Scope and Type

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

Scope and Type

There are many aspects of data types to consider :

- Static and Dynamic types
- Expressing Type Systems
- Checking Scope and Type in a Program

Identifiers, Variables, and Scope

Identifiers $=$? Names

- Used for namespaces, classes, methods, variables, etc.

Design issues for names

- Are names case sensitive?
- Are special words reserved words or keywords? (What's the difference)
- How many characters can be in an identifier names?
- If they're too short they cannot be meaningful.
- If they're too long they might get unwieldy.
- Examples
- FORTRAN I: maximum 6
- COBOL: maximum 30
- FORTRAN 90 and C89: maximum 31
- C99: maximum 63
- C\#, Ada, Java: no limit (in theory, not in practice)

Identifiers, Variables, and Scope

A variable is an abstraction of a memory cell.

- Think of a post office model.

Variables are characterized by attributes

- name

- address
- value
- type
- scope
- lifetime
- visibility
- category
... and more

Identifiers, Variables, and Scope

A variable is an abstraction of a memory cell.

- Think of a post office model.

Variables are characterized by attributes

- name
- address
- value
- type
- scope
- lifetime
- visibility
- category const, iterator, etc.

Identifiers, Variables, and Scope

A variable is an abstraction of a memory cell.

- Think of a post office model.

Variables are characterized by attributes

- name believe it or not, not all variables have names

- address location in memory
- value contents of the location in memory
- type range of values and set of operations defined for them
- scope range of statements in a program over which the var is "alive"
- lifetime amount of time a variable is bound to a given memory location
- visibility public, protected, private, internal, etc.
- category const, iterator, etc.

Binding?

Identifiers, Variables, and Scope

Binding

- A binding is an association, such as between an attribute and an entity, or between an operation and a symbol
- Binding time is the time at which a binding takes place.
- What are the choices? When can binding take place?

Identifiers, Variables, and Scope

Binding

- A binding is an association, such as between an attribute and an entity, or between an operation and a symbol
- Binding time is the time at which a binding takes place.
- What are the choices? When can binding take place?
- Language design time - bind operator symbols to operations
- Language implementation time - bind floating point type to a representation (BCD, two's compliment, whatever)
- OS Installation time - .Net pre-compiles CLR and DLLs / JVM
- Compile time - bind a variable to a type (C and Java, and our language)
- Load time - bind a C or C++ static variable to a memory cell, for example)
- Runtime - bind a non-static local variable to a memory cell

Identifiers, Variables, and Scope

Binding

- A binding is an association, such as between an attribute and an entity, or between an operation and a symbol
- Binding time is the time at which a binding takes place.
- What are the choices? When can binding take place?
- Language design time - bind operator symbols to operations
- Language implementation time - bind floating point type to a representation (BCD, two's compliment, whatever)
- OS Installation time - .Net pre-compiles CLR and DLLs / JVM
Early \longrightarrow Compile time-bind a variable to a type (C and Java, and our language)
- Load time - bind a C or C++ static variable to a memory cell, for example)
- Runtime - bind a non-static local variable to a memory cell

A binding is static if it first occurs before run time and remains unchanged throughout program execution.

- A binding is dynamic if it first occurs during execution or can change during execution of the program.

Identifiers, Variables, and Scope

Binding

- A binding is an association, such as between an attribute and an entity, or between an operation and a symbol
- Binding time is the time at which a binding takes place.
- What are the choices? When can binding take place?
- Language design time - bind operator symbols to operations
- Language implementation time - bind floating point type to a representation (BCD, two's compliment, whatever)
- OS Installation time - .Net pre-compiles CLR and DLLs / JVM
- Compile time - bind a variable to a type (C and Java, and our language)
- Load time - bind a C or C++ static variable to a memory cell, for example) Runtime- bind a non-static local variable to a memory cell
- A binding is static if it first occurs before run time and remains unchanged throughout program execution.
A binding is dynamic if it first occurs during execution or can change during execution of the program.

