
1

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

The Master Method

mailto:Alan.Labouseur@Marist.edu
mailto:Alan.Labouseur@Marist.edu

2

Common Recurrences in Computer Science
Recurrences for algorithms we’ve implemented this semester.

T(n) = T (n-1) + O(1) O(n)

T(n) = T (n-1) + O(n) O(n2)

T(n) = T () + O(1) O(log2 n)

T(n) = 2T () + O(n) O(n log2 n)

n
2

n
2

3

Recurrences for algorithms we’ve implemented this semester.

T(n) = T (n-1) + O(1) O(n) linear search, list traversal

T(n) = T (n-1) + O(n) O(n2)

T(n) = T () + O(1) O(log2 n)

T(n) = 2T () + O(n) O(n log2 n)

n
2

n
2

Common Recurrences in Computer Science

4

Recurrences for algorithms we’ve implemented this semester.

T(n) = T (n-1) + O(1) O(n)

T(n) = T (n-1) + O(n) O(n2) selection, insertion sort

T(n) = T () + O(1) O(log2 n)

T(n) = 2T () + O(n) O(n log2 n)

n
2

n
2

Common Recurrences in Computer Science

5

Recurrences for algorithms we’ve implemented this semester.

T(n) = T (n-1) + O(1) O(n)

T(n) = T (n-1) + O(n) O(n2)

T(n) = T () + O(1) O(log2 n) binary search

T(n) = 2T () + O(n) O(n log2 n)

n
2

n
2

Common Recurrences in Computer Science

6

Recurrences for algorithms we’ve implemented this semester.

T(n) = T (n-1) + O(1) O(n)

T(n) = T (n-1) + O(n) O(n2)

T(n) = T () + O(1) O(log2 n)

T(n) = 2T () + O(n) O(n log2 n) quicksort, merge sort

n
2

n
2

Common Recurrences in Computer Science

7

Recurrences for algorithms we’ve implemented this semester.

T(n) = T (n-1) + O(1) O(n) linear search, list traversal

T(n) = T (n-1) + O(n) O(n2) selection, insertion sort

T(n) = T () + O(1) O(log2 n) binary search

T(n) = 2T () + O(n) O(n log2 n) quicksort, merge sort

We can solve these with recursion trees or substitution. But
is there are pattern here? Can this be generalized somehow?

n
2

n
2

Common Recurrences in Computer Science

8

Recurrences for algorithms we’ve implemented this semester.

T(n) = T (n-1) + O(1) O(n) linear search, list traversal

T(n) = T (n-1) + O(n) O(n2) selection, insertion sort

T(n) = T () + O(1) O(log2 n) binary search

T(n) = 2T () + O(n) O(n log2 n) quicksort, merge sort

Is there are pattern here? Can this be generalized somehow?

Jon Bentley saw the pattern for Divide and Conquer
algorithms and generalized it.

n
2

n
2

Common Recurrences in Computer Science

9

The Master Theorem

10

The Master Theorem
Given a recurrence in the form

T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

n
b

11

The Master Theorem
Given a recurrence in the form

T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

In each case, we compare f(n) with n logb a .

n
b

12

The Master Theorem
Given a recurrence in the form

T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

In each case, we compare f(n) with n logb a .
Case 1 occurs when f(n) is upper-bound by n logb a.
We can think of this (roughly) as f(n) < n logb a.
In this case the effort is dominated by n logb a.

n
b

Specifically,
f(n) is polynomially
smaller than
 n logb a.

13

The Master Theorem
Given a recurrence in the form

T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

In each case, we compare f(n) with n logb a .
Case 2 occurs when f(n) is tight bound with n logb a.
We can think of this (roughly) as f(n) = n logb a.
In this case the effort is shared by f(n) and n logb a so we multiply by a
logarithmic factor (because of the height of the recursion tree).

n
b

14

The Master Theorem
Given a recurrence in the form

T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

In each case, we compare f(n) with n logb a .
Case 3 occurs when f(n) is lower bound by n logb a.
We can think of this (roughly) as f(n) > n logb a.
In this case the effort is dominated by f(n).

n
b

Specifically,
f(n) is polynomially
larger than
 n logb a.

15

The Master Theorem
Given a recurrence in the form

T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

One more requirement:
The sub-problems in these Divide and Conquer algorithms
must be of equal size.

