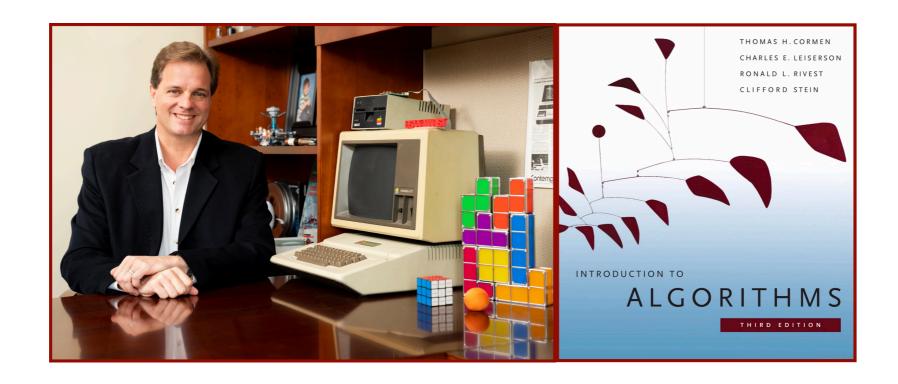
Sorting - part one



Alan G. Labouseur, Ph.D. Alan.Labouseur@Marist.edu

From Appendix B in our CLRS text:

A relation R on a set A is a **total relation** if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a **total order** or **linear order**.

Let's consider the relation (R) of \leq

A total order on ≤ is a binary relation that satisfies ...

- totality either $a \le b$ or $b \le a$ or both.
- transitivity $\text{ if } a \leq b \text{ and } b \leq c \text{ then } a \leq c.$
- anti-symmetry if $a \le b$ and $b \le a$ then a = b.

From Appendix B in our CLRS text:

A relation R on a set A is a **total relation** if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a **total order** or **linear order**. For example, the relation " \leq " is a total order on the natural numbers, but the "is a descendant of" relation is not a total order on the set of all people, since there are individuals neither of whom is descended from the other.

Example: natural numbers:

A total order on ≤ is a binary relation that satisfies ...

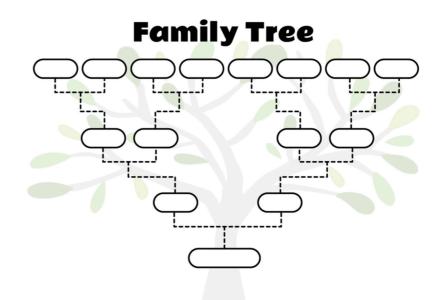
- totality $0 \le 1 \le 2 \le 3 \le 4 \dots$
- transitivity $1 \le 2$ and $2 \le 3$ so $1 \le 3$
- anti-symmetry the only way $a \le b$ and $b \le a$ is if a = c i.e., $1 \le 1$ and $1 \le 1$ or $2 \le 2$ and $2 \le 2$

From Appendix B in our CLRS text:

A relation R on a set A is a **total relation** if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a **total order** or **linear order**. For example, the relation " \leq " is a total order on the natural numbers, but the "is a descendant of" relation is not a total order on the set of all people, since there are individuals neither of whom is descended from the other.

Counter-example: the "is a descendant of" relationship

 totality - Not everybody is related, so this violates totality.



From Appendix B in our CLRS text:

A relation R on a set A is a **total relation** if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a **total order** or **linear order**. For example, the relation " \leq " is a total order on the natural numbers, but the "is a descendant of" relation is not a total order on the set of all people, since there are individuals neither of whom is descended from the other.

Counter-example: the "Rock, Paper, Scissors" relationships

 transitivity - scissors < stone and stone < paper, but scissors ≮ paper so this violates transitivity.

In fact, scissors > paper.

From Appendix B in our CLRS text:

A relation R on a set A is a **total relation** if for all $a, b \in A$, we have a R b or b R a (or both), that is, if every pairing of elements of A is related by R. A partial order that is also a total relation is a **total order** or **linear order**. For example, the relation " \leq " is a total order on the natural numbers, but the "is a descendant of" relation is not a total order on the set of all people, since there are individuals neither of whom is descended from the other.

Counter-example: the "predator, prey" relationships

- anti-symmetry equal ferocity but different species.
- I.e., we **have** anti-symmetry **unless** $a \le b$ and $b \le a$ and $a \ne b$.

Permutations

Order matters

Permutations

Order matters

```
procedure sort(in out list D)
begin
   boolean done := false;
   while (not done)
      randomly permute D
      if (D is sorted)
         done := true
      end if
   end while
   // D is returned out
end procedure
```



```
procedure sort(in out list D)
begin
   boolean done := false;
   while (not done)
      randomly permute D
      if (D is sorted)
         done := true
      end if
   end while
   // D is returned out
end procedure
```

In terms of *n*, the number of items in list D...

How many times through the loop until we expect it to be sorted?

How long do we expect each iteration to take?

```
procedure sort(in out list D)
begin
   boolean done := false;
   while (not done)
      randomly permute D
      if (D is sorted)
         done := true
      end if
   end while
   // D is returned out
end procedure
```

In terms of *n*, the number of items in list D...

How many times through the loop until we expect it to be sorted? **n!**

How long do we expect each iteration to take? permute = O(n)check if sorted = O(n)

Total time = time per iteration \times number of iterations = $O(n \times n!)$

This is silly. And terrible.

But the worst part is that this is the **expected** case. The worst case scenario is that it never halts because there is no guarantee that we'll ever produce a sorted list through random permutations. In that sense, it's scary.

To put it more technically: O(scary)

Let's not do this.

Total time = time per iteration \times number of iterations = $O(n \times n!)$

Selection Sort

