
1

Table Of Contents:

Executive Summary……………………………….……………………………………...3
Entity Relationship Diagram………..………………………………………………4
Table Statements…………………………………..……………..……………………….5
View Statements………………………...………………………………………………..18
Reports………………………………………...………………..……………………….………22
Stored Procedures……………………………...…………………………………………26
Triggers……………………………………………………………………………………………31
Security……………………………………………………………………………………………34
Implementation Notes and Known Problems………….………………..37
Future Enhancements………………………………………………..………………….38

Hannah Riedman 2

Executive Summary

HannahFlix is a new high quality streaming service
with more titles than ever before. This service prides
itself with high quality movies that are hand picked
by film critics from around the world, while also
providing the latest and greatest TV shows for their
customers to enjoy.

This database will be used to keep track of films, tv
shows and users. HannahFlix administrators will be
able to see who is watching what and better tailor
every user’s experience based on what films and
shows they watch the most.

Hannah Riedman 3

Entity
Relationship
Diagram

4

Tables

Hannah Riedman 5

Tables: Users

This table is used to keep track of Users of the HannahFlix system and
what their information is for billing purposes.

CREATE TABLE Users (
 uid int not null,
 firstname text not null,
 lastname text not null,
 email text not null,
 subscriptionPK text not null,
 creditcardNum bigint not null,
 streetaddress text not null,
 zipcode int not null references ZipCodes(zipcode),
 unique(uid),
 PRIMARY KEY (uid)
);

Functional Dependencies:
uid→ firstname,lastname,
email,subscriptionPK,
creditcardNum,streetaddress,
zipcode.

Hannah Riedman 6

Tables: Titles

This table is used to keep track of the titles currently available.
Each Title has a name and a type (TV show or Movie) and each
title is assigned a genreID from the genre table.

CREATE TABLE Titles (
tid int not null,
title text not null,
type text not null,
genreID int not null references Genres(genreID),
unique(tid),
PRIMARY KEY (tid)
);

Functional Dependencies:
tid→title ,type, genreID

Hannah Riedman 7

Tables: Genres

This table is used to keep track of what genres there are. More genres
can easily be added if a title is added with no appropriate genre.

CREATE TABLE Genres (
 genreID int not null,
 genreName text not null,
 PRIMARY KEY (genreID)
);

Functional Dependencies:
genreID → genreName

Hannah Riedman 8

Tables: Movies

This table is used to keep track of all the Movies available. It also holds
information for the Directors of Movies

CREATE TABLE Movies (
 tid int not null references titles(tid),
 director text not null,
 unique(tid),
 PRIMARY KEY (tid)
);

Functional Dependencies:
tid→ director

Hannah Riedman 9

Tables: TV shows

This table is used to keep track of all the TV shows available. It also
holds information for the number of seasons.

CREATE TABLE TVshows (
 tid int not null references titles(tid),
 seasonNum int not null,
 unique(tid),
 PRIMARY KEY (tid)
);

Functional Dependencies:
tid→seasonNum

Hannah Riedman 10

Tables: Seasons

This table is used to keep track of all the Seasons available. It also
holds information for how many episodes are in
each season.

CREATE TABLE Seasons (
 tid int not null references TVshows(tid),
 season int not null,
 episodeNum int not null,
 unique(tid,season),
 PRIMARY KEY (tid,season)
);

Functional Dependencies:
tid, season→ episodeNum

Hannah Riedman 11

Tables: Episodes

This table is used to keep track of all the Episodes available and their
respective season number, TV show and episode title.

CREATE TABLE Episodes (
 tid int not null,
 season int not null,
 episode int not null,
 episodeTitle text not null,
 FOREIGN KEY(tid, season) REFERENCES Seasons(tid, season),
 PRIMARY KEY (tid, season, episode)
);

Functional Dependencies:
tid, season, episode → episodeTitle

Hannah Riedman 12

Tables: Episodes-- more sample data

Hannah Riedman 13

Tables: WatchedTitles

This table is used to keep track of all the Titles watched by each certain
user. This includes movies and TV show titles.

CREATE TABLE WatchedTitles (
 uid int not null references Users(uid),
 tid int not null references Titles(tid),
 unique(uid, tid),
 PRIMARY KEY(uid, tid)
);

Functional Dependencies:
uid, tid →

Hannah Riedman 14

Tables: WatchedEpisodes

This table is used to keep track of all the episodes watched by each
user. This is so HannahFlix can keep track if you have finished a show
or what episode you are on in the series.

CREATE TABLE WatchedEpisodes (
 uid int not null references Users(uid),
 tid int not null,
 season int not null,
 episode int not null,
 FOREIGN KEY(tid, season, episode) REFERENCES Episodes(tid, season, episode),
 PRIMARY KEY (uid, tid, season, episode)
);

Functional Dependencies:
uid, tid, season, episode →

Hannah Riedman 15

Tables: TitleRatings

This table is used to keep track of all the titles rated by the user on a 1
to 5 star rating scale. The user can rate movies or a TV show as a
whole but only if the user has watched the title (and is therefore in the
WatchedTitles table).

