Sorting - part two

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

Divide and Conquer

Take a big problem and divide it into two smaller problems.
Take a those problems and divide them into two smaller problems.
Take a those problems and divide them into two smaller problems.
Take a those problems and divide them into two smaller problems.
Take a those problems and divide them into two smaller problems.
Take a those problems and divide them into two smaller problems.
... until the problems get small enough that they are solved. Then ...

Divide and Conquer

Divide and Conquer

> Big
> Problem

Divide and Conquer

Divide and Conquer :: Merge Sort

Divide and Conquer :: Merge Sort

Given an array that you what to sort . . .
Recursively divide the array into sub-arrays half the size until you have arrays of size 1 . Note: an array of size 1 is sorted.

Then conquer by merging the (technically sorted) single-element arrays into progressively larger sorted sub-arrays as the recursion "unwinds".

Divide and Conquer :: Merge Sort

Given an array that you what to sort . . .
Recursively divide the array into sub-arrays half the size until you have arrays of size 1 . Note: an array of size 1 is sorted.

Then conquer by merging the (technically sorted) single-element arrays into progressively larger sorted sub-arrays as the recursion "unwinds".

What?

Divide and Conquer :: Merge Sort

Given an array that you what to sort . . .

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
$\mathbf{2}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$

Divide and Conquer :: Merge Sort

Recursively divide the array into sub-arrays half the size

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
$\mathbf{2}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$

Divide and Conquer :: Merge Sort

Recursively divide the array into sub-arrays half the size . .

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
$\mathbf{2}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$

Divide and Conquer :: Merge Sort

Recursively divide the array into sub-arrays half the size . . .

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$		
$\mathbf{2}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$

 4
. . . until you have arrays of size 1. (Arrays of size 1 are sorted.)

Divide and Conquer :: Merge Sort

Recursively divide the array into sub-arrays half the size . . .

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
$\mathbf{2}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$

 4
. . . until you have arrays of size 1. (Arrays of size 1 are sorted.)
How many times did we "divide" (in terms of the n items to sort)?

Divide and Conquer :: Merge Sort

Conquer by merging the sub-arrays into progressively larger sorted arrays .

Divide and Conquer :: Merge Sort

Conquer by merging the sub-arrays into progressively larger sorted arrays . .

Divide and Conquer :: Merge Sort

Conquer by merging the sub-arrays into progressively larger sorted arrays . . . until the entire thing is sorted.

Divide and Conquer :: Merge Sort

The sorting work is done in the merge steps.
How long does each merge step this take in terms of n ?

Divide and Conquer :: Merge Sort

```
MERGESort(A[1..n]):
    if \(n>1\)
        \(m \leftarrow\lfloor n / 2\rfloor\)
        \(\operatorname{MergeSort}(A[1 . . m]) \quad\langle\langle R e c u r s e!\rangle\rangle\)
        MergeSort (A[m+1..n]) 〈<Recurse! \(\rangle\rangle\)
        \(\operatorname{Merge}(A[1 . . n], m)\)
```

```
Merge(A[1..n], m):
    \(i \leftarrow 1 ; j \leftarrow m+1\)
    for \(k \leftarrow 1\) to \(n\)
        if \(j>n\)
                \(B[k] \leftarrow A[i] ; i \leftarrow i+1\)
    else if \(i>m\)
        \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
        else if \(A[i]<A[j]\)
        \(B[k] \leftarrow A[i] ; i \leftarrow i+1\)
        else
        \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
    for \(k \leftarrow 1\) to \(n\)
    \(A[k] \leftarrow B[k]\)
```

Figure 1.6. Mergesort
from the Jeff Erikson Algorithms book, linked on our web site

How long does each merge step this take in terms of n ?

Divide and Conquer :: Quick Sort

"There are two ways of constructing a software design. One way is to make it so simple that there are obviously no deficiencies. And the other way is to make it so complicated that there are no obvious deficiencies."

- C.A.R Hoare

Divide and Conquer :: Quick Sort

Given an array that you what to sort . . .
Recursively divide the array into halves - conquering by partitioning those halves around a "pivot" value - until the smallest sub-arrays are sorted.

Divide and Conquer :: Quick Sort

Given an array that you what to sort . . .

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$
$\mathbf{2}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$

Divide and Conquer :: Quick Sort

Given an array that you what to sort . . .

Randomly select an index to provide the pivot value . . .

Divide and Conquer :: Quick Sort

Given an array that you what to sort . . .

Randomly select an index to provide the pivot value . . . and divide the array into halves - conquering by partitioning those halves around a "pivot" value.

Divide and Conquer :: Quick Sort

Given an array that you what to sort . . .

| $[0]$ | $[1]$ | $[2]$ | $[3]$ | $[4]$ | $[5]$ | $[6]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{6}$ | $\mathbf{5}\left(\begin{array}{\|c}4 \\ \hline\end{array}\right.$ |

Randomly select an index to provide the pivot value . . . and divide the array into halves - conquering by partitioning those halves around a "pivot" value.