Static and Dynamic Scope

What's the output of this code?

```
Class ScopeMan {
    int a := 1;
    int b := 2;
    main() {
        int b := 3;
        print(a,b);
        sub1();
    }
    sub1() {
        int a := 4;
        print(a,b);
        sub2();
    }
    sub2() {
        print(a,b);
    }
}
```


Static and Dynamic Scope

Static Scope

```
Class ScopeMan {
    int a := 1;
    int b := 2;
    main() {
        int b := 3;
        print(a,b);
        sub1();
    }
```

 sub1() {
    ```
    sub1() {
        int a := 4;
        int a := 4;
        print(a,b);
        print(a,b);
        sub2();
        sub2();
    }
    }
    sub2() {
    sub2() {
        print(a,b);
        print(a,b);
    }
    }
}
```

```
}
```

```


\section*{Static and Dynamic Scope}

\section*{Static Scope}
```

Class ScopeMan {
int a := 1;
int b := 2;
main() {
int b := 3;
print(a,b);
sub1();
}
sub1() {
int a := 4;
print(a,b);
sub2();
}
sub2() {
print(a,b);
}
}

```


Note: We don't actually store the value of the ids in the symbol table, as they will be stored in memory. They're present in this depiction of a symbol table only so that we can easily see what the output should be. We'll have other attributes to store in the hash table along with the ids later on.

\section*{Static and Dynamic Scope}

\section*{Static Scope}
```

Class ScopeMan
int a := 1;
int b := 2;
main() {
int b := 3;
print(a,b);
sub1();
}
sub1() {
int a := 4;
print(a,b);
sub2();
}
sub2() {
print(a,b);
}
}

```


Static scope is . . .
- Early binding
- Compile time
- about Space,
- the shape of the code
- the spacial relationships of code modules to each other at compile time.




\section*{Type Systems}

\section*{The Basics}

\section*{What is a Type?}
- A set of values
- A set of operations on those values

Type errors happen when we try to perform operations on values that do not support them.

Type expressions are textual representations of type
- primitive/prime: int, boolean, real, date, time, char, pointer, ...
- composite: timestamp, latitude, longitude, student-id, ...

What about string? Or String?

\section*{Type Systems}

\section*{The Basics}

\section*{What is a Type?}
- A set of values
- A set of operations on those values

Type errors happen when we try to perform operations on values that do not support them.

Type expressions are textual representations of type
- primitive/prime: int, boolean, real, date, time, char, pointer, ...
- composite: timestamp, latitude, longitude, student-id, string, ...

Type systems consist of rules governing what operations are permitted on what values.
- strong type systems prevent type errors at runtime.
- weak type systems allow encourage type errors at runtime.
- Type systems can be documented and reasoned about using inferences rules.

\section*{Type Systems}

\section*{Specifying a Type System with Inference Rules}

\author{
\(\frac{\text { preconditions }}{\text { postconditions }}\)
}

We can use inference rules from mathematics and Axiomatic Semantics. Why?
- It's fun.
- It's accurate. We need a rigorous definition of types and type systems so that we can enforce them in the compiler.
- It gives flexibility in implementation because it's not tied to any grammar.
- It allows for formal verification of program properties.
- It's what used in the computer science literature.

\section*{Inference Rules}

An inference rule is written
\[
\frac{f_{1}, f_{2}, \ldots f_{\mathrm{n}}}{f_{\mathrm{o}}}
\]

It expresses that if \(f_{1}, f_{2}, \ldots f_{\mathrm{n}}\) are theorems - that is, they are proven well-formed formulae (WFF) - then we can infer that \(f_{0}\) is another theorem.

That's nice, but how do we know?
How can we actually prove things?
Let's look at famous inference rule: Modus Ponens.

\section*{A Famous Inference Rule}

Modus Ponens
\[
\frac{p, p \Rightarrow q}{q}
\]

Modus Ponens ("the mode that affirms") can be read: if we have \(p\) (meaning, \(p\) is true) and \(p\) implies \(q\)
then
we can infer that \(q\) is true.
end if
The implication/conditional operator \((\Rightarrow)\) is like a contract: if \(p\) then \(q\).