CREATE TABLE TitleRatings (
 uid int not null,
 tid int not null,
 rating int not null check (rating > 0 and rating < 6),
 FOREIGN KEY(uid, tid) REFERENCES WatchedTitles(uid, tid),
 PRIMARY KEY(uid, tid)
);

Functional Dependencies:
uid, tid → rating

Hannah Riedman 16

Tables: Queues

This table is used to keep track of what titles are on a user’s list. A user
can add any movie or tv show to their Queue to watch later.

CREATE TABLE Queues (
 uid int not null references Users(uid),
 tid int not null references Titles(tid),
 unique(uid, tid),
 PRIMARY KEY(uid, tid)
);

Functional Dependencies:
uid, tid →

Hannah Riedman 17

Views

Hannah Riedman 18

Views: view_all_movies

This view is used to see all the available movies with the movie titles
and directors.

CREATE VIEW view_all_movies
AS
SELECT t.tid, title as "Movie title", director
FROM movies m INNER JOIN titles t ON m.tid = t.tid;

 Hannah Riedman 19

Views: view_all_tvshow_episodes

This view is used to see all the available tv show episodes with the
tvshow title, season number, episode number, and episode titles.

CREATE VIEW view_all_tvshow_episodes
AS
SELECT t.tid, title as "TV show title", season, episode, episodetitle
FROM episodes e INNER JOIN titles t ON e.tid = t.tid;

Hannah Riedman 20

Views: most_popular_titles

This view is used to show administrators how many users are watching
each title. This will help our film and tv show curators decide what kind
of titles are most desired.

CREATE VIEW most_popular_titles
AS
SELECT t.tid, title, type, count(*) as "Users Watched"
FROM titles t INNER JOIN watchedtitles wt ON t.tid = wt.tid
GROUP BY t.tid
ORDER BY count(*) DESC, t.tid;

Hannah Riedman 21

Reports

Hannah Riedman 22

Reports: Percent of Users that are Basic

This Report will be used to find the percentage of how many users have
a basic subscription package. This is useful to help HannahFlix see
what packages are the most popular.

SELECT round(
((count(*) filter (WHERE subscriptionPK = 'Basic')::numeric
/ count(*)::numeric) * 100)::numeric, 2
) as "Percent Users Basic"

FROM users

Hannah Riedman 23

Reports: Most Popular Genre

This report will be used to find the most popular genre of titles users
watch. This will help HannahFlix in finding more titles in that category
to add to their library.

SELECT genreName as “Most Popular Genre”
FROM genres
WHERE genreID = (SELECT genreID

 FROM (SELECT genreID,count(*)
 FROM watchedtitles wt INNER JOIN titles t ON wt.tid = t.tid
 GROUP BY genreID
 ORDER BY count(*) DESC
 LIMIT 1) as "GenreID");

Hannah Riedman 24

Reports: Most Popular Director

This report will be used to find the most popular Director of titles users
watch. This will help HannahFlix in finding more titles from that
Director to add to their library.

SELECT director as "Most Popular Director"
FROM (SELECT director, count(*)
 FROM watchedtitles wt INNER JOIN movies m ON wt.tid = m.tid
 GROUP BY director
 ORDER BY count(*) DESC
 limit 1) as "director";

Hannah Riedman 25

Stored
Procedures

Hannah Riedman 26

Stored Procedures: Recommendations

This procedure will look at a user's watched titles and take the most
watched genre of titles they have watched and recommended titles
from that genre for the user to watch while also ensuring that no titles
that the user has watched will be recommended.

Below is sample results for user, Alan Labouseur when the user's id is
passed into the function. SQL for the procedure is shown on the next
page.

Hannah Riedman 27

Stored Procedures: Recommendations cont.
DROP FUNCTION recommendations(theuser integer,resultSet refcursor);

CREATE or REPLACE function recommendations(theuser int,resultSet refcursor) returns refcursor as
$$
DECLARE
 theuser int := $1;
 resultSet refcursor := $2;
BEGIN
 open resultset for
 SELECT title
 FROM titles
 WHERE genreID = (SELECT genreID

 FROM(SELECT genreID,count(*)
 FROM watchedtitles wt INNER JOIN titles t ON wt.tid = t.tid
 WHERE uid = theuser
 GROUP BY genreID

 ORDER BY count(*) DESC
 LIMIT 1) as "genreID")

 AND title not in (SELECT title
 FROM watchedtitles wt INNER JOIN titles t ON wt.tid = t.tid
 WHERE uid = theuser);

 return resultset;
END;
$$ language plpgsql

Hannah Riedman 28

Stored Procedures: View by Genre

This procedure will accept a genre as text and then return all titles in
that genre. This will be useful when users search titles by genre.
Sample data is shown on the next page.

