

COBOL 13

Language Summary

Version 0.01

Bryan Silvia

Theory of Programming Languages

Alan Labouseur

Due: 16 May 2013

COBOL 13 Language Specification

Silvia 1

1. Introduction

COBOL traditionally stands for Completely Obsolete Burdensome Old Language. COBOL 13

then is an attempt at modernizing COBOL for the year 2013, making programming in it a less

painful and more enjoyable experience while still maintaining a language that is easy to

understand like natural English. The language is imperative, object-oriented, and strongly typed

based on COBOL 85 and Visual Basic but differing in the following ways:

1. Unlike COBOL 85 which only has three data types and Visual Basic which has

seventeen, COBOL 13 has five: integer, decimal (real), character, string, and Boolean.

2. Users can define their own subprograms like in Visual Basic however, COBOL 13

provides pattern matching.

3. The identification, environment, data, and procedure divisions traditionally found in

COBOL are gone in favor of write-ability along with replacing MOVE TO with the familiar

assignment operator ‘=’.

4. While COBOL 13 maintains a level of readability like that of natural English, some

keywords have been replaced by either different keyword(s) or mathematical symbol(s)

to more closely reflect the structure of modern languages.

5. Unlike COBOL 85 or Visual Basic, COBOL 13 required that every expression be

terminated and this is done with a semicolon ‘;’.

1.1 Hello World

 Program HelloWorld
 Display “Hello World”;
 End Program

1.2 Program Structure

The key organizational concepts in COBOL 13 are as follows:

1. Every file must have at least one Program block where execution begins. This is

analogous to a main method in Java.

2. Every file can have multiple subprograms whose visibility is defined by the keywords

Public, Protected, or Private much like in Visual Basic.

COBOL 13 Language Specification

Silvia 2

3. Instead of curly braces {} to define scope, all programs, subprograms, and conditional

statements begin with their respective starting keyword and are closed with the End

keyword followed by the respective starting keyword.

4. Loops are defined by their starting keyword and are closed with the Loop keyword.

5. Parentheses are not required around conditional statements unless multiple conditions are

being evaluated with a combination of and and or.

Example Code:

File Source.Example
 Program Fibonacci
 Declare x,y As Integer;
 x = 0, y = 1;

Declare userInput As Integer;
 userInput = getInput();

 For count From 1 To userInput Do
 Declare temp As Integer;

temp = y;
y = x + y;

 x = y;
 count = count + 1;
 Loop

 Display y;
 End Program

 Private SubProgram getInput() As Integer

Display “Please enter the desired nth Fibonacci number: ”;
Return ReadInput;

 End SubProgram
End File

The above example illustrates the classic Fibonacci number program. The program titled

Fibonacci is in the file Example contained in the folder Source, similar to a package system

in Java. The file has one subprogram, getInput, which reads the user input with the system

method ReadInput and returns an integer value. Note the for loop structure and how count

does not need to be declared beforehand. Also note the need to increment count ourselves; this

is different from both COBOL 85 and Visual Basic and is meant to force the programmer to be

more conscientious of how the loop is progressing.

COBOL 13 Language Specification

Silvia 3

1.3 Types and Variables

There are two kinds of types in COBOL 13: value types and reference types. Variables of value

types directly contain their data whereas variables of reference types store references to their

data, the latter being known as objects. With reference types, COBOL 13 does not allow for two

variables to reference the same object by forcing a deep copy of the reference value in the heap

and assigning a new pointer. Therefore, two variables can never reference the same object,

increasing data integrity. There is one exception. By default, parameter passing follows this

rule. However, in order to avoid copying the reference value every time, you can specify it as

passing by reference using the ByReference keyword like so:

Public SubProgram ChangeMe(me As PersonObj ByReference)

1.4 Statements Differing from COBOL 85 and Visual Basic

Statement Example

Expression statement Program Expr
 Declare x As Integer;
 Declare s As String;
 Declare r As Decimal;
End Program

If statement Program IfStat
 If x > y Then
 Display “Greater”;
 Else If y > x Then
 Display “Less”;
 Else
 Display “Equal”;
 End If
End Program

For statement Program ForStat
 For c From 0 To “Hello World”.length() Do
 Display “Hello World”.characterAtIndex(c);
 c = c + 1;
 Loop
End Program

While statement Program WhileStat
 While y < 100 Do
 y = y * 2;
 Display y;
 Loop
End Program

COBOL 13 Language Specification

Silvia 4

2. Lexical Structure

2.1 Programs

A COBOL 13 program consists of one or more source files where at least one has a Program

block. A source file is an ordered sequence of Unicode characters. Conceptually speaking, a

program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding

scheme into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of

tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars

This specification presents the syntax of the COBOL 13 programming language where it differs

from COBOL 85 and Visual Basic.

