The Master Method

Alan G. Labouseur, Ph.D. Alan.Labouseur@Marist.edu

Recurrences for algorithms we've implemented this semester.

- T(n) = T(n-1) + O(1) O(n)
- T(n) = T(n-1) + O(n) $O(n^2)$
- $T(n) = T\left(\frac{n}{2}\right) + O(1) \qquad O(\log_2 n)$
- $T(n) = 2T\left(\frac{n}{2}\right) + O(n) \qquad O(n \log_2 n)$

Recurrences for algorithms we've implemented this semester.

T(n) = T(n-1) + O(1)O(n)linear search, list traversalT(n) = T(n-1) + O(n)O(n²) $T(n) = T(\frac{n}{2}) + O(1)$ O(log₂ n) $T(n) = 2T(\frac{n}{2}) + O(n)$ O(n log₂ n)

Recurrences for algorithms we've implemented this semester.

T(n) = T(n-1) + O(1) O(n)

T(n) = T(n-1) + O(n)	O(n ²)	selection, insertion sort
$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$O(\log_2 n)$	
$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$	$O(n \log_2 n)$	

Recurrences for algorithms we've implemented this semester.

T(n) = T(n-1) + O(1) O(n)

T(n) = T(n-1) + O(n) $O(n^2)$

 $T(n) = T(\frac{n}{2}) + O(1)$ $O(\log_2 n)$ binary search

 $T(n) = 2T\left(\frac{n}{2}\right) + O(n) \qquad O(n \log_2 n)$

Recurrences for algorithms we've implemented this semester.

- T(n) = T(n-1) + O(1) O(n)
- T(n) = T(n-1) + O(n) $O(n^2)$
- $T(n) = T\left(\frac{n}{2}\right) + O(1) \qquad O(\log_2 n)$

 $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$ $O(n \log_2 n)$ quicksort, merge sort

Recurrences for algorithms we've implemented this semester.

$$T(n) = T(n-1) + O(1)$$
 O(n) linear search, list traversal

- T(n) = T(n-1) + O(n) O(n²) selection, insertion sort
- $T(n) = T\left(\frac{n}{2}\right) + O(1)$ $O(\log_2 n)$ binary search
- $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$ $O(n \log_2 n)$ quicksort, merge sort

We can solve these with recursion trees or substitution. But is there are pattern here? Can this be generalized somehow?

Recurrences for algorithms we've implemented this semester.

$$T(n) = T(n-1) + O(1) \qquad O(n) \qquad \text{linear search, list traversal}$$

- T(n) = T(n-1) + O(n) O(n²) selection, insertion sort
- $T(n) = T\left(\frac{n}{2}\right) + O(1)$ $O(\log_2 n)$ binary search
- $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$ $O(n \log_2 n)$ quicksort, merge sort

Is there are pattern here? Can this be generalized somehow?

Jon Bentley saw the pattern for Divide and Conquer algorithms and generalized it.

Given a recurrence in the form

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Given a recurrence in the form

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

In each case, we compare f(n) with $n^{\log_b a}$.

Given a recurrence in the form

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$

2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

In each case, we compare f(n) with $n^{\log_b a}$. **Case 1** occurs when f(n) is upper-bound by $n^{\log_b a}$. We can think of this (roughly) as $f(n) < n^{\log_b a}$. In this case the effort is dominated by $n^{\log_b a}$.

Specifically, f(n) is **polynomially** smaller than $n^{\log_b a}$.

Given a recurrence in the form

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$
In each case, we compare $f(n)$ with $n^{\log_b a}$.
Case 2 occurs when $f(n)$ is tight bound with $n^{\log_b a}$.
We can think of this (roughly) as $f(n) = n^{\log_b a}$.
In this case the effort is shared by $f(n)$ and $n^{\log_b a}$ so we multiply by a logarithmic factor (because of the height of the recursion tree).

Given a recurrence in the form

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$

2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

In each case, we compare f(n) with $n^{\log_b a}$. **Case 3** occurs when f(n) is lower bound by $n^{\log_b a}$. We can think of this (roughly) as $f(n) > n^{\log_b a}$. In this case the effort is dominated by f(n).

Given a recurrence in the form

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

One more requirement: The sub-problems in these Divide and Conquer algorithms must be of equal size.

Even then, the Master Theorem does not always apply.