DROP FUNCTION viewbygenre(genre text,resultSet refcursor);

CREATE or REPLACE function viewbygenre(genre text,resultSet refcursor) returns refcursor as
$$
DECLARE
 genre text := $1;
 resultSet refcursor := $2;
BEGIN
 open resultset for
 SELECT title, type
 FROM titles
 WHERE genreID = (SELECT genreID

 FROM genres
 WHERE genreName = genre);

 return resultset;
END;
$$ language plpgsql

Hannah Riedman 29

Stored Procedures: View by Genre cont.

Here is some sample data for this procedure. Figure 1 shows data when
the genre ‘Thriller’ is entered into the function. Figure 2 shows data when
the genre ‘Drama’ is entered into the function.

Figure 1 Figure 2

Hannah Riedman 30

Triggers

Hannah Riedman 31

Triggers: Credit Card Check

This Trigger will check the credit card entered for each user to ensure it
is valid (has 16 digits) before allowing the user data into the Users
table. The credicard_num() function will be executed whenever a new
row is Inserted into the table.

CREATE OR REPLACE FUNCTION creditcard_num() RETURNS TRIGGER AS
$$
DECLARE
 creditcard text := cast(new.creditcardnum as text);
BEGIN
 IF creditcard is NULL THEN

RAISE EXCEPTION 'creditcard cannot be null';
 END IF;
 IF (SELECT length(creditcard)
 FROM Users
 WHERE Uid = new.uid) <> 16 THEN
 RAISE EXCEPTION 'creditcard must be valid';
 END IF;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

Hannah Riedman 32

Triggers: Credit Card Check cont.

Here is the Trigger SQL and sample output when an incorrect credit
card is entered.

CREATE TRIGGER creditcard_check
 AFTER INSERT
 ON Users
 FOR EACH ROW
 EXECUTE PROCEDURE creditcard_num();

Hannah Riedman 33

Security

Hannah Riedman 34

Security: Admin & Film Curator Roles

ADMIN
The admin of the database can see and edit all information for all the
tables in the database.

CREATE ROLE Admin;
GRANT ALL
ON ALL TABLES IN SCHEMA PUBLIC
TO Admin;

FILMCURATOR
The Film Curator needs to have select access to view what films are in
the database currently and also have insert access to add new films. In
the case of outdated films or unwatched films, the Film curator can also
delete movies.

CREATE ROLE FilmCurator;
GRANT SELECT, INSERT, DELETE
ON Genres, Titles, Movies, most_popular_titles
TO FilmCurator;

Hannah Riedman 35

Security: Show Specialist Role

SHOWSPECALIST
The Show Specialist, like the film curator, needs to have select access to
view what tv shows are in the database currently and also have insert
access to add new shows. In the case of outdated shows or unwatched
shows, the Show Specialist can also delete tv shows. In addition, the
Show Specialist can update TV shows since new seasons may be
added periodically.

CREATE ROLE ShowSpecialist;
GRANT SELECT, INSERT, UPDATE, DELETE
ON Genres, Titles, TVshows, Seasons, Episodes, most_popular_titles
TO ShowSpecialist;

Hannah Riedman 36

Implementation Notes & Known Problems
➜ The test data in the insert statements is not fully complete for the

purpose of space and the size of this project.
○ The Episodes table only contains one episode per season due

to the large amount of episodes per season.
○ Similarly the ZipCodes table only contains zip codes for the

sample users since there is a large amount of zip codes.

➜ Currently the way the billing address is put into the users table does

not account for users localized outside the US.

➜ The recommendation stored procedure only makes
“recommendations” based on the most popular genre of watched
titles by the user.
○ This can be an issue if the user has watched all the titles of

that genre, then no more recommendations will be made.
○ Also this can be an issue if a user has watched a lot of one

genre but has not liked some of them.

➜ Currently you can only add one genre per title and certain titles may
have multiple genres. Hannah Riedman 37

Future Enhancements

➜ Once HannahFlix has been established in the US, we plan to include
international customers and make the service available worldwide.

➜ Another Future Enhancement is multiple profiles per account since
accounts are usually shared in families. This way, recommendations
can be more accurate for each individual.

➜ We are working on the ability to add multiple genres for one title.

➜ We want to improve our recommendation function so it’s more
accurate. It might be interesting to include user ratings of watched
titles for the recommendations in case a user has watched a lot of
one genre but has not liked some of them.

➜ In the future, we might want to include a licences table to help
admins know when licenses are expired, in order know when to
renew licences for titles or delete titles.

Hannah Riedman 38

