
1

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

Greedy Algorithms

mailto:Alan.Labouseur@Marist.edu
mailto:Alan.Labouseur@Marist.edu

2

Optimization Problems
Consider optimization problems:

• shortest paths on a map
• network routing
• activity scheduling with

constraints
• minimal spanning trees

In this world of optimization
problems, how can we insure that
we get… the most?

3

Maximizing our take
How can we insure that we get… the most?

• Make choices one at a time.
• Never look back.
• Hope for the best.

Sometime this actually works, but not always,
and we have to make smart choices.

This is the nature of “greedy” algorithms.

4

Greedy Algorithms
How can we insure that we get… the most?

• Make choices one at a time.
• Never look back.
• Hope for the best.

Sometime this actually works, but not always,
and we have to make smart choices.

This is the nature of “greedy” algorithms.
A greedy algorithm always makes the choice that looks best in the
moment. In other words…

• make locally optimal choices
• and hope they lead to the globally optimal solution.

This does not always work. But for some kinds of problems, it does.

5

Greedy Algorithms
Problem: 0-1 Knapsack

Imagine trying to steal a bunch of
golden idols. Each could be a different
weight. You cannot divide the idols;
each one is everything or nothing
(i.e., no “partial credit”).

Problem: 0-1 Knapsack

More abstractly (but less fun) ponder
this instance of the 0-1 Knapsack
problem:

Your knapsack holds 50 lbs.

item idol #1 weighs 10 lbs and is worth US$60.

Idol #2 weighs 20 lbs and is worth US$100.

Idol #3 weighs 30 lbs and is worth US$120.

How do you fill your 50 lb. capacity knapsack to achieve optimal
(maximum in this case) value?

6

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

7

Greedy Algorithms

?

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

8

Greedy Algorithms

?

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

9

Greedy Algorithms

?

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

Winner! But how do we program it?

10

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

Notice the unit-value.

11

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb{

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

How do we program it?

12

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

13

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

14

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

15

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

won’t fit

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

16

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.?

won’t fit

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

Oops.

17

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.?

won’t fit

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

A greedy approach does not
work for 0-1 knapsack.

18

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.X

won’t fit

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

A greedy approach does not
work for 0-1 knapsack.

But it seems promising.

Let’s change the problem
just a little...

19

Greedy Algorithms

item 1: $60/10 lbs = $6/lb
item 2: $100/20 lbs = $5/lb
item 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

Problem: Fractional Knapsack

Imagine trying to steal from piles of
gold dust varying in purity. The gold
in each pile could be a different
weight. But since it’s dust, you can
take any fraction of the pile you like;
it’s not everything or nothing (i.e.,
there is “partial credit” in this case).

20

Greedy Algorithms

idol

Problem: Fractional Knapsack

Ponder this instance of the Fractional
Knapsack problem:

Your knapsack holds 50 lbs.

pile #1 weighs 10 lbs and is worth US$60 total.

pile #2 weighs 20 lbs and is worth US$100 total.

pile #3 weighs 30 lbs and is worth US$120 total.

How do you fill your 50 lb. capacity knapsack to achieve optimal
(maximum in this case) value?

21

Greedy Algorithms

 pile

 pile

 pile

Problem: Fractional Knapsack

Let’s try the same algorithm.

22

Greedy Algorithms

pile 1: $60/10 lbs = $6/lb
pile 2: $100/20 lbs = $5/lb
pile 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

 pile

 pile

 pile

Problem: Fractional Knapsack

Let’s try the same algorithm.
Take all of the most valuable pile.

23

Greedy Algorithms

pile 1: $60/10 lbs = $6/lb
pile 2: $100/20 lbs = $5/lb
pile 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

 pile

 pile

 pile

Problem: Fractional Knapsack

Let’s try the same algorithm.
Take all of the most valuable pile.
Take all of the 2nd most valuable pile.

24

Greedy Algorithms

pile 1: $60/10 lbs = $6/lb
pile 2: $100/20 lbs = $5/lb
pile 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

 pile

 pile

 pile

Problem: Fractional Knapsack

Let’s try the same algorithm.
Take all of the most valuable pile.
Take all of the 2nd most valuable pile.
Take as much of the 3rd most valuable pile
as will fit.