\section*{Inference Rule vs. Propositional Connective}

\section*{Modus Ponens}
\[
\frac{p, p \Rightarrow q}{q} \longleftarrow \text { Inference Rule }
\]

Modus Ponens ("the mode that affirms") can be read:


The implication/conditional operator \((\Rightarrow)\) is like a contract: if \(p\) then \(q\).

Let's review this in Propositional logic.

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{l|l}
\(p\) & \(q\) \\
\hline 0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{tabular}

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.
(propositional connectors)

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{c|c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & p pq \\
\hline 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{tabular}

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

\section*{Propositional Logic}

\section*{Truth Tables}
\begin{tabular}{c|c|c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) \\
\hline 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0
\end{tabular}

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

Do we need more? (Do we even need all of these?)

\section*{Propositional Logic}

\section*{Truth Tables}
\begin{tabular}{c|c|c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) \\
\hline 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0
\end{tabular}

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

Do we need more? No. (Do we even need all of these? No.)
\[
\mathrm{p} \vee \mathrm{q}=\neg(\neg \mathrm{p} \wedge \neg \mathrm{q})
\]

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{c|c|c|c|c|c|}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \rightarrow \mathrm{q}\) \\
\hline 0 & 0 & 0 & 0 & 1 & \\
0 & 1 & 0 & 1 & 1 & \\
1 & 0 & 0 & 1 & 0 & \\
1 & 1 & 1 & 1 & 0 &
\end{tabular}

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

Implication is like a contract: "if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{c|c|c|c|c|cl}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} \vee \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \Rightarrow \mathrm{q}\) & \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & \begin{tabular}{l} 
These are vacuously true because \(p\) is false and \\
0
\end{tabular} \\
1 & 0 & 1 & 1 & 1 & \begin{tabular}{l} 
false can imply anything because it's an invalid \\
1
\end{tabular} & 0 \\
0 & 1 & 0 & & \begin{tabular}{l} 
premise.
\end{tabular} \\
1 & 1 & 1 & 1 & 0 & & \begin{tabular}{l} 
Also, we take "if \(p\) then \(q\) " to be false only \\
when \(p\) is true and \(q\) is false.
\end{tabular}
\end{tabular}

Propositional logic has only false and true, no variables.
It also has logical operators like and, or, and not.
Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{c|c|c|c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \Rightarrow \mathrm{q}\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 &
\end{tabular}

This is false because \(p\) is true and \(q\) is false, and "true implies false" is false.

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{c|c|c|c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \rightarrow \mathrm{q}\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1
\end{tabular}

This is true because \(p\) is true and \(q\) is true, and "true implies true" is true.

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{l|l|l|l|l|l|l}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} \vee \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \rightarrow \mathrm{q}\) & \(\neg \mathrm{p} \vee \mathrm{q}\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & \\
0 & 1 & 0 & 1 & 1 & 1 & \\
1 & 0 & 0 & 1 & 0 & 0 & \\
1 & 1 & 1 & 1 & 0 & 1 &
\end{tabular}

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".
Implication can also be written as \(\neg p \vee q\).

\section*{Propositional Logic}

Truth Tables
These two columns are the same.
\(\mathrm{p} \quad \mathrm{q}|\mathrm{p} \wedge \mathrm{q}| \mathrm{p} v \mathrm{q}|\neg \mathrm{p}| \mathrm{p} \Rightarrow \mathrm{q} \mid \neg \mathrm{p} v \mathrm{q} \quad\) Both are implication.

Propositional logic has only false and true, no variables.
It also has logical operators like and, or, and not.
Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".
Implication can also be written as \(\neg p \vee q\).