2.2.1 Lexical grammar where different from COBOL 85 and Visual Basic

The lexical grammar of COBOL 13 is similar to Visual Basic except COBOL 13 only has three

field types (access modifiers) whereas Visual Basic has five. Also, should identifiers contain one

or more digits, those digits must appear at the end of the identifier.

<field_type> Public
 Protected

 Private

<identifier> <character> <character_list>

 <character> <digit_list>

 <character>

<character_list> <character> <character_list>

 <character>

<digit_list> <digit> <digit_list>

 <digit>

<digit> 0,1,2,3,4,5,6,7,8,9

COBOL 13 Language Specification

Silvia 5

<character> a,b,c, … ,z,A,B,C, … ,Z

2.2.2 Syntactic (“parse”) grammar where different from COBOL 85 and

Visual Basic

<program_stmt> Program <identifier>

 <stmt>

 End Program

<subprogram_stmt> <field_type> SubProgram <identifier> As <return_type>

 <stmt>

 End SubProgram

<comment_stmt> Comment

 <character_list>

 End Comment

<if_stmt> If <logic_expr> Then

<stmt>

End If

<if_else_stmt> If <logic_expr> Then

<stmt>
 Else

 <stmt>

End If

<if_else_if_stmt> If <logic_expr> Then

<stmt>

 Else If <logic_expr> Then

 <stmt>

End If

<for_stmt> For <identifier> From <value> To <comp_expr> Do

 <stmt>

 Loop

<while_stmt> While <logic_expr> Do

 <stmt>

 Loop

COBOL 13 Language Specification

Silvia 6

2.3 Lexical Analysis

2.3.1 Comments

Two forms of comments are supported: single-line comments and delimited comments. Single-

line comments start with the characters // and extend to the end of the source line. Delimited

comments start with the keyword Comment and end with the keywords End Comment.

Delimited comments may span multiple lines. Comments do not nest. Typically comments

should not be required since the language strives to be readable like natural English.

2.4 Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators.

White space and comments are not tokens, though they act as separators for tokens where

needed.

Tokens:

identifier

keyword

integer-literal

real-literal

character-literal

string-literal

operator-or-punctuator

2.4.1 Keywords different from COBOL 85 and Visual Basic

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an

identifier.

New Keywords:

 Program

 File (COBOL 85 contains this keyword but has a different usage)

 And (Overloaded to perform both a logical conjunction on two Boolean expressions and

string concatenation)

 ReadInput

 Comment

 Matching

Removed Keywords:

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

DATA DIVISION

COBOL 13 Language Specification

Silvia 7

PROCEDURE DIVISION

WORKING-STORAGE SECTION

Accept

Move <value | identifier> To <identifier>
Goto

GoSub

Add

Modified Keywords:

Original Keyword New Keyword

Sub SubProgram

Dim

Pic | Picture

Declare

Next Loop

Char Character

ByRef ByReference

ByVal ByValue

COBOL 13 Language Specification

Silvia 8

3. Types

COBOL 13 types are divided into two main categories: Value types and Reference types.

3.1 Value Types

COBOL 13 has four value types that directly contain their data on the stack: integer, decimal,

character, and Boolean.

Examples:

File ValueTypeExample

 Program ValTypes
 Declare x As Integer;
 Declare d As Decimal;
 Declare c As Character;
 Declare b As Boolean;
 x = 15;
 d = 15.0;
 c = ‘A’;
 b = True;
 End Program
End File

3.2 Reference Types

COBOL 13 has one data type that is a reference type: string (essentially an array of characters).

Additionally, arrays and any user defined Object is a reference type whose values are stored on

the heap with references or pointers to their values stored on the stack. COBOL 13 does not

allow de-referencing nor assignment of a pointer to another variable with the exception of

parameter passing as explained in section 1.3.

