Theory of Programming Languages

CMPT 331

- Fun with Mbnceb Dbmdvmvt-100 points

Goal \quad To appreciate the joy of the Lambda Calculus as a fundamental model of computation.
Problems Each part of each problem is worth 10 points ${ }^{1}$.

1. Beta-reduce the following expressions to their normal form:
a. $(\lambda a \lambda y . y a)(z z)$
b. $(\lambda x \lambda y \cdot(x y))(\lambda z . y)$
c. $(\lambda x .(x x))(\lambda y \cdot(y y))$
d. $\mathrm{K} x \mathrm{y}$
(Expand K in this problem and then you don't have to in later ones.)
e. S K
f. (S K) y y z
g. $K^{\prime} y y z$
2. What is the normal form of (K S) (KI)?
3. Prove the following equivalencies by reducing each side to its normal form.
a. I = S K K
b. S K K = K I I
4. Given the definition of Church numerals below, what does (m n) do when m and n are Church numerals? For example ($\overline{2} \overline{3}$). It may be easier to work out as $\lambda m \lambda n$. (m n). Show your work (or at least an example).

Church Numerals

Let $\overline{0}=\lambda \mathrm{fx} . \mathrm{x}$
Let $\overline{1}=\lambda \mathrm{fx} .(\mathrm{fx})$
Let $\overline{2}=\lambda \mathrm{fx} .(\mathrm{f}(\mathrm{fx}))$
Let $\overline{3}=\lambda \mathrm{fx} .(\mathrm{f}(\mathrm{f}(\mathrm{fx})))$

Let $\bar{n}=\lambda \mathrm{fx} .\left(\mathrm{f}^{\mathrm{n}} . \mathrm{x}\right)$

$$
\begin{aligned}
& \text { Let successor }=\overline{\text { succ }}=\lambda \mathrm{nfx} \cdot \mathrm{nf}(\mathrm{fx}) \\
& \begin{aligned}
(\overline{\operatorname{succ}} \overline{0}) & \equiv(\lambda \mathrm{nfx} \cdot \mathrm{nf}(\mathrm{fx}))(\overline{0}) \\
& {[\overline{0} / \mathrm{n}] \operatorname{in} \lambda \mathrm{fx} \cdot \mathrm{nf}(\mathrm{fx}) } \\
& \rightarrow_{\beta} \lambda \mathrm{fx} \cdot \overline{\mathrm{O}} \mathrm{f}(\mathrm{fx})
\end{aligned}
\end{aligned}
$$

The result is going to be $\lambda \mathrm{fx}$. something. something is $\quad \overline{0} f(f x)$

$$
\equiv(\lambda f x \cdot x) f(f x)
$$

$$
[f / f \text { in } \lambda x \cdot x]
$$

$$
\rightarrow \beta \lambda x . x(f x)
$$

$$
[(f x) / x \text { in } x]
$$

$$
\rightarrow_{\beta}(\mathrm{fx})
$$

plugging something back into the above...

$$
\lambda \mathrm{fx} \cdot(\mathrm{f} x)
$$

$$
\equiv \overline{1}
$$

Submitting
Write your answers using LaTeX. (See template and resources on our web site.) Compile your document into a PDF and print it out to hand in on or before the class in which it is due. Remember to include your name. Also, you must show all work. This is college. If you find my request to show your work surprising, drop this class immediately.
Yes, I know it adds up to 110 points. You can make a mistake or two and still get a good score. Who loves ya?