\section*{Propositional Logic}

Truth Tables
\begin{tabular}{l|c|c|c|c|c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \rightarrow \mathrm{q}\) & \(\neg \mathrm{p} v \mathrm{q}\) & \(\mathrm{p} \wedge \mathrm{q} \Rightarrow(\mathrm{p} \Rightarrow \mathrm{q})\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & \\
1 & 1 & 1 & 1 & 0 & 1 & 1 &
\end{tabular}

Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".
Implication can also be written as \(\neg p \vee q\).
A tautology is logical statement that is always true regardless of the truth values of its components. Here's one: \(p \wedge q \Rightarrow(p \Rightarrow q)\)

\section*{Propositional Logic}

Truth Tables


Propositional logic has only false and true, no variables. It also has logical operators like and, or, and not.

Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".
Implication can also be written as \(\neg p \vee q\).

A tautology is logical statement that is always true regardless of the truth values of its components. Here's one: \(p_{\wedge} q \Rightarrow(p \Rightarrow q)\)

\section*{Propositional Logic}

\section*{Truth Tables}
\begin{tabular}{c|c|c|c|c|c|c|cl}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \Rightarrow \mathrm{q}\) & \(\neg \mathrm{p} v \mathrm{q}\) & \(\mathrm{p} \wedge \mathrm{q} \Rightarrow(\mathrm{p} \Rightarrow \mathrm{q})\) & \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & What's the opposite \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & of a tautology, where \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & the statement is \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & always false?
\end{tabular}

Propositional logic has only false and true, no variables.
It also has logical operators like and, or, and not.
Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".
Implication can also be written as \(\neg p \vee q\).
A tautology is logical statement that is always true regardless of the truth values of its components. Here's one: \(p \wedge q \Rightarrow(p \Rightarrow q)\)

\section*{Propositional Logic}

\section*{Truth Tables}
\begin{tabular}{c|c|c|c|c|c|c|cl}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \Rightarrow \mathrm{q}\) & \(\neg \mathrm{p} v \mathrm{q}\) & \(\mathrm{p} \wedge \mathrm{q} \Rightarrow(\mathrm{p} \Rightarrow \mathrm{q})\) & \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & What's the opposite \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & of a tautology, where \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & the statement is \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & always false? \\
& & & & & A contradiction.
\end{tabular}

Propositional logic has only false and true, no variables.
It also has logical operators like and, or, and not.
Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".
Implication can also be written as \(\neg p \vee q\).
A tautology is logical statement that is always true regardless of the truth values of its components. Here's one: \(p \wedge q \Rightarrow(p \Rightarrow q)\)

\section*{Propositional Logic}

\section*{Truth Tables}

A contradiction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \rightarrow \mathrm{q}\) & \(\neg \mathrm{p} v \mathrm{q}\) & \(\mathrm{p} \wedge \mathrm{q} \Rightarrow(\mathrm{p} \rightarrow \mathrm{q})\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1
\end{tabular}

Propositional logic has only false and true, no It also has logical operators like and, or, and n

Contradictions cannot exist.

Implication is like a contract:
"if \(p\) then \(q\) " or " \(p \Rightarrow q\) ".
Implication can also be written as \(\neg p \vee q\).
A tautology is logical statement that is always true regardless of the truth values of its components. Here's one: \(p \wedge q \Rightarrow(p \Rightarrow q)\)

\section*{Back to that Famous Inference Rule}

\section*{Propositional Logic for Modus Ponens}
\begin{tabular}{l|c|c|c|c|c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \rightarrow \mathrm{q}\) & \(\neg \mathrm{p} v \mathrm{q}\) & \(\mathrm{p} \wedge \mathrm{q} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1
\end{tabular}

Modus Ponens
\[
\frac{p, p \Rightarrow q}{q}
\]
can be written "if \(p\) and \(p \Rightarrow q\) then \(q\) ", which can be written
\[
(p \wedge(p \Rightarrow q)) \Rightarrow q
\]

\section*{A Famous Inference Rule}

\section*{Propositional Logic for Modus Ponens}
\begin{tabular}{|c|c|c|c|c||c|c|c|c|c} 
& p & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \rightarrow \mathrm{q}\) & \(\neg \mathrm{p} v \mathrm{q}\) & \(\mathrm{p} \wedge \mathrm{q} \Rightarrow(\mathrm{p} \rightarrow \mathrm{q})\) & \(\mathrm{p} \wedge(\mathrm{p} \Rightarrow \mathrm{q})\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{tabular}

