
Compilers	
CMPT	432

Project Four © 2004-2112 Alan G. Labouseur, All Rights Reserved Page of 1 1

Project 1. Courtesy	points	for	projects	one,	two,	and	three	still	working	perfectly.		
2. Write	a	code	generator	that	takes	your	AST	and	generates	6502a	

machine	code	(found	in	6502a-instruction-set.pdf)	for	our	language	
grammar	found	on	our	class	web	site	at	https://www.labouseur.com/
courses/compilers/grammar.pdf.

[25	points]	
[125	points]

Notes and
Requirements

• As	with	the	projects	before	this	one,	include	verbose	output	functionality	that	traces	
the	stages	of	the	parser	including	the	construction	of	the	symbol	table	and	type	
checking	actions.		

• When	you	detect	an	error	report	it	in	helpful	detail	including	where	it	was	found.	As	
ever,	I	consider	confusing,		incomplete,	or	inaccurate	error	messages	a	serious	(and	
intolerable)	bug.	

• The	generated	code	must	conform	to	the	6502a	instructions	set	speciRied	on	our	class	
web	site	and	execute	on	SvegOS.	

• If	you’re	feeling	up	to	it,	consider	adding	one	or	more	of	the	following	for	extra	credit	
and	extra	coolness:	code	optimization	(ask	me	about	it),	non-value-returning	
procedures	(sub	program	call	and	return),	value-returning	functions	(sub	program	call	
and	return),	integer	arrays

Other
Requirements

Create	a	plethora	of	test	programs	that	cause	as	many	different	types	of	errors	as	you	can	
in	order	to	thoroughly	test	your	code.	(You	have	been	thinking	about	code	coverage	and	
edge	cases,	right?)	Include	tons	of	test	cases	that	show	it	working	as	well.	Write	up	your	
testing	results		in	a	document	in	your	Git	repo.

Your	code	must	…		
• separate	structure	from	presentation.	
• be	professionally	formatted.	
• use	and	demonstrate	best	practices.	
• make	me	proud	to	be	your	teacher.

[−∞	if	not]

Labs Lab	8	focuses	on	some	of	the	components	of	this	project.	Lab	9	will	help	you	prepare	for	
the	Rinal	exam.

Submi8ng
Your Work

Make	many	commits	to	GitHub.	Commit	early	and	often.	If	you’re	not	already	doing	this,	
you’ve	probably	failed	this	course	by	now.

Grading Details 15	points	-	Lex	and	Parse	still	fully	working	
10	points	-	Semantic	Analysis	still	fully	working	
30	points	-	single	scope	sequence	code	generation	
30	points	-	multi-scope	sequence	code	generation	
30	points	-	alternation	(if)	code	generation	
30	points	-	repetition	(while)	code	generation	
		5	points	-	advanced	cases	code	generation

 Project Four - 150 points

https://www.labouseur.com/commondocs/6502alan-instruction-set.pdf
http://www.labouseur.com/courses/compilers/grammar.pdf
https://www.labouseur.com/commondocs/operating-systems/SvegOS/public_html/index.html

