
Alan++

Language Design
and Example Programs

Version 0.0.7

This	document	is	part	example	of,	and	part	instructions	for,	your	6inal	project	[150	points]	
in	Theory	of	Programming	Languages.	Read	it	fully	and	thoroughly	before	you	begin.			

Hints	and	Requirements:	
• You	are	free	to	emulate	my	template	style	here,	but	you	do	not	have	to.	
• Make	the	example	code	great.	Syntax-highlight	your	code	to	make	it	easier	to	read	and	
more	impressive	to	look	at.	

• You	do	have	to	include	all	the	sections	here,	including	all	heading	and	subheadings.	
• I	expect	all	of	your	content	to	be	original.		That	means	replacing	the	code	fragments	I’ve	
used	here	as	examples	with	your	own.	

• Be	sure	that	you	address	and	provide	content	for	all	the	italicized	instructions	and	all	
sections.	

Alan++ Page	 	of	1 10

1. Introduction

Alan++ (pronounced “Alan plus plus”) is a simple, modern, object-oriented, and (strongly) type-safe
programming language. Based on YYY and YYZ, but differing in the following ways:

1.
2.
3.

Alan++ Page	 	of	2 10

1.1.Genealogy
Where does your language fit into the programming language genealogy? Add your language to this
diagram to highlight your language and its ancestry.

Alan++ Page	 	of	3 10

1.2.Hello world
You are morally obligated to write the “Hello World” program in your language here.

1.3.Program structure
The key organizational concepts in Alan++ are as follows:

1.
2.
3.

This example (which should be replaced by an original one of your own)
namespace Acme.Collections
begin
 public class Stack
 begin
 public Entry top;

 public void Push(object data)
 begin
 top := new Entry(top, data);
 end;

 public object Pop()
 begin
 if (top = null) then

throw new InvalidOperationException();
else
 object result := top.data;
 top := top.next;
 return result;
end if

 end Pop

 class Entry
 begin
 public Entry next;
 public object data;

 public Entry(Entry next, object data)

 begin
 this.next := next;
 this.data := data;
 end;
 end class Entry;
 end class Stack;
end namespace Acme.Collections;

declares a class named Stack in a namespace called Acme.Collections. The fully qualified name of
this class is Acme.Collections.Stack. The class contains several members: a field named top, two
methods named Push and Pop, and a nested class named Entry. The Entry class further contains three
members: a field named next, a field named data, and a constructor.

Alan++ Page	 	of	4 10

1.4.Types and Variables
There are two kinds of types in Alan++: value types and reference types. Variables of value types directly
contain their data whereas variables of reference types store references to their data, the latter being
known as objects. With reference types, it is possible for two variables to reference the same object and
thus possible for operations on one variable to affect the object referenced by the other variable. See
Section 3 for details.

1.5.Visibility
Public, Private, Protected, Internal… more or less? How does your language handle this?

1.6.Statements Differing from YYY and YYZ

Statement Example

Expression statement static void Main()
begin
 int i;
 i := 123;
 Put(i);
 inc(i);
 Put(i);
end Main

if statement static void Main(string[] args)
begin
 if (args.Length = 0)
 Put("No arguments");
 else
 Put("One or more arguments");
 end if
end Main

Keep adding your examples.
.

.

.

Alan++ Page	 	of	5 10

2. Lexical structure

2.1.Programs
A Alan++ program consists of one or more source files. A source file is an ordered sequence of (probably
Unicode) characters.
Conceptually speaking, a program is compiled using three steps:
1. Transformation, which converts a file from a particular character repertoire and encoding scheme into

a sequence of Unicode characters.
2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.
3. Syntactic analysis, which translates the stream of tokens into executable code.
If there’s anything different about your language in the regard, this is the place for it.

2.2.Grammars
This specification presents the syntax of the Alan++ programming language where it differs from YYY
and YYZ.

2.2.1.Lexical grammar (tokens) where different from YYY and YYZ
Write your Regular Expressions for tokens here.

2.2.2.Syntactic (“parse”) grammar where different from YYY and YYZ
Write your BNF grammar productions here.

2.3.Lexical analysis
2.3.1.Comments
Two forms of comments are supported: single-line comments and delimited comments. Single-line
comments start with the characters // and extend to the end of the source line. Delimited comments start
with the characters /* and end with the characters */. Delimited comments may span multiple lines.
Comments do not nest. (Unless they do in your grammar. Be different. Specify something new and
original.)

Alan++ Page	 	of	6 10

2.4.Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens where needed.

tokens:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

List all valid tokens in your language.

2.4.1.Keywords different from YYY or YYZ
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier
except when prefaced by the @ character.

New keywords:
begin end inc

Removed keywords:
do goto internal

Alan++ Page	 	of	7 10

3. Type System

Alan++ uses a strong static type system. (This is nice, but feel free to use weak systems that are static or
dynamic. Be sure to explain their details and document them with Type Inference diagrams.) Strong
typing means that type errors are caught and expressed to the programmer during compilation. Static
typing means early binding compile-time type checking.

3.1.Type Rules
The type rules for Alan++ are as follows:
You have to specify type rules regardless of whether you are using a strong or weak type system. In fact,
your type rules should explicitly reflect this choice. Write type inference rules in the style found in the
“Scope and Type” slide deck on our web site, an example of which is given below. Write your own type
rules; do not just include these verbatim. Be sure your type rules match the operators you chose for your
language.

Alan++ types are divided into two main categories: Value types and Reference types. (Maybe you have
some other thoughts here. I hope so.)

Alan++ Page	 	of	8 10

3.2.Value types (different from YYY and YYZ)
Examples

3.3.Reference types (differing from YYY and YYZ)
Examples

Alan++ Page	 	of	9 10

4. Example Programs

Illustrate your new language with six (6) example programs that demonstrate its use; especially what’s
new and improved over current languages as well as YYY and YYZ, on which you based your design.
Please include in your examples Caesar cipher encryption and decryption programs like those of our
earlier class projects.

You must write example programs for the following:

1. Caesar Cipher encrypt

2. Caesar Cipher decrypt

3. Factorial

4. Sort (pick one: swap sort, bubble sort, merge sort, quicksort, or another one)

Write two more programs. Here are some ideas, but feel free to write whatever you like and think will be
fun.

• More sorts

• Lambda functions (if possible in your language)
• Pattern matching
• Stack
• Queue
• Binary Tree
• Binary Search Tree
• List (single or doubly linked, circular)
• Text adventure game

Alan++ Page	 	of	10 10

	Introduction
	Lexical structure
	Type System
	Example Programs