Modus Ponens
\[
\frac{p, p \Rightarrow q}{q}
\]
can be written "if \(p\) and \(p \Rightarrow q\) then \(q\) ", which can be written
\[
(p \wedge(p \Rightarrow q)) \Rightarrow q
\]

\section*{A Famous Inference Rule}

\section*{Propositional Logic for Modus Ponens}


Modus Ponens
\[
\frac{p, p \Rightarrow q}{q}
\]
can be written "if \(p\) and \(p \Rightarrow q\) then \(q\) ", which can be written
\[
(p \wedge(p \Rightarrow q)) \Rightarrow q
\]

\section*{A Famous Inference Rule}

\section*{Propositional Logic for Modus Ponens}
\begin{tabular}{c|c|c|c|c|c|c|c|c|c}
p & q & \(\mathrm{p} \wedge \mathrm{q}\) & \(\mathrm{p} v \mathrm{q}\) & \(\neg \mathrm{p}\) & \(\mathrm{p} \Rightarrow \mathrm{q}\) & \(\neg \mathrm{p} v \mathrm{q}\) & \(\mathrm{p} \wedge \mathrm{q} \Rightarrow(\mathrm{p} \Rightarrow \mathrm{q})\) & \(\mathrm{p} \wedge(\mathrm{p} \Rightarrow \mathrm{q})\) & \((\mathrm{p} \wedge(\mathrm{p} \Rightarrow \mathrm{q})) \Rightarrow \mathrm{q}\) \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1
\end{tabular}

Modus Ponens
\[
\frac{p, p \Rightarrow q}{q}
\]
can be written "if \(p\) and \(p \Rightarrow q\) then \(q\) ", which can be written
\[
(p \wedge(p \Rightarrow q)) \Rightarrow q \longrightarrow \text { Tautology. Woot! }
\]

\section*{Inference Rules for Type Systems}

With Modus Ponens proved and used as the basis for inference rules, we need to move from Propositional logic to Predicate logic.
The complexity of reasoning about type systems cannot be handled with truth tables because we need to accommodate ideas like any, all, or some. Also, we need variables and functions. This leads us to . . .

First Order Logic
- variables
- domains
- named constants
- relations (>, <, etc.)
- functions (math operations)
- logical operators
- quantifiers (for-all " \(\forall\) " and there-exists " \(\exists\) ")

Now we can reason about type systems.

\section*{Type Systems}

\section*{Primitives / Literals / Intrinsic Types}

\section*{Boolean literals}

String literals
\(\vdash\) true: boolean \(\quad \vdash\) false: boolean
An empty pre-condition means "under any circumstances".

\author{
Integer literals
}
\(i\) is an integer literal or constant
\(\vdash i\) : integer

\section*{Type Systems}

\section*{Addition}

\author{
Boolean literals
}

String literals

Integer literals

We cannot add Booleans because no inference rules are given to support that.
\[
\begin{aligned}
& \vdash e_{1}: \text { string } \\
& \vdash e_{2}: \text { string } \\
& \hline \vdash e_{1}+e_{2}: \text { string }
\end{aligned}
\]
\[
\vdash e_{1}: \text { integer }
\]
\[
\frac{\vdash e_{2}: \text { integer }}{\vdash e_{1}+e_{2}: \text { integer }}
\]

This would be better labeled as concatenation, since it's not really addition. Maybe we should choose a different operator, like" •".

