Growth Functions

Alan G. Labouseur, Ph.D. Alan.Labouseur@Marist.edu

Growth Functions

Remember, algorithms are **general recipes** for solving problems **not** specific of any language or platform. We characterize their performance in *time/speed/effort/complexity* with growth functions.

Examples:

- O(n) "Order **n**" or "Big-oh of **n**"
- O(n²) "Order **n squared**" or "Big-oh of **n squared**"
- $O(\log_2 n)$ "Order log to the base two of n" or . . .

We only want the largest (or *dominant*) function of *n* and we ignore constant factors.

$\frac{1}{2}n^2 + 2112$	is $O(n^2)$
42 n ^{1.5} - 8,675,309	is $O(n^{1.5})$
$11 n \log_2 n + 1$	is $O(n \log_2 n)$
42 $n^{1.5} + \sqrt{n}$	is O($n^{1.5}$) because $\sqrt{n} = n^{0.5}$ so $n^{1.5}$ dominates

Growth Functions

Growth functions let us characterize how the *time/effort/space* required to execute the algorithm grows as the size of the input grows.

Think of this as "complexity".

We're concerned with the measures of effort/complexity needed to correctly solve a problem.

We're also concerned with how those measures change proportionally with the size of the input. I.e., how does the effort scale or grow with the input? What is its "*order of growth*"?

Common Growth Functions

Put in other terms . . .

- Asymptotic Notation: ignore constant factors and low order terms
 - Upper bounds (O), lower bounds (Ω), tight bounds (Θ) \in , =, is, order
 - Time estimate below based on one operation per cycle on a 1 GHz single-core machine
 - Particles in universe estimated $< 10^{100}$

	input	constant	logarithmic	linear	log-linear	quadratic	polynomial	exponential
	n	$\Theta(1)$	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n\log n)$	$\Theta(n^2)$	$\Theta(n^c)$	$2^{\Theta(n^c)}$
	1000	1	≈ 10	1000	$\approx 10,000$	1,000,000	1000^{c}	$2^{1000} \approx 10^{301}$
7	Time	1ns	10ns	$1\mu s$	$10\mu s$	1ms	$10^{3c-9} s$	10 ²⁸¹ millenia

halve 5 times

A Quick log Refresher

Assume log means log₂.

Definition: log(n) is the number so that $2^{log(n)} = n$.

In other words, log(n) is the number of times you need to divide n by 2 to get down to 1.

 $\log_2(32) = 5$ because $32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

$$\log_2(64) = 6 \text{ because } 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

halve 6 times

halve 5 times

A Quick log Refresher

Assume log means log₂.

Definition: log(n) is the number so that $2^{log(n)} = n$.

In other words, log(n) is the number of times you need to divide n by 2 to get down to 1.

 $\log_2(32) = 5$ because $32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

$$\log_2(64) = 6$$
 because $64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
halve 6 times
 $\log_2(128) = 7$ and $27 = 128$
 $\log_2(256) = 8$ and $2^8 = 256$
 $\log_2(512) = 9$ and $2^9 = 512$
 $\log_2(1024) = 10$ and $2^{10} = 1024$

 log_2 (number of particles in the universe) < 280 so log(n) grows **very** slowly.

Worst Case Analysis

The "running time" (*time/speed/effort/complexity*) of an algorithm is determined by its worst possible input.

In other words, if we say some recipe is an $O(n^2)$ algorithm, that means that the worst possible running time is proportional to n^2 and never worse than that. It could — under lucky circumstances — be better (faster) than $O(n^2)$, but never worse no matter what.

A common example of where we need to apply this thinking is in sorting lists.

Worst Case Analysis

The "running time" (*time/speed/effort/complexity*) of an algorithm is determined by its worst possible input.

In other words, if we say some recipe is an $O(n^2)$ algorithm, that means that the worst possible running time is proportional to n^2 and never worse than that. It could — under lucky circumstances — be better (faster) than $O(n^2)$, but never worse no matter what.

A common example of where we need to apply this thinking is in sorting lists.

- **Q**: Which input to a sort algorithm is worse?
 - the elements of the list are "arranged" randomly
 - $\boldsymbol{\cdot}$ the elements of the list are already sorted in ascending order
 - \cdot the elements of the list are already sorted in descending order
- **A**: It depends on the specifics of the sorting algorithm.

But when we characterize the sorting algorithm as O(*something*), that must represent the worst-case input.

Asymptotic Analysis

From the CLRS text, section 3.1

"Big Oh" upper-bound worst case

?

Asymptotic Analysis

From the CLRS text, section 3.1

?

"Big Oh" upper-bound worst case "Big Omega" lower-bound best case

Asymptotic Analysis

From the CLRS text, section 3.1

"Big Theta" tight-bound worst and best range "Big Oh" upper-bound worst case "Big Omega" lower-bound best case

From the CLRS text, section 3.1

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

From the CLRS text, section 3.1

From the CLRS text, section 3.1

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

From the CLRS text, section 3.1

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

From the CLRS text, section 3.1

$$O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$$

From the CLRS text, section 3.1

$$\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$$

From the CLRS text, section 3.1

 $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

From the CLRS text, section 3.1

 $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

From the CLRS text, section 3.1

 $\Theta(g(n)) = \{ f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

From the CLRS text, section 3.1

$\Theta(g(n)) = \{ f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

Asymptotic Analysis and Growth Functions

Let's do more examples.