Examples:

File Source.Student
 Object Student
 Declare name As String;
 Declare ID As Integer;

 Program Student()
 name = “”;
 ID = -1;
 End Program

COBOL 13 Language Specification

Silvia 9

 Program Student(n As String, num As Integer)
 name = n;
 ID = num;
 End Program

 Public SubProgram getName() As String
 Return name;
 End SubProgram

 Public SubProgram getID () As Integer
 Return ID;
 End SubProgram

 Public SubProgram setName(n As String) As Void
 name = n;
 End SubProgram

 Public SubProgram setID(num As Integer) As Void
 ID = num;
 End SubProgram
 End Object
End File

File Source.ReferenceTypeExample
 Open Student;

Program Class
 Declare s1 As New Student(“Jack”, 10112123);
 Declare s2 As New Student();
 s2 = s1;
 s2.setName(“John”);
 Display s2.getName() And “, ” And s1.getName();
End Program

End File

Output: “John, Jack”

COBOL 13 Language Specification

Silvia 10

4. Example Programs

4.1 Caesar Cipher Encrypt

File Examples.Encrypt
 Program Encrypt
 Declare s,encrypted As String;
 Declare shiftAmt As Integer;
 Display "Enter a string to encrypt: ";
 s = ReadInput.toUpperCase();
 Display "Enter a shift amount: ";
 shiftAmt = ReadInput;

 For i From 0 To s.length() Do
 encrypted = encrypted And

 shift(shiftAmt, s.characterAtIndex(i));
 i = i + 1;
 Loop

 Display encrypted;
 End Program

 Private Subprogram shift(x As Integer, c As Character) As String
 Declare y As Integer;
 y = c.toASCII();
 If y = 32 Then
 Return y.toString();
 Else
 y = y + x;
 If y > 90 Then
 y = y - 26;
 End If
 Return y.toString();
 End If

End Subprogram
End File

COBOL 13 Language Specification

Silvia 11

4.2 Caesar Cipher Decrypt

File Examples.Decrypt
 Program Decrypt
 Declare s,decrypted As String;
 Declare shiftAmt As Integer;
 Display "Enter a string to encrypt: ";
 s = ReadInput.toUpperCase();
 Display "Enter a shift amount: ";
 shiftAmt = ReadInput;

 For i From 0 To s.length() Do
 decrypted = decrypted And

 shift(shiftAmt, s.characterAtIndex(i));
 i = i + 1;
 Loop

 Display decrypted;
 End Program

 Private Subprogram shift(x As Integer, c As Character) As String
 Declare y As Integer;
 y = c.toASCII();
 If y = 32 Then
 Return y.toString();
 Else
 y = y - x;
 If y < 65 Then
 y = y + 26;
 End If
 Return y.toString();
 End If
 End Subprogram
End File

COBOL 13 Language Specification

Silvia 12

4.3 Caesar Cipher Solve

File Examples.Solve
 Program Solve
 Declare s,cipher As String;
 Declare shiftAmt,maxShift As Integer;
 Display "Enter a string to encrypt: ";
 str = ReadInput.toUpperCase();
 Display "Enter the max shift amount: ";
 maxShift = ReadInput;
 shift = maxShift;

 For k From 0 To maxShift Do
 For i From 0 To s.length() Do
 cipher = cipher And

 shift(shiftAmt, str.characterAtIndex(i));
 i = i + 1;
 Loop
 Display "Caesar " And shiftAmt And ": " And cipher;
 cipher = "";
 shiftAmt = shiftAmt - 1;
 k = k + 1;
 Loop
 End Program

 Private Subprogram shift(x As Integer, c As Character) As String
 Declare y As Integer;
 y = c.toASCII();
 If y = 32 Then
 Return y.toString();
 Else
 y = y + x;
 If y > 90 Then
 y = y - 26;
 End If
 Return y.toString();
 End If
 End Subprogram
End File

COBOL 13 Language Specification

Silvia 13

4.4 Insertion Sort

File Examples.InsertionSort
 Program InsertionSort(array As Integer[])
 Declare x,y,temp As Integer;
 y = 1;

 While y < array.length() Do
 x = y - 1;
 temp = array[j];
 While x >= 0 And array[x] > temp Do
 array[x+1] = array[x];
 x = x - 1;
 Loop
 array[x+1];
 y = y + 1;
 Loop
 End Program
End File

4.5 Recursive Fibonacci with Pattern Matching

File Examples.Fib
 Program Fib
 Display "Enter the nth Fibonacci number to calculate: ";
 Display helper(ReadInput);
 End Program

 Private SubProgram helper(x As Integer Matching 0) As Integer
 Return 0;
 End
 Private SubProgram helper(x As Integer Matching 1) As Integer
 Return 1;
 End
 Private SubProgram helper(x As Integer) As Integer
 Return helper(x-1) + helper(x-2);
 End
End File