\section*{Type Systems}

\author{
Assignment
}
\[
\begin{aligned}
& \vdash e_{1}: \mathrm{T} \\
& \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \vdash e_{1}=e_{2}: \mathrm{T}
\end{aligned}
\]
\[
\begin{aligned}
& \vdash e_{1}: \mathrm{T} \\
& \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \vdash e_{1}==e_{2}: \text { boolean }
\end{aligned}
\]
\[
\begin{aligned}
& \vdash e_{1}: \mathrm{T} \\
& \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \vdash e_{1}>e_{2}: \text { boolean }
\end{aligned}
\]

\section*{Comparisons}
\[
\begin{aligned}
& \vdash e_{1}: \mathrm{T} \\
& \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \vdash e_{1}!=e_{2}: \text { boolean }
\end{aligned}
\]
\[
\begin{aligned}
& \vdash e_{1}: \mathrm{T} \\
& \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \vdash e_{1}<e_{2}: \text { boolean }
\end{aligned}
\]

\section*{Type Systems}
```

Example
string x = "I have a";
string y = "bad feeling";
int aboutThis(int x) {
return x + y;
}
main() {
int z;
z = aboutThis(42);
print(z);
}

```

\section*{Type Systems}

\section*{Example}
```

string x = "I have a"; «
string y = "bad feeling"; «
x: int
int aboutThis(int x) { z
return x + y;
}
main() {
int z;
z = aboutThis(42);
print(z);
}

```

\section*{Type Systems}

\section*{Example}
```

string x = "I have a";
string y = "bad feeling";
int aboutThis(int x) {
return (x + y;
}

```
```

main() {

```
main() {
    int z;
    int z;
    z = aboutThis(42);
    z = aboutThis(42);
    print(z);
    print(z);
}
```

}

```

\section*{Things we know}
x : string
y : string
x : int
z: int

\section*{Things we wonder about}

Is \(\mathrm{x}+\mathrm{y}\) a legal operation under our type rules?
\[
\begin{array}{ll}
\vdash e_{1}: \text { string } & \vdash e_{1}: \text { integer } \\
\vdash e_{2}: \text { string } & \vdash e_{2}: \text { integer } \\
\hline \vdash e_{1}+e_{2}: \text { string } & \vdash e_{1}+e_{2}: \text { integer }
\end{array}
\]

\section*{Type Systems}

\section*{Example}
```

string x = "I have a";
string Y"= "bad feeling";
int aboutThis(int x {
return (x+y;
}
main() {
int z;
z = aboutThis(42);
print(z);
}
\}

```

\section*{Things we know}
x : string
y : string
x : int
z: int

\section*{Things we wonder about}

Is \(\mathrm{x}+\mathrm{y}\) a legal operation under our type rules?
Which \(x\) is that?


\section*{Type Systems}

Example - No Context
```

string x = "I have a";
string y = "bad feeling";
int aboutThis(int x) {
return x + y;
}
main() {
int z;
z = aboutThis(42);
print(z);
}

```

\section*{Things we know}
x : string
y : string
x : int
z: int

\section*{Things we wonder about}

Is \(\mathrm{x}+\mathrm{y}\) a legal operation under our type rules?
\[
\begin{array}{ll}
\vdash e_{1}: \text { string } & \vdash e_{1}: \text { integer } \\
\vdash e_{2}: \text { string } & \vdash e_{2}: \text { integer } \\
\hline \vdash e_{1}+e_{2}: \text { string } & \vdash e_{1}+e_{2}: \text { integer }
\end{array}
\]

The problem is that our type rules lack context. We need to strengthen them to specify under what circumstances they apply. In other words, we need scope.

\section*{Type Systems}

\section*{Addition with Scope Context}

\author{
Boolean literals
}

String literals

Integer literals
\begin{tabular}{l}
\(\mathrm{S} \vdash e_{1}:\) string \\
\(\mathrm{S} \vdash e_{2}:\) string \\
\hline \(\mathrm{S} \vdash e_{1} \cdot e_{2}:\) string
\end{tabular}
\(e_{1}\) is a string in scope S
\(e_{2}\) is a string in scope \(S\)
\(e_{1} \cdot e_{2}\) results in a string in scope S

