
Compilers	
CMPT	432

Project One © 2004-2112 Alan G. Labouseur, All Rights Reserved Page of 1 2

Project Begin	your	compiler	by	writing	a	lexer	that	validates	the	input	source	
code	against	the	grammar	found	on	our	class	web	site	at	https://
www.labouseur.com/courses/compilers/grammar.pdf.	The	source	code	
will	be	read	from	a	Cile	for	command-line	compilers	or	an	HTML	text	area	
element	for	browser-based	compilers.

[100	points]

Notes and
Requirements

• Your	lexer	must	lex	multiple	programs	in	sequence.	Each	program	must	be	separated	
by	the	$	[EOP]	marker.	

• Do	not	attempt	any	parsing	or	semantic	analysis	for	this	project.	No	type	checking,	no	
scope	checking,	no	symbol	table,	no	CST…	save	it	for	future	projects.	Just	get	lex	
perfect.	(Is	that	too	much	to	ask?)	

• The	lexer	is	not	as	simple	as	our	examples	in	class,	so	be	careful.	Be	really	careful.	
• Provide	both	errors	and	warnings.	Warnings	are	non-fatal	mistakes	or	omissions	that	
your	compiler	might	correct.	Forgetting	to	end	the	Cinal	program	with	$	is	one	
example.	Detecting	unterminated	comment	blocks	is	another.	

• When	you	detect	an	error,	report	it	in	helpful	and	excruciating	detail	including	where	it	
was	found,	what	exactly	went	wrong,	and	how	the	programmer	might	Cix	it.	I	consider	
confusing,		incomplete,	or	inaccurate	error	messages	a	serious	(and	intolerable)	bug.	

• Include	verbose	output	functionality	that	traces	the	stages	of	the	lexer.	(An	option	for	
GLaDOS	mode	is	good,	but	better	Yoda	mode	is.)		

• See	the	examples	on	the	next	page	for	details	and	ideas.

Other
Requirements

You	have	to	write	this	yourself.	You	may	not	use	JavaCC,	ANTLR,	or	any	compiler	compiler.	

Create	a	plethora	of	test	programs	that	cause	as	many	different	kinds	of	errors	as	you	can	
in	order	to	thoroughly	test	your	code.	(Think	about	code	coverage	and	edge	cases).	Include	
several	test	cases	that	show	it	working	as	well.	Write	up	your	testing	results		(informally)	
in	a	document	in	your	Git	repository.

Your	code	must	separate	structure	from	presentation,	be	professionally	
formatted	yet	uniquely	yours	(show	some	personality),	use	and	demonstrate	
best	practices,	and	make	me	proud	to	be	your	teacher.

[−∞	if	not]

Hints Remember	the	utility	of	comments	and	how	much	their	presence	and	quality	affect	your	
professionalism	and	my	opinion	of	your	work.

Labs Labs	1	and	2	focus	on	the	components	of	this	project.	Completing	those	labs	will	help	you	
with	the	project	and	also	contribute	to	your	preparation	for	the	mid-term	exam.

Submi9ng
Your Work

Make	many	commits	to	GitHub.	I	do	not	want	to	see	one	massive	“everything”	commit	
when	I	review	your	code.	(It’s	−∞	if	you	do	that.)	Commit	early	and	often.	40	to	60	commits	
is	a	good	goal	for	this	project.	Make	sure	your	commit	messages	are	descriptive,	
informative,	and	—	if	possible	—	entertaining.	
E-mail	me	the	URL	to	your	private	GitHub	repository.	(It	must	be	a	private	repository.	I	
will	not	accept	anything	else.)	Remember	to	add	me	(Labouseur)	as	a	collaborator.	Please	
send	this	to	me	before	the	due	date	(see	our	syllabus).	

 Project One - 100 points

http://www.labouseur.com/courses/compilers/grammar.pdf
mailto:alan@labouseur.com?subject=OS%20iProject%20link%20on%20GitHub

Compilers	
CMPT	432

Input: {}$
 {{{{{{}}}}}}$
 {{{{{{}}} /* comments are ignored */ }}}}$
 { /* comments are still ignored */ int @}$

Output	to	screen:

INFO Lexer - Lexing program 1...
DEBUG Lexer - OPEN_BLOCK [{] found at (1:1)
DEBUG Lexer - CLOSE_BLOCK [}] found at (1:2)
DEBUG Lexer - EOP [$] found at (1:3)
INFO Lexer - Lex completed with 0 errors

INFO Lexer - Lexing program 2...
DEBUG Lexer - OPEN_BLOCK [{] found at (2:1)
DEBUG Lexer - OPEN_BLOCK [{] found at (2:2)
DEBUG Lexer - OPEN_BLOCK [{] found at (2:3)
DEBUG Lexer - OPEN_BLOCK [{] found at (2:4)
DEBUG Lexer - OPEN_BLOCK [{] found at (2:5)
DEBUG Lexer - OPEN_BLOCK [{] found at (2:6)
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:7)
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:8)
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:9)
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:10)
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:11)
DEBUG Lexer - CLOSE_BLOCK [}] found at (2:12)
DEBUG Lexer - EOP [$] found at (2:13)
INFO Lexer - Lex completed with 0 errors

INFO Lexer - Lexing program 3...
DEBUG Lexer - OPEN_BLOCK [{] found at (3:1)
DEBUG Lexer - OPEN_BLOCK [{] found at (3:2)
DEBUG Lexer - OPEN_BLOCK [{] found at (3:3)
DEBUG Lexer - OPEN_BLOCK [{] found at (3:4)
DEBUG Lexer - OPEN_BLOCK [{] found at (3:5)
DEBUG Lexer - OPEN_BLOCK [{] found at (3:6)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:7)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:8)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:9)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:38)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:39)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:40)
DEBUG Lexer - CLOSE_BLOCK [}] found at (3:41)
DEBUG Lexer - EOP [$] found at (3:42)
INFO Lexer - Lex completed with 0 errors

INFO Lexer - Lexing program 4...
DEBUG Lexer - OPEN_BLOCK [{] found at (4:1)
DEBUG Lexer - I_TYPE [int] found at (4:36)
ERROR Lexer - Error:4:40 Unrecognized Token: @
DEBUG Lexer - CLOSE_BLOCK [}] found at (4:41)
DEBUG Lexer - EOP [$] found at (4:42)
ERROR Lexer - Lex failed with 1 error(s)

Project One © 2004-2112 Alan G. Labouseur, All Rights Reserved Page of 2 2

{
 int a
 a = a
 string b
 a = b
}$

INFO Lexer - Lexing program 5…
DEBUG Lexer - OPEN_BLOCK [{] found at (5:1)
DEBUG Lexer - I_TYPE [int] found at (6:3)
DEBUG Lexer - ID [a] found at (6:7)
DEBUG Lexer - ID [a] found at (7:3)
DEBUG Lexer - ASSIGN_OP [=] found at (7:5)
DEBUG Lexer - ID [a] found at (7:7)
DEBUG Lexer - I_TYPE [string] found at (8:3)
DEBUG Lexer - ID [b] found at (8:10)
DEBUG Lexer - ID [a] found at (9:3)
DEBUG Lexer - ASSIGN_OP [=] found at (9:5)
DEBUG Lexer - ID [b] found at (9:7)
DEBUG Lexer - CLOSE_BLOCK [}] found at (10:1)
DEBUG Lexer - EOP [$] found at (10:2)
INFO Lexer - Lex completed with 0 errors

