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Common Recurrences in Computer Science
Recurrences for algorithms we’ve implemented this semester. 

T(n) = T (n-1) + O(1)  O(n) 

T(n) = T (n-1) + O(n)  O(n2) 

T(n) = T (     ) + O(1)  O(log2 n) 

T(n) = 2T (     ) + O(n)  O(n log2 n)
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Recurrences for algorithms we’ve implemented this semester. 

T(n) = T (n-1) + O(1)  O(n)   linear search, list traversal 

T(n) = T (n-1) + O(n)  O(n2) 

T(n) = T (     ) + O(1)  O(log2 n) 

T(n) = 2T (     ) + O(n)  O(n log2 n)
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Recurrences for algorithms we’ve implemented this semester. 

T(n) = T (n-1) + O(1)  O(n) 

T(n) = T (n-1) + O(n)  O(n2)    selection, insertion sort 

T(n) = T (     ) + O(1)  O(log2 n) 

T(n) = 2T (     ) + O(n)  O(n log2 n)

n 
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2
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Recurrences for algorithms we’ve implemented this semester. 

T(n) = T (n-1) + O(1)  O(n) 

T(n) = T (n-1) + O(n)  O(n2) 

T(n) = T (     ) + O(1)  O(log2 n)  binary search 

T(n) = 2T (     ) + O(n)  O(n log2 n)
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Recurrences for algorithms we’ve implemented this semester. 

T(n) = T (n-1) + O(1)  O(n) 

T(n) = T (n-1) + O(n)  O(n2) 

T(n) = T (     ) + O(1)  O(log2 n) 

T(n) = 2T (     ) + O(n)  O(n log2 n)  quicksort, merge sort

n 
2

n 
2
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Recurrences for algorithms we’ve implemented this semester. 

T(n) = T (n-1) + O(1)  O(n)   linear search, list traversal 

T(n) = T (n-1) + O(n)  O(n2)    selection, insertion sort 

T(n) = T (     ) + O(1)  O(log2 n)  binary search 

T(n) = 2T (     ) + O(n)  O(n log2 n) quicksort, merge sort 

We can solve these with recursion trees or substitution. But  
is there are pattern here? Can this be generalized somehow?
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Recurrences for algorithms we’ve implemented this semester. 

T(n) = T (n-1) + O(1)  O(n)   linear search, list traversal 

T(n) = T (n-1) + O(n)  O(n2)    selection, insertion sort 

T(n) = T (     ) + O(1)  O(log2 n)  binary search 

T(n) = 2T (     ) + O(n)  O(n log2 n) quicksort, merge sort 

Is there are pattern here? Can this be generalized somehow? 

Jon Bentley saw the pattern for Divide and Conquer 
algorithms and generalized it.
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The Master Theorem
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The Master Theorem
Given a recurrence  in the form 

T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))
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The Master Theorem
Given a recurrence  in the form 

T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

In each case, we compare f(n) with n logb a . 
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The Master Theorem
Given a recurrence  in the form 

T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

In each case, we compare f(n) with n logb a .  
Case 1 occurs when f(n) is upper-bound by n logb a. 
We can think of this (roughly) as f(n) < n logb a. 
In this case the effort is dominated by n logb a.

n 
b

Specifically, 
f(n) is polynomially 
smaller than 
 n logb a.
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The Master Theorem
Given a recurrence  in the form 

T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

In each case, we compare f(n) with n logb a .  
Case 2 occurs when f(n) is tight bound with n logb a. 
We can think of this (roughly) as f(n) = n logb a. 
In this case the effort is shared by f(n) and n logb a so we multiply by a 
logarithmic factor (because of the height of the recursion tree).
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The Master Theorem
Given a recurrence  in the form 

T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

In each case, we compare f(n) with n logb a .  
Case 3 occurs when f(n) is lower bound by n logb a. 
We can think of this (roughly) as f(n) > n logb a. 
In this case the effort is dominated by f(n).

n 
b

Specifically, 
f(n) is polynomially 
larger than 
 n logb a.



15

The Master Theorem
Given a recurrence  in the form 

T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 

1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 

2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 

3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

One more requirement:  
The sub-problems in these Divide and Conquer algorithms 
must be of equal size. 

Even then, the Master Theorem does not always apply.
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n)= T (     ) + O(1)
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n)= T (     ) + O(1) 

       = 1T (     ) + O(1) 
a  = 1 
b = 2 
f(n) = 1
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n)= T (     ) + O(1) 

       = 1T (     ) + O(1) 
a  = 1 
b = 2 
f(n) = 1
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n)= T (     ) + O(1) 

       = 1T (     ) + O(1) 
a  = 1 
b = 2 
f(n) = 1

n 
b

n 
2
n 
2 compute n logb a = n log2 1 

 = n0   (because 20=1) 

 = 1
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n)= T (     ) + O(1) 

       = 1T (     ) + O(1) 
a  = 1 
b = 2 
f(n) = 1

n 
b

n 
2
n 
2 compute n logb a = n log2 1 

 = n0   (because 20=1) 

 = 1compare
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n)= T (     ) + O(1) 

       = 1T (     ) + O(1) 
a  = 1 
b = 2 
f(n) = 1

n 
b

n 
2
n 
2 compute n logb a = n log2 1 

 = n0   (because 20=1) 

