Growth Functions

Alan G. Labouseur, Ph.D. Alan.Labouseur@Marist.edu

Growth Functions

Remember, algorithms are **general recipes** for solving problems **not** specific of any language or platform. We characterize their performance in *time*/*speed*/*effort*/*complexity* with growth functions.

Examples:

- O(n) "Order **n**" or "Big-oh of **n**"
- O(n2) "Order **n squared**" or "Big-oh of **n squared**"
- $O(log_2 n)$ "Order **log to the base two of n**" or \dots

We only want the largest (or *dominant*) function of *n* and we ignore constant factors.

Growth Functions

Growth functions let us characterize how the *time*/*effort*/*space* required to execute the algorithm grows as the size of the input grows.

Think of this as "complexity".

We're concerned with the measures of effort/complexity needed to correctly solve a problem.

We're also concerned with how those measures change proportionally with the size of the input. I.e., how does the effort scale or grow with the input? What is its "*order of growth*"?

Common Growth Functions

Put in other terms . . .

- Asymptotic Notation: ignore constant factors and low order terms
	- Upper bounds (O), lower bounds (Ω), tight bounds (Θ) \in , =, is, order
	- Time estimate below based on one operation per cycle on a 1 GHz single-core machine
	- Particles in universe estimated $< 10^{100}$

halve 5 times

A Quick log Refresher

Assume log means $log₂$.

Definition: $log(n)$ is the number so that $2^{log(n)} = n$.

In other words, log(*n*) is the number of times you need to divide *n* by 2 to get down to 1.

 $\log_2(32) = 5$ because $32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

$$
\log_2(64) = 6 \text{ because } 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1
$$
 halve 6 times

halve 5 times

A Quick log Refresher

Assume log means log₂.

Definition: $log(n)$ is the number so that $2^{log(n)} = n$.

In other words, log(*n*) is the number of times you need to divide *n* by 2 to get down to 1.

 $\log_2(32) = 5$ because $32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

$$
log_2(64) = 6 \text{ because } 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1
$$

\n
$$
log_2(128) = 7 \text{ and } 27 = 128
$$

\n
$$
log_2(256) = 8 \text{ and } 28 = 256
$$

\n
$$
log_2(512) = 9 \text{ and } 29 = 512
$$

\n
$$
log_2(1024) = 10 \text{ and } 2^{10} = 1024
$$

 log_2 (number of particles in the universe) < 280 so log(n) grows **very** slowly.

Worst Case Analysis

The "running time" (*time*/*speed*/*effort*/*complexity*) of an algorithm is determined by its worst possible input.

In other words, if we say some recipe is an O(*n*2) algorithm, that means that the worst possible running time is proportional to n^2 and never worse than that. It could — under lucky circumstances — be better (faster) than O(*n*2), but never worse no matter what.

A common example of where we need to apply this thinking is in sorting lists.

Worst Case Analysis

The "running time" (*time*/*speed*/*effort*/*complexity*) of an algorithm is determined by its worst possible input.

In other words, if we say some recipe is an O(*n*2) algorithm, that means that the worst possible running time is proportional to n^2 and never worse than that. It could — under lucky circumstances — be better (faster) than O(*n*2), but never worse no matter what.

A common example of where we need to apply this thinking is in sorting lists.

- **Q**: Which input to a sort algorithm is worse?
	- the elements of the list are "arranged" randomly
	- the elements of the list are already sorted in ascending order
	- the elements of the list are already sorted in descending order
- **A**: It depends on the specifics of the sorting algorithm.

But when we characterize the sorting algorithm as O(*something*), that must represent the worst-case input.

Asymptotic Analysis

From the CLRS text, section 3.1

"Big Oh" ? ? upper-bound worst case

Asymptotic Analysis

From the CLRS text, section 3.1

?

"Big Oh" upper-bound worst case

"Big Omega" lower-bound best case

Asymptotic Analysis

From the CLRS text, section 3.1

"Big Theta" tight-bound worst and best range

"Big Oh" upper-bound worst case

"Big Omega" lower-bound best case

From the CLRS text, section 3.1

 $O(g(n)) = \{f(n) :$ there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

From the CLRS text, section 3.1

From the CLRS text, section 3.1

 $O(g(n)) = \{f(n) :$ there exist positive constants c and n_0 such that $0 \le f(n) \le \left(cg(n)\right)$ for all $n \ge \boxed{n_0}$.

From the CLRS text, section 3.1

 $O(g(n)) = \{f(n) :$ there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

From the CLRS text, section 3.1

$$
O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
$$

From the CLRS text, section 3.1

$$
\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.
$$

From the CLRS text, section 3.1

 $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that }$ $0 \leq (cg(n)) \leq f(n)$ for all $n \geq n_0$.

From the CLRS text, section 3.1

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that }$ $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

From the CLRS text, section 3.1

 $\Theta(g(n)) = \{f(n) :$ there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.

From the CLRS text, section 3.1

$\Theta(g(n)) = \{f(n) : \text{there exist positive constants } \varsigma_1, c_2, \text{ and } n_0 \text{ such that }$ $0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)$ for all $n \geq n_0$.

Asymptotic Analysis and Growth Functions

Let's do more examples.