\section*{Type Systems}

\author{
Assignment with Scope Context
}
\[
\begin{aligned}
& \mathrm{S} \vdash e_{1}: \mathrm{T} \\
& \mathrm{~S} \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \mathrm{S} \vdash e_{1}=e_{2}: \mathrm{T}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{S} \vdash e_{1}: \mathrm{T} \\
& \mathrm{~S} \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \mathrm{S} \vdash e_{1}==e_{2}: \text { boolean }
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{S} \vdash e_{1}: \mathrm{T} \\
& \mathrm{~S} \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \mathrm{S} \vdash e_{1}>e_{2}: \text { boolean }
\end{aligned}
\]

\section*{Comparisons}
with Scope Context
\[
\begin{aligned}
& \mathrm{S} \vdash e_{1}: \mathrm{T} \\
& \mathrm{~S} \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \mathrm{S} \vdash e_{1}!=e_{2}: \text { boolean }
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{S} \vdash e_{1}: \mathrm{T} \\
& \mathrm{~S} \vdash e_{2}: \mathrm{T} \\
& \mathrm{~T} \text { is a primitive type } \\
& \hline \mathrm{S} \vdash e_{1}<e_{2}: \text { boolean }
\end{aligned}
\]

\section*{Type Systems}
\[
\mathrm{S} \vdash e_{1}: \mathrm{T}
\]
\[
\begin{array}{ll}
\text { Addition } & \mathrm{S} \vdash e_{2}: \mathrm{T} \\
\text { with Scope Context } \ldots & \mathrm{T} \text { is a primitive type } \\
{+e_{2}: \mathrm{T}} }
\end{array}
\]

\section*{... and an implementation in Prolog}
```

/* Symbol Table facts */
type(i, int).
type(j, int).
type(x, real).
type(y, real).
/* Type System rules */
expectedtype(plus(E1,E2),T) :- type(E1,T),
type(E2,T).
/* Type inference and checking queries */
expectedtype(plus(i,j),X) /* int */
expectedtype(plus(x,y),X) /* real */
expectedtype(plus(i,y),X) /* false - Type error. (No unifying match.) */

```

\section*{Type Systems}
\[
\begin{array}{ll} 
& \mathrm{S} \vdash e_{1}: \mathrm{T} \\
\text { Addition } & \mathrm{S} \vdash e_{2}: \mathrm{T} \\
\text { with Scope Context } \ldots & \mathrm{T} \text { is a primitive type } \\
\vdash e_{1}+e_{2}: \mathrm{T}
\end{array}
\]
... and an implementation in Prolog
```

SWISH Filer Edit Examples Help -

```
```

30) Program % +
/* Facts */
type(i, int).
type(j, int).
type(x, real).
type(y, real).
/* Rules */
expectedtype(plus(E1,E2),T) :- type(E1,T),
9
type(E2,T).
```

\section*{Type Systems}
\[
\begin{array}{ll} 
& \mathrm{S} \vdash e_{1}: \mathrm{T} \\
\text { Addition } & \mathrm{S} \vdash e_{2}: \mathrm{T} \\
\text { with Scope Context } \ldots & \mathrm{T} \text { is a primitive type } \\
{\vdash e_{1}+e_{2}: \mathrm{T}} }
\end{array}
\]

\section*{... and an implementation in Prolog}

\section*{SWISH Filer Edit Examples Help}
```

3) Program
+
/* Facts */
type(i, int).
type(j, int).
type(x, real).
type(y, real).
/* Rules */
expectedtype(plus(E1,E2),T) :- type(E1,T),
9
```
```

expectedtype(plus(i,j),X)
X = int
?- expectedtype(plus(i,j),X)

```

\section*{Type Systems}
\[
\begin{array}{ll} 
& \mathrm{S} \vdash e_{1}: \mathrm{T} \\
\text { Addition } & \mathrm{S} \vdash e_{2}: \mathrm{T} \\
\text { with Scope Context } \ldots & \mathrm{T} \text { is a primitive type } \\
\vdash e_{1}+e_{2}: \mathrm{T}
\end{array}
\]

\section*{... and an implementation in Prolog}
```

SWISH Filer Edit Examples- Help -

