs

Cliques

A clique in an undirected graph $G=(V, E)$
... is a subset of the vertex set $V^{\prime} \subseteq V$, such that for every two vertices in V^{\prime} there exists an edge connecting them.
... is the subgraph induced by V ' as long as it is complete.

A maximal clique is a clique that cannot be extended by including even one more adjacent vertex.

Can you find a maximal clique? 1256

Graphs

Cliques

A clique in an undirected graph $G=(V, E)$
... is a subset of the vertex set $V^{\prime} \subseteq V$, such that for every two vertices in V^{\prime} there exists an edge connecting them.
... is the subgraph induced by V ' as long as it is complete.

A maximal clique is a clique that cannot be extended by including even one more adjacent vertex.

Maximal clique: 1256
These are highly connected vertices. How connected?

Graphs

Clustering Coefficient

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)
number of actual edges among a vertex's neighbors number of possible edges among a vertex's neighbors

Graphs

Clustering Coefficient

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

Let's calculate the clustering coefficient of vertex 2.
number of actual edges among a vertex's neighbors
number of possible edges among a vertex's neighbors

Graphs

Clustering Coefficient

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

Let's calculate the clustering coefficient of vertex 2.

Vertex 2 is adjacent to vertices $1,3,5$, and 6 .
number of actual edges among a vertex's neighbors
number of possible edges among a vertex's neighbors

Graphs

Clustering Coefficient

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

Let's calculate the clustering coefficient of vertex 2.

Vertex 2 is adjacent to vertices $1,3,5$, and 6 . Ignore the rest.
number of actual edges among a vertex's neighbors
number of possible edges among a vertex's neighbors

Graphs

Clustering Coefficient

number of actual edges among a vertex's neighbors
number of possible edges among a vertex's neighbors

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

Let's calculate the clustering coefficient of vertex 2.

Vertex 2 is adjacent to vertices $1,3,5$, and 6 . Ignore the rest. Ignore vertex 2 itself, since this is about the neighbors.

Graphs

Clustering Coefficient

number of actual edges among a vertex's neighbors number of possible edges among a vertex's neighbors

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

Let's calculate the clustering coefficient of vertex 2.

Vertex 2 is adjacent to vertices $1,3,5$, and 6 . Ignore the rest. Ignore vertex 2 itself, since this is about the neighbors.

There are 3 actual edges among the remaining vertices $1,3,5$, and 6 .

Graphs

Clustering Coefficient

number of actual edges among a vertex's neighbors number of possible edges among a vertex's neighbors

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

Let's calculate the clustering coefficient of vertex 2.

Vertex 2 is adjacent to vertices $1,3,5$, and 6 . Ignore the rest. Ignore vertex 2 itself, since this is about the neighbors.

There are 3 actual edges among the remaining vertices $1,3,5$, and 6 .

There are $n(n-1) / 2$ possible edges among the remaining vertices $1,3,5$, and $6=12 / 2=6$.

Graphs

Clustering Coefficient

number of actual edges among a vertex's neighbors number of possible edges among a vertex's neighbors

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

Let's calculate the clustering coefficient of vertex 2.

Vertex 2 is adjacent to vertices $1,3,5$, and 6 . Ignore the rest. Ignore vertex 2 itself, since this is about the neighbors.

There are 3 actual edges among the remaining vertices $1,3,5$, and 6 .

There are $n(n-1) / 2$ possible edges among the remaining vertices $1,3,5$, and $6=12 / 2=6$.

ClusteringCoefficient(vertex 2) $=3 / 6=0.5$

Graphs

Clustering Coefficient

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

What's the clustering coefficient of vertex 4 ?

Graphs

Clustering Coefficient

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

What's the clustering coefficient of vertex 4 ? It's 0 .

Graphs

Clustering Coefficient

number of actual edges among a vertex's neighbors number of possible edges among a vertex's neighbors

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

What's the clustering coefficient of vertex 4 ? It's 0 .

We could increase it - and this make the graph more "clique-ie" - by closing the 3-4-5 triangle (math pun intended).

This Triadic Closure is a common graph operation, and what social networks do to suggest people you may know.

Graphs

Clustering Coefficient

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

How about the rest?

Graphs

Clustering Coefficient

number of actual edges among a vertex's neighbors
number of possible edges among a vertex's neighbors

The clustering coefficient of a vertex in a graph is the probability that the neighbors of that vertex are also connected to each other.

It's a measure of the local connectivity or "clique-iness" of a (all or part of a) graph. (I.e., the probability that the adjacent vertices of a given vertex are connected.)

How about the rest?

Graphs

Graph Coloring

A graph coloring is a way of coloring the vertices of a graph such that no neighbors vertices share the same color.

The graph coloring problem is accomplishing this with a few colors as possible.

Graphs

Graph Coloring

A graph coloring is a way of coloring the vertices of a graph such that no neighbors vertices share the same color.

The graph coloring problem is accomplishing this with a few colors as possible.

Here is a 4-color solution.
Is there a 3-color solution?

Graphs

Graph Coloring

A graph coloring is a way of coloring the vertices of a graph such that no neighbors vertices share the same color.

The graph coloring problem is accomplishing this with a few colors as possible.

Here is a 4-color solution.
Is there a 3-color solution?
We can use graph coloring to model Sudoku.

Graphs

There's more . . .

- Distribution of vertex degrees
- Distribution of clustering coefficients and triadic closure
- Network density
- Size of connected components
- Shortest distance between pairs of vertices
- The centrality or eccentricity of vertices by various measures (PageRank and closeness centrality are of particular interest.)
... but it will have to wait.