 = 1Equal. Case 2
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n)= T (     ) + O(1) 

       = 1T (     ) + O(1) 
a  = 1 
b = 2 
f(n) = 1

n 
b

n 
2
n 
2 compute n logb a = n log2 1 

 = n0   (because 20=1) 

 = 1Equal. Case 2
T(n) = Θ(n logb a  log2 n) 
   = Θ( 1  log2 n) 
   = Θ(log2 n)
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n)= T (     ) + O(1) 

       = 1T (     ) + O(1) 
a  = 1 
b = 2 
f(n) = 1

n 
b

n 
2
n 
2 compute n logb a = n log2 1 

 = n0   (because 20=1) 

 = 1Equal. Case 2
T(n) = Θ(n logb a  log2 n) 
   = Θ( 1  log2 n) 
   = Θ(log2 n)Binary Search is 
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = 2T (     ) + O(n) 
a  = 2 
b = 2 
f(n) = n

n 
b

n 
2
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = 2T (     ) + O(n) 
a  = 2 
b = 2 
f(n) = n

n 
b

n 
2 compute n logb a = n log2 2 

 = n1  

 = n
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = 2T (     ) + O(n) 
a  = 2 
b = 2 
f(n) = n

n 
b

n 
2 compute n logb a = n log2 2 

 = n1  

 = nEqual. Case 2
T(n) = Θ(n logb a  log2 n) 
   = Θ(n log2 n)

Merge sort.
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = 2T (     ) + O(1) 
a  = 2 
b = 4 
f(n) = 1

n 
b

n 
4 compute n logb a = n log4 2 

 = n1/2 (because 41/2=2) 

 = √n
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = 2T (     ) + O(1) 
a  = 2 
b = 4 
f(n) = 1

n 
b

n 
4 compute n logb a = n log4 2 

 = n1/2 (because 41/2=2) 

 = √ncompare
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = 2T (     ) + O(1) 
a  = 2 
b = 4 
f(n) = 1

n 
b

n 
4 compute n logb a = n log4 2 

 = n1/2 (because 41/2=2) 

 = √n1 < √n for n > 1 
Case 1 

T(n) = Θ(n logb a) 
   = Θ(√n)
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = 2T (     ) + O(n) 
a  = 2 
b = 4 
f(n) = n

n 
b

n 
4 compute n logb a = n log4 2 

 = n1/2 (because 41/2=2) 

 = √n
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = 2T (     ) + O(n) 
a  = 2 
b = 4 
f(n) = n

n 
b

n 
4 compute n logb a = n log4 2 

 = n1/2 (because 41/2=2) 

 = √nn > √n 
Case 3 

T(n) = Θ(f(n)) 
   = Θ(n)
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)

n 
b
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)  
 = 1T (     ) + O(n) 
a  = 1 
b = 1 
f(n) = n

n 
b

compute n logb a = n log1 1 
 = ?

n-1 
1



34

The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

n 
b

compute n logb a = n log1 1 

 log1
 1 = X 

 means 1x = 1 
 so . . .
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n))

n 
b

compute n logb a = n log1 1 

 log1
 1 = X 

 means 1x = 1 
 so X = anything

n-1 
1
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)  
 = 1T (     ) + O(n) 
a  = 1 
b = 1 
f(n) = n

n 
b

compute n logb a = n log1 1 
 = n anything? 

 = n nothing! 

 = undefined at best 

 = division by 0 at worst

n-1 
1
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)  
 = 1T (     ) + O(n) 
a  = 1 
b = 1 
f(n) = n

n 
b

compute n logb a = n log1 1 
 = n anything? 

 = n nothing! 

 = undefined at best 

 = division by 0 at worst

n-1 
1

The Master Method does not apply to this recurrence. 
Why not?
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n2)  
 = 1T (     ) + O(n) 
a  = 1 
b = 1 
f(n) = n

n 
b

compute n logb a = n log1 1 
 = n anything? 

 = n nothing! 

 = undefined at best 

 = division by 0 at worst

n-1 
1

The Master Method does not apply to this recurrence. 
Why not?
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = T (n-1) + O(1) — linear search, so we expect O(n)

n 
b
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The Master Theorem
T(n) = aT (   ) + f(n) 

where a ≥ 1  and  b > 1 and f(n) is positive, there are three cases: 
1. if f(n) = O(n logb a) then T(n) = Θ(n logb a) 
2. if f(n) = Θ(n logb a) then T(n) = Θ(n logb a  log2 n) 
3. if f(n) = Ω(n logb a) then T(n) = Θ(f(n)) 

Example: T(n) = T (n-1) + O(1) — linear search, so we expect O(n) 
 = 1T (     ) + O(1) 
a  = 1 
b = 1 
f(n) = 1

n 
b

n-1 
1

The Master Method does not apply to this recurrence either.
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The Master Theorem
Why does this work? Remember recursion trees?
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The Master Theorem
Why does this work? Remember recursion trees?
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The Master Theorem
Why does this work? Remember recursion trees?

Case 1 when this dominates.
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The Master Theorem
Why does this work? Remember recursion trees?

Case 3 when 
this dominates.
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The Master Theorem
Why does this work? Remember recursion trees?

Case 2 when the work is shared.