```
```

30) Program % +
/* Facts */
type(i, int).
type(j, int).
type(x, real).
type(y, real).
/* Rules */
expectedtype(plus(E1,E2),T) :- type(E1,T),
9
```
\begin{tabular}{|l|}
\hline false \\
\hline ?- expectedtype(plus \((\mathrm{i}, \mathrm{y}), \mathrm{X})\) \\
\hline
\end{tabular}

\section*{Type Systems}

\section*{Type Equivalence and Compatibility}

What does it mean to say that two variable/values are equivalent?
\[
\begin{gathered}
1 \stackrel{?}{=} 1.0 \\
1.0 \stackrel{?}{=} 1.000 \\
" c " \stackrel{?}{=} c^{\prime}
\end{gathered}
\]

There are two approaches:

\section*{Name Equivalence}

Types are equivalent if they have the same name.
I.e., they are the same if the programmer says they are the same.

Restrictive, but easier to implement than structural equivalence.

\section*{Structural Equivalence}

Types are equivalent if they have the same structure.
I.e., they are the same if they are built the same: same parts in the same order. Flexible, but harder to implement than name equivalence.

\section*{Type Systems}

\section*{Type Equivalence and Compatibility}

\section*{Name Equivalence}

Types are equivalent if they have the same name.
first and last are the same type. head and tail are the same type.
first and head are different types.
```

type link = \uparrowcell;
var first : link;
last : link;
head : \uparrowcell;
tail : \uparrowcell;

```

\section*{Structural Equivalence}

Types are equivalent if they have the same structure.
first, last, head, and tail are all the same type.

\section*{Type Systems}

\section*{Type Equivalence and Compatibility}

\section*{Name Equivalence}

Types are equivalent if they have the same name.
MyRec and YourRec are different types. a1, a2, and a3 are all different types.
```

val MyRec = { a=1, b=2 };
val YourRec = { a=1, b=2 };
var a1 = array[1..10] of int;
var a2 = array[1..2*5] of int;
var a3 = array[0..9] of int;

```

\section*{Structural Equivalence}

Types are equivalent if they have the same structure.
MyRec and YourRec are the same type. \(a_{1}, a 2\), and \(a_{3}\) are all the same type.

\section*{Semantic Analysis}

Semantic Analysis is the compiler phase that checks scope and type.
A depth-first, in-order Abstract Syntax Tree (AST) traversal will allow us to ...
- build the symbol table (a tree of hash tables)
- check scope
- check type
... in a single pass. It's very cool. Let's do it!


\section*{Semantic Analysis}


\section*{Source Code}
\{
int a
\(a=1\)
\{
string a
a = "a"
print(a)
\}
string b
b = "b"
if (a == 1) \{ print(b)
\}


\section*{Semantic Analysis}

Block


\section*{Semantic Analysis}

Block


\section*{Semantic Analysis}

Block


\section*{Semantic Analysis}

Block


\section*{Source Code}
\{
```

 int a
 a=1
 string a
 a = "a"
 print(a)
 }
 string b
 b = "b"
 if (a == 1) {
 print(b)
 }

Initialize Scope 0
add symbol a
lookup symbol a
check types
Initialize Scope I

Semantic Analysis

Block

Semantic Analysis

Block

Semantic Analysis

Block

Semantic Analysis

Semantic Analysis

Block

Semantic Analysis

Source Code

\{

$$
\begin{aligned}
& \text { int a } \\
& \text { a = } 1 \\
& \text { \{ }
\end{aligned}
$$

\}

Initialize Scope 0
add symbol a
lookup symbol a
check types
Initialize Scope I
add symbol a
lookup symbol a
check types
lookup symbol a
Close Scope I
add symbol b
lookup symbol b
check types
lookup symbol a
check types
Initialize Scope Ib
lookup symbol b
Close Scope Ib
Close Scope 0

Semantic Analysis

Block

Now we have a lexically, syntactically, and semantically correct AST and a complete symbol table to go with it.

