Database Systems

CMPT 308 • Spring 2024

—Background

When and where Tuesday mornings 8AM to 10:45AM in HC 2019 · Labs Fridays 8AM to 9AM and online

Suggested Text

Database Systems The Complete Book, second edition by Garcia-Molina, Ullman, and Widom. Published by Prentice Hall. ISBN 978-0-13-187325-4

Web

https://www.labouseur.com/courses/db

Instructor

Alan G. Labouseur
Hancock 3007

Alan.Labouseur@Marist.edu
(Office hours are posted.)

—Grades ·

Letter Grades	F		D	C-		C	C+		B-	В	B+	A-	A
2000. 0.4400	6	→ 5%	70	→)%	→ 73%	7	→ 7%	→ 80%	8	→ 3% 8	→ 37%	90%	93%

You can earn up to 1000 points, broken down as follows:

Labs	10.0%	100 points: 10 at 10 points each	[1, 2]
Text-to-SQL Project	10.0%	100 points	[1, 2]
Relational Database Project	25.0%	250 points	[1,2,5]
Mid-term Exam	25.0%	250 points - study sheet permitted	[1,2,5]
Final Exam	25.0%	250 points - study sheet permitted	[5]
Attendance & Participation	2.5%	25 points for quality & quantity	[5]
Laziness and Whining	2.5%	25 points for not (lazy or whining)	[1]

—Themes, Objectives, and Assessment

Assessment methods include assignments, quizzes, exams, discussions, presentations, peer review, and projects.

[References] refer to Department of Computing Technology Goals available at https:// www.labouseur.com/ courses/goals.pdf In this course, I hope that you will . . .

 come to understand that data has value, and the right answer is 	[1, 2]
infinitely better than a fast answer.	

 reach a solid knowledge of and appreciation for principles and 	[1, 2]
foundations of relational and graph database systems	

 gain an understanding of relational database concepts, term 	iinology, [1, 2]
and their superiority over NoSQL garbage like document sto	res.

 attain in-depth knowledge of the relational data model and why it's 	[1, 2]
superior to other data models in general, and will remain so.	

 realize that no SQL is better than NoSQL. 	[1, 2, 5]
---	-----------

 realize that 	Lotus Notes ai	nd Ms-Access a	re not datal	bases, and	that it's
unprofessio	nal to use MyS	QL and mongo	DB.		

• appreciate, understand, use, and bask in awe of SQL. [1, 2]

 appreciate, understan 	d, and bask in	awe of graphs.	[1, 2, 5]

 design 	, implemen [.]	t, test, and d	ocument a BCNF relational da	atabase. [1, 2]

	 discuss and use ne 	ew databas	e technology.	[1, 2, 5]
ı				 F4 07

 come to know some modern graph data techniques and technologies 	[1, 2]
 develop continuing education skills. Capable problem solvers never 	[1, 2]

 develop continuing education skills. Capable problem solvers never
stop learning. To the end, you will get practice in finding some
answers for vourself.

[1, 2]

Database Systems

- Schedule -

CMPT 308 • Spring 2024

#	Week	Due	Chapters	Topics
0	16-Jan	_	1 9.1	The Plan — Data vs. Information — Data throughout history: Files, Hierarchies, Networks, Tables, Documents, Key-value stores, and Graphs
1	23-Jan	Lab 1 Installing PostgreSQL	2, 4.1, 5.1 6.1, 7.1, 9.2	The Relational Model — Relational Algebra —Data types — Keys Beginning SQL — Simple SQL queries
2	30-Jan	Lab 2 Our beloved CAP database	2, 6.2-3 7.1-2, 9.3	Entity/Relationship modeling — SQL create statements Referential Integrity and constraints — SQL subqueries
3	6-Feb	Lab 3 Getting started with SQL	2, 6.2-4 7.1-2, 9.3	Check constraints — Null and three-valued logic — Cursors — Subqueries SQL: Insert, update, and delete — Aggregations with GROUP BY and HAVING
4	13-Feb	Lab 4 Subqueries SQL	6.1 - 6.5	Joining relations with Inner and Outer joins Set operations in SQL
5	20-Feb	Lab 5 Joins Three-quel	8.1-4 14.1-3 & G*	The System Catalog — Views — Indexes and Index Structures Graph Databases
6	27-Feb	Lab 6 Interesting and Painful Queries	_	Mid-term Exam in HC 2023 One-page study sheet permitted. Some restrictions apply.
7	5-Mar	_	3 4.1-6	Introduction to Normalization, Functional dependencies, and Normal forms
8	12-Mar	_	_	No class meeting — Spring Break
9	19-Mar	Text-to-SQL Project	3 4.1-6	More Normalization — Functional dependencies — Normal forms The normalization process — Lossless Joins — Normalization examples
Α	26-Mar	Lab 7 Normalization 1	3, 4.1-6 10.1	Discuss Lab 7 — Database design and data modeling Weak entities and entity subtypes — Authorization and Security
В	2-Apr	Lab 8 Normalization 2	9.4	Discuss Lab 8 — Stored Procedures and Triggers
С	9-Apr	_		No class meeting — College-wide time-wasting Day
D	16-Apr	Lab 9 Normalization 3	1.2.4 18.3-4 19.2	Discuss Lab 9 — Locks, locking isolation levels, and deadlock
Е	23-Apr	Lab A Stored Procs	6.6 17	ACID — Transactions, Recovery, and the Log file
F	30-Apr	Relational Database Project	all of it	Catch up class / Review
∞	7-May	_	everything	Final Exam at 8AM in HC 2023 One-page study sheet permitted. Some restrictions apply.