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

- 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$
- 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example: $T(n) = T\left(\frac{n}{2}\right) + O(1)$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$ 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

= $1T\left(\frac{n}{2}\right) + O(1)$
 $a = 1$
 $b = 2$
 $f(n) = 1$

$$T(n) = \frac{a}{b}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$

2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if
$$f(n) = \Omega(n^{\log_b a})$$
 then $T(n) = \Theta(f(n))$

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$

2. if
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$ 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$ if $f(n) = O(n^{\log_b a})$ if M(n) = O(M(n))

3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$= 1T\left(\frac{n}{2}\right) + O(1)$$

$$a = 1$$

$$b = 2$$

$$f(n) = 1 \quad \longleftarrow \quad \text{compare} \quad \longrightarrow = 1$$

$$compare \quad \longrightarrow = 1$$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is positive, there are three cases:
1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$= 1T\left(\frac{n}{2}\right) + O(1)$$

$$a = 1$$

$$b = 2$$

$$f(n) = 1 \quad \longleftarrow \quad \text{Equal. Case } 2 \quad \longrightarrow = 1$$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is positive, there are three cases:
1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$= 1T\left(\frac{n}{2}\right) + O(1)$$

$$a = 1$$

$$b = 2$$

$$f(n) = 1 \quad \longleftarrow \quad \text{Equal. Case } 2 \quad \longrightarrow \quad = 1$$

$$T(n) = \Theta(n^{\log_{b} a} \log_{2} n)$$

$$= \Theta(\log_{2} n)$$

$$= \Theta(\log_{2} n)$$

$$T(n) = \frac{a}{b}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$ 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$= 1T\left(\frac{n}{2}\right) + O(1)$$

$$a = 1$$

$$b = 2$$

$$f(n) = 1 \quad \longleftarrow \quad \text{Equal. Case } 2 \quad \longrightarrow = 1$$

$$T(n) = \Theta(n^{\log_{b} a} \log_{2} n)$$

$$= \Theta(1 \log_{2} n)$$
Binary Search is $\Theta(\log_{2} n)$

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$ 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$ 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

 $a = 2$
 $b = 2$
 $f(n) = n$

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$ 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$ 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

 $a = 2$
 $b = 2$
 $f(n) = n$
 $compute n^{\log_b a} = n^{\log_2 2}$
 $= n^1$
 $= n$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is positive, there are three cases:
1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

 $a = 2$ compute $n^{\log_b a} = n^{\log_a 2}$
 $b = 2$ $= n^1$
 $f(n) = n$ \leftarrow Equal. Case 2 \rightarrow $= n$
 $T(n) = \Theta(n^{\log_b a} \log_2 n)$
 $= \Theta(n \log_2 n)$
Merge sort.

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$

- 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 2T\left(\frac{n}{4}\right) + O(1)$$

 $a = 2$
 $b = 4$
 $f(n) = 1$
 $compute n^{\log_b a} = n^{\log_4 2}$
 $compute n^{\log_b a} = n^{\log_4 2}$
 $compute n^{\log_b a} = n^{\log_4 2}$
 $= n^{1/2}$ (because $4^{1/2}=2$)
 $= \sqrt{n}$

$$T(n) = \frac{a}{b}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$

- 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 2T\left(\frac{n}{4}\right) + O(1)$$

 $a = 2$ compute $n^{\log_b a} = n^{\log_4 2}$
 $b = 4$ $= n^{1/2}$ (because $4^{1/2}=2$)
 $f(n) = 1 \longleftarrow$ compare $\longrightarrow = \sqrt{n}$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is positive, there are three cases:
$$\frac{1. \text{ if } f(n) = O(n^{\log_b a}) \text{ then } T(n) = \Theta(n^{\log_b a})}{2. \text{ if } f(n) = \Theta(n^{\log_b a}) \text{ then } T(n) = \Theta(n^{\log_b a} \log_2 n)}$$
$$3. \text{ if } f(n) = \Omega(n^{\log_b a}) \text{ then } T(n) = \Theta(f(n))$$

Example:
$$T(n) = 2T\left(\frac{n}{4}\right) + O(1)$$

 $a = 2$ compute $n^{\log_{b} a} = n^{\log_{4} 2}$
 $b = 4$ $= n^{1/2}$ (because $4^{1/2}=2$)
 $f(n) = 1 \longleftarrow 1 < \sqrt{n}$ for $n > 1 \longrightarrow = \sqrt{n}$
Case 1

$$T(n) = \Theta(n^{\log_b a})$$
$$= \Theta(\sqrt{n})$$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is positive, there are three cases:
1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 2T\left(\frac{n}{4}\right) + O(n)$$