Divide and Conquer :: Quick Sort

Given an array that you what to sort . . .

[0]	[1]	[2]	3]	[4]	[5]	[6] [7]	
2	8	7	1	3	6	5	4

Randomly select an index to provide the pivot value . . . and divide the array into halves - conquering by partitioning those halves around a "pivot" value.

Divide and Conquer :: Quick Sort

We are done when all the sub-arrays are of size 1.
The sorting work is done in the partition steps.

Divide and Conquer :: Quick Sort

We are done when all the sub-arrays are of size 1.
The sorting work is done in the partition steps.
How long does each partition step take, and how many times do we do it?

Divide and Conquer :: Quick Sort

```
QuickSORT(A[1..n]):
    if ( }n>1
        Choose a pivot element A[p]
        r\leftarrowPARTITION (A,p)
    QuickSort(A[1..r-1]) <<Recurse!\rangle\rangle
    QuickSort(A[r+1..n]) <\langleRecurse!\rangle\rangle
```

```
Partition \((A[1 . . n], p)\) :
    \(\operatorname{swap} A[p] \leftrightarrow A[n]\)
    \(\ell \leftarrow 0 \quad\langle\langle \#\) items < pivot \(\rangle\rangle\)
    for \(i \leftarrow 1\) to \(n-1\)
        if \(A[i]<A[n]\)
            \(\ell \leftarrow \ell+1\)
            \(\operatorname{swap} A[\ell] \leftrightarrow A[i]\)
    swap \(A[n] \leftrightarrow A[\ell+1]\)
    return \(\ell+1\)
```

Figure 1.8. Quicksort
from the Jeff Erikson Algorithms book, linked on our web site

How long does each partition step this take in terms of n ?

Divide and Conquer :: Quick Sort

Let's look at Quicksort again, this time focused on what the array looks like at each step.

Divide and Conquer :: Quick Sort

Let's look at Quicksort again, this time focused on what the array looks like at each step.

Divide and Conquer :: Quick Sort

Let's look at Quicksort again, this time focused on what the array looks like at each step.

Divide and Conquer :: Quick Sort

Let's look at Quicksort again, this time focused on what the array looks like at each step.

Divide and Conquer :: Quick Sort

Let's look at Quicksort again, this time focused on what the array looks like at each step.

Sub-arrays of size 1. Mostly done.

Divide and Conquer :: Quick Sort

Let's look at Quicksort again, this time focused on what the array looks like at each step.

Divide and Conquer :: Quick Sort

Let's look at Quicksort again, this time focused on what the array looks like at each step.

Divide and Conquer :: Quick Sort

Let's look at Quicksort again, this time focused on what the array looks like at each step.

Sorted!

Divide and Conquer :: Quick Sort

Let's look at Quicksort one more time, this time with dancers.

Divide and Conquer :: Quick Sort

Let's look at Quicksort one more time, this time with dancers.
$\left[\begin{array}{c|c|c|c|c|c|c|c|c|c|}{[0]} & {[1]} & {[2]} & {[3]} & {[4]} & {[5]} & {[6]} & {[7]} & {[8]} & {[9]} \\
\hline \mathbf{3} & \mathbf{0} & \mathbf{1} & \mathbf{8} & \mathbf{7} & \mathbf{2} & \mathbf{5} & \mathbf{4} & \mathbf{9} & \mathbf{6} \\
\hline\end{array}\right.$

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{6}$

Divide and Conquer :: Quick Sort

Let's look at Quicksort one more time, this time with dancers.

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{6}$

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$
2	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{9}$	6

Divide and Conquer :: Quick Sort

Let's look at Quicksort one more time, this time with dancers.

| $[0]$ | $[1]$ | $[2]$ | $[3]$ | $[4]$ | $[5]$ | $[6]$ | $[7]$ | $[8]$ | $[9]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{9}$ | $\mathbf{6}$ |

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$		$[5]$	$[6]$	$[7]$	$[8]$
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{6}$

$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{6}$

Divide and Conquer :: Quick Sort

Let's look at Quicksort one more time, this time with dancers.

Right side sorted

Divide and Conquer :: Merge Sort and Quick Sort

Divide and Conquer :: Merge Sort and Quick Sort

So... what is the complexity of Merge Sort and QuickSort?

Divide and Conquer :: Merge Sort and Quick Sort

So... what is the complexity of Merge Sort and QuickSort?
Both Merge Sort and QuickSort tend to be $\mathrm{O}\left(n \times \log _{2} n\right)$.
Why?

Divide and Conquer :: Merge Sort and Quick Sort

So... what is the complexity of Merge Sort and QuickSort?
Both Merge Sort and QuickSort tend to be $\mathrm{O}\left(n \times \log _{2} n\right)$.
Why?