25

Greedy Algorithms

pile 1: $60/10 lbs = $6/lb
pile 2: $100/20 lbs = $5/lb
pile 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

 pile

 pile

 pile

Problem: Fractional Knapsack

Let’s try the same algorithm.
Take all of the most valuable pile.
Take all of the 2nd most valuable pile.
Take as much of the 3rd most valuable pile
as will fit.

Is this optimal?

26

Greedy Algorithms

pile 1: $60/10 lbs = $6/lb
pile 2: $100/20 lbs = $5/lb
pile 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

 pile

 pile

 pile

Problem: Fractional Knapsack

Let’s try the same algorithm.
Take all of the most valuable pile.
Take all of the 2nd most valuable pile.
Take as much of the 3rd most valuable pile
as will fit.

Yes! We have a new winner!

27

Greedy Algorithms

pile 1: $60/10 lbs = $6/lb
pile 2: $100/20 lbs = $5/lb
pile 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

 pile

 pile

 pile

Problem: Fractional Knapsack

Let’s try the same algorithm.
Take all of the most valuable pile.
Take all of the 2nd most valuable pile.
Take as much of the 3rd most valuable pile
as will fit.

A greedy approach does work
for Fractional Knapsack.

28

Greedy Algorithms

pile 1: $60/10 lbs = $6/lb
pile 2: $100/20 lbs = $5/lb
pile 3: $120/30 lbs = $4/lb

Sort by highest value per unit
and take them in that order.

 pile

 pile

 pile

Example: Spice Heist on Arrakis

29

Greedy Algorithms

-- She who controls the spice controls the universe.

-- Available spice to take in scoops:
spice name = red; total_price = 4.0; qty = 4;
spice name = green; total_price = 12.0; qty = 6;
spice name = blue; total_price = 40.0; qty = 8;
spice name = orange; total_price = 18.0; qty = 2;

-- Available knapsacks in which to keep spice:
knapsack capacity = 1;
knapsack capacity = 6;
knapsack capacity = 10;
knapsack capacity = 20;
knapsack capacity = 21;

Knapsack of capacity 1 is worth 9 quatloos and
contains 1 scoop of orange.  
Knapsack of capacity 6 is worth 38 quatloos and
contains 2 scoops of orange, 4 scoops of blue.
 .
 .
 .

Input file

Output

Example: Spice Heist on Arrakis — Implementation

Read and parse file.
Create a list of Spice objects.

30

Greedy Algorithms

Spice
color red
total_price 4
quantity 4
unit_price

Spice
color
total_price
quantity
unit_price

Spice
color
total_price
quantity
unit_price

Example: Spice Heist on Arrakis — Implementation

Read and parse file.
Create a list of Spice objects.

Compute the unit price for each.
Sort the list by unit_price from high to low.
Fill each knapsack.
Write the output.

Note: Each “turn” is independent.

31

Greedy Algorithms

Spice
color red
total_price 4
quantity 4
unit_price 1

Spice
color
total_price
quantity
unit_price

Spice
color
total_price
quantity
unit_price

Example: Spice Heist on Arrakis

32

Greedy Algorithms

-- She who controls the spice controls the universe.

-- Available spice to take in scoops:
spice name = red; total_price = 4.0; qty = 4;
spice name = green; total_price = 12.0; qty = 6;
spice name = blue; total_price = 40.0; qty = 8;
spice name = orange; total_price = 18.0; qty = 2;

-- Available knapsacks in which to keep spice:
knapsack capacity = 1;
knapsack capacity = 6;
knapsack capacity = 10;
knapsack capacity = 20;
knapsack capacity = 21;

Knapsack of capacity 1 is worth 9 quatloos and
contains 1 scoop of orange.  
Knapsack of capacity 6 is worth 38 quatloos and
contains 2 scoops of orange, 4 scoops of blue.
 .
 .
 .

Input file

Output

Read and parse file.
Create a list of Spice objects.
Compute the unit price for
each.
Sort the list by unit_price from
high to low.
Fill each knapsack.
Write the output.