 $a = 2$
 $b = 4$
 $f(n) = n$
 $compute n^{\log_b a} = n^{\log_4 2}$
 $compute n^{\log_b a} = n^{\log_4 2}$
 $= n^{1/2}$ (because $4^{1/2}=2$)
 $= \sqrt{n}$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is positive, there are three cases:
1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example:
$$T(n) = 2T\left(\frac{n}{4}\right) + O(n)$$

 $a = 2$ compute $n^{\log_b a} = n^{\log_4 2}$
 $b = 4$ $= n^{1/2}$ (because $4^{1/2}=2$)
 $f(n) = n \longleftarrow n > \sqrt{n} \longrightarrow = \sqrt{n}$
Case 3

$$T(n) = \Theta(f(n))$$
$$= \Theta(n)$$

$$T(n) = \frac{a}{n}T\left(\frac{n}{h}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$ 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example: T(n) = T(n-1) + O(n) – selection sort, so we expect $O(n^2)$

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$

2. if
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if
$$f(n) = \Omega(n^{\log_b a})$$
 then $T(n) = \Theta(f(n))$

Example: T(n) = T(n-1) + O(n) - selection sort, so we expect $O(n^2)$ $= 1T(\frac{n-1}{1}) + O(n)$ compute $n^{\log_b a} = n^{\log_b 1}$ = 1 f(n) = n

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases:

1. if
$$f(n) = O(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a})$

2. if
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$

3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

compute $n^{\log_b a} = n^{\log_1 1}$

 $log_1 1 = X$ means $1^x = 1$ so . . .

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$

- 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

compute
$$n^{\log_b a} = n^{\log_1 1}$$

 $log_{1} 1 = X$ means 1^x = 1 so X = anything

where $a \ge 1$

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is positive, there are three cases:
1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$

- 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
- 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example: T(n) = T(n-1) + O(n) - selection sort, so we expect $O(n^2)$ $= \mathbf{1}T\left(\frac{n-1}{n}\right) + O(n)$ compute $n^{\log_b a} = n^{\log_1 1}$ a = 1 $= n^{\text{anything}?}$ b = 1 $= n^{\text{nothing!}}$ f(n) = n= undefined at best

= division by 0 at worst

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and $b > 1$ and $f(n)$ is positive, there are three cases:
1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$
2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$
3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example: T(n) = T(n-1) + O(n) — selection sort, so we expect $O(n^2)$ $= 1T(\frac{n-1}{1}) + O(n)$ a = 1 b = 1 f(n) = nCompute $n^{\log_b a} = n^{\log_b 1}$ $= n^{\operatorname{anything}}$ $= n^{\operatorname{nothing!}}$ = undefined at best

- = division by o at worst

The Master Method does not apply to this recurrence. Why not?

where $a \ge 1$ and $b \ge 1$ and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_{b} a})$ then $T(n) = \Theta(n^{\log_{b} a})$ 2. if $f(n) = \Theta(n^{\log_{b} a})$ then $T(n) = \Theta(n^{\log_{b} a} \log_{2} n)$ 3. if $f(n) = \Omega(n^{\log_{b} a})$ then $T(n) = \Theta(f(n))$

Example: T(n) = T(n-1) + O(n) — selection sort, so we expect $O(n^2)$ $= 1T(\frac{n-1}{1}) + O(n)$ a = 1 b = 1 f(n) = nThe Master Method does not apply to this recurrence. Why not?

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

where $a \ge 1$ and b > 1 and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$ 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$ 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example: T(n) = T(n-1) + O(1) - linear search, so we expect O(n)

 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ where $a \ge 1$ and $b \ge 1$ and f(n) is positive, there are three cases: 1. if $f(n) = O(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a})$ 2. if $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_2 n)$ 3. if $f(n) = \Omega(n^{\log_b a})$ then $T(n) = \Theta(f(n))$

Example: T(n) = T(n-1) + O(1) — linear search, so we expect O(n)= $1T(\frac{n-1}{1}) + O(1)$ a = 1b = 1f(n) = 1

The Master Method does not apply to this recurrence either.

