
Algorithms

CMPT	435

Algorithms	 © 2019-2112 Alan G. Labouseur, All Rights Reserved	 Page of 1 1

Goals • to	implement	searching	and	hashing,	and	to	understand	their	performance.

Requirements
and Notes

• Download	the	the	magicitems.txt	file	from	our	web	site	again.

• Read	it	line-by-line	into	an	array,	reusing	(and	improving)	your	code	
from	assignment	#1	(unless	it	was	already	perfect,	in	which	case:	yay!).

• Sort	the	array	using	one	of	your	sort	implementations	from	assignment	
#1.	Include	a	copy	of	your	sorting	code	in	this	assignment’s	directory	so	
that	your	project	remains	easy	to	compile.

• Develop	your	own	implementation	of	linear	and	binary	search.

‣ Randomly	pick	42	items	from	the	array	of	magic	items.

‣ Perform	a	linear	search	of	the	entire	(sorted)	array	for	each	of	those	
42	randomly	selected	items.	Print	the	number	of	comparisons	used	
for	each	search	and	compute	the	overall	average	to	two	decimal	
places.	Be	careful	about	counting	comparisons.

‣ Perform	a	binary	search	on	the	entire	(sorted)	array	for	the	same	42	
items	as	before.	Print	the	number	of	comparisons	used	for	each	
search	and	compute	the	overall	average.	Remain	careful	about	
counting	comparisons.

‣ Record	your	results	in	a	table	in	a	LaTeX	document	along	with	your	
code	listings	and	documentation.	Note	the	asymptotic	running	time	
of	each	search	and	explain	why	it	is	that	way.

• Develop	your	own	implementation	of	a	hash	table	with	chaining,	of	size	
250.	Use	the	hash	function	we	spoke	about	in	class	(and	in	the	example	
code	on	our	web	site	at	https://www.labouseur.com/courses/
algorithms/Hashing.java.html).

‣ Load	your	hash	table	with	all	of	the	the	magic	items.

‣ Retrieve	the	same	42	(no	longer	random)	items	from	your	hash	table.	
Print	the	number	of	(get	+	comparisons)	for	each	item	and	compute	
the	overall	average	to	two	decimal	places.	(Every	get	is	one	compare,	
then	count	the	comparisons	needed	to	handle	chaining.)

‣ Add	these	results	to	your	LaTeX	document,	including	the	asymptotic	
running	time	of	hashing	with	chaining	and	explain	why	it	is	that	
way.

[30	points]

[20	points]

[30	points]

[20	points]

As	usual,	your	code	must	separate	structure	from	presentation,	be	
professionally	formatted	yet	uniquely	yours	(show	some	personality),	use	
and	demonstrate	best	practices,	and	make	me	proud	to	be	your	teacher.

[−∞	if	not]

Resources • Linear	and	binary	search	are	described	in	the	3rd	edition	of	our	text	in	10.2	and	27.3.

• Hash	tables	with	chaining	are	described	in	the	3rd	edition	of	our	text	in	section	11.2.

Submitting

Your Work

In	addition	to	your	source	code,	commit	your	LaTeX	document	in	both	.tex	and	.pdf	forms	
to	your	GitHub	repository.	For	your	code,	make	many	commits	to	GitHub.	If	you	don’t	make	
enough	commits,	I	will	not	accept	your	work.	Be	sure	that	you	make	your	final	commit	for	
this	assignment	on	or	before	the	due	date.	(See	our	syllabus	for	those	details.)

 Assignment 2 - 100 points

https://www.labouseur.com/courses/algorithms/magicitems.txt
https://www.labouseur.com/courses/algorithms/Hashing.java.html
https://www.labouseur.com/courses/algorithms/syllabus.pdf