Even then, the Master Theorem does not always apply.

n
b

16

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n)= T () + O(1)

n
b

n
2

17

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n)= T () + O(1)

 = 1T () + O(1)
a = 1
b = 2
f(n) = 1

n
b

n
2
n
2

18

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n)= T () + O(1)

 = 1T () + O(1)
a = 1
b = 2
f(n) = 1

n
b

n
2
n
2

19

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n)= T () + O(1)

 = 1T () + O(1)
a = 1
b = 2
f(n) = 1

n
b

n
2
n
2 compute n logb a = n log2 1

 = n0 (because 20=1)

 = 1

20

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n)= T () + O(1)

 = 1T () + O(1)
a = 1
b = 2
f(n) = 1

n
b

n
2
n
2 compute n logb a = n log2 1

 = n0 (because 20=1)

 = 1compare

21

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n)= T () + O(1)

 = 1T () + O(1)
a = 1
b = 2
f(n) = 1

n
b

n
2
n
2 compute n logb a = n log2 1

 = n0 (because 20=1)

 = 1Equal. Case 2

22

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n)= T () + O(1)

 = 1T () + O(1)
a = 1
b = 2
f(n) = 1

n
b

n
2
n
2 compute n logb a = n log2 1

 = n0 (because 20=1)

 = 1Equal. Case 2
T(n) = Θ(n logb a log2 n)
 = Θ(1 log2 n)
 = Θ(log2 n)

23

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n)= T () + O(1)

 = 1T () + O(1)
a = 1
b = 2
f(n) = 1

n
b

n
2
n
2 compute n logb a = n log2 1

 = n0 (because 20=1)

 = 1Equal. Case 2
T(n) = Θ(n logb a log2 n)
 = Θ(1 log2 n)
 = Θ(log2 n)Binary Search is

24

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = 2T () + O(n)
a = 2
b = 2
f(n) = n

n
b

n
2

25

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = 2T () + O(n)
a = 2
b = 2
f(n) = n

n
b

n
2 compute n logb a = n log2 2

 = n1

 = n

26

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = 2T () + O(n)
a = 2
b = 2
f(n) = n

n
b

n
2 compute n logb a = n log2 2

 = n1

 = nEqual. Case 2
T(n) = Θ(n logb a log2 n)
 = Θ(n log2 n)

Merge sort.

27

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = 2T () + O(1)
a = 2
b = 4
f(n) = 1

n
b

n
4 compute n logb a = n log4 2

 = n1/2 (because 41/2=2)

 = √n

28

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = 2T () + O(1)
a = 2
b = 4
f(n) = 1

n
b

n
4 compute n logb a = n log4 2

 = n1/2 (because 41/2=2)

 = √ncompare

29

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = 2T () + O(1)
a = 2
b = 4
f(n) = 1

n
b

n
4 compute n logb a = n log4 2

 = n1/2 (because 41/2=2)

 = √n1 < √n for n > 1
Case 1

T(n) = Θ(n logb a)
 = Θ(√n)

30

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = 2T () + O(n)
a = 2
b = 4
f(n) = n

n
b

n
4 compute n logb a = n log4 2

 = n1/2 (because 41/2=2)

 = √n

31

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = 2T () + O(n)
a = 2
b = 4
f(n) = n

n
b

n
4 compute n logb a = n log4 2

 = n1/2 (because 41/2=2)

 = √nn > √n
Case 3

T(n) = Θ(f(n))
 = Θ(n)

32

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)

n
b

33

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)
 = 1T () + O(n)
a = 1
b = 1
f(n) = n

n
b

compute n logb a = n log1 1
 = ?

n-1
1

34

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

n
b

compute n logb a = n log1 1

 log1
 1 = X

 means 1x = 1
 so . . .

35

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

n
b

compute n logb a = n log1 1

 log1
 1 = X

 means 1x = 1
 so X = anything

n-1
1

36

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)
 = 1T () + O(n)
a = 1
b = 1
f(n) = n

n
b

compute n logb a = n log1 1
 = n anything?

 = n nothing!

 = undefined at best

 = division by 0 at worst

n-1
1

37

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)
 = 1T () + O(n)
a = 1
b = 1
f(n) = n

n
b

compute n logb a = n log1 1
 = n anything?

 = n nothing!

 = undefined at best

 = division by 0 at worst

n-1
1

The Master Method does not apply to this recurrence.
Why not?

38

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)
 = 1T () + O(n)
a = 1
b = 1
f(n) = n

n
b

compute n logb a = n log1 1
 = n anything?

 = n nothing!

 = undefined at best

 = division by 0 at worst

n-1
1

The Master Method does not apply to this recurrence.
Why not?

39

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = T (n-1) + O(1) — linear search, so we expect O(n)

n
b

40

The Master Theorem
T(n) = aT () + f(n)

where a ≥ 1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a)
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a log2 n)
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

Example: T(n) = T (n-1) + O(1) — linear search, so we expect O(n)
 = 1T () + O(1)
a = 1
b = 1
f(n) = 1

n
b

n-1
1

The Master Method does not apply to this recurrence either.

41

The Master Theorem
Why does this work? Remember recursion trees?

42

The Master Theorem
Why does this work? Remember recursion trees?

43

The Master Theorem
Why does this work? Remember recursion trees?

Case 1 when this dominates.

44

The Master Theorem
Why does this work? Remember recursion trees?

Case 3 when
this dominates.

45

The Master Theorem
Why does this work? Remember recursion trees?

Case 2 when the work is shared.

