
Steinert1	
	

C’thulu	 Language	 Specification	

C'THULU
Language Specification
Version 0'03

1. Introduction
C'thulu is a list-based functional language that borrows heavily from LISP , but also incorporates
functionality from the Object-Oriented language such as dynamic typing, Python. C'thulu differs from
Python and Lisp in that:
 1. It eliminates the excessive amounts of parentheses used in lisp
 2. Sigils (objects) are defined as being sophisticated forms of lists
 3. Nothing in the language is case sensative, allowing programmers to not worry about a
wrongly capitalized variable.
 4. Everything is termed in the manner of the Lovecraftian tongue.

1.1 Hello world as an anonymous function:
cult of c'thulu
the stars are right
 shoggoth evoke("Hello World")
Summon C’thulu
>>Hello World

1.2 Program structure
The key organizational concepts in C'thulu are as follows:
 1. Uses whitespace like in python, thus indentations must be used after the headings are
 completed
 2. Programs that rely on cults must state the cults involved via a "Cult of" command
 3. Programs may only begin execution if the stars are right and must finish before the rise of
our tenticalled master.
This example:

Cult of C'thulu
 supernatural cult acolyte
 'title
 'purpose

 supernatural acolyte(name specialty)
 mutate alchemist'title name
 mutate alchemist'purpose specialty

 supernatural ritual call'cthulu()

Steinert2	
	

C’thulu	 Language	 Specification	

 if alchemist'purpose = demonology
 acolyte'call'forth(c'thulu)
 else
 banish acolyte

 supernatural ritual call'forth(elder)
 if elder = "C'thulu"
 evoke("Rise from the Depths O' Tenticalled Master!")
 summon elder
 else
 summon "The Stars are Not Right"

creates a class, called acolyte with two data members, title and purpose. Two functions, call'c'thulu and
call'forth. The acolyte's data members are accessed individually by acolyte'title notation. Function calls
are done in the same manner using rituals: acolyte'call'c'thulu.

1.3 Types and variables
C'thulu follows Lisp's example, using only list objects which may be empty or contain any set of values.
Lists are passed by reference while their individual constituents are passed by value if called.

1.4 Statements Differing from Python and Lisp
Statement Example
Expression statement Conjure x

mutate x (1 2 3 4)
Conjoin(x 23 42)
Evoke(x)
>>(1 2 3 4 23 42)

Looping conjure x
mutate x (1 2 3 4)
Evoke(curse(elder x+1 spawn x))
>>(2 3 4 5)

1.5 Classes and objects
New cults (classes) are created using cult declarations.
The following is a declaration of a simple cult named Point:

public cult Point
 'x
 'y
 public Point(x y)
 mutate point'x x
 mutate point'y y
Instances of classes are created using the conjure sigil operators. Conjure typically just creates a
new list, but when combined with sigil, a special "object" type is created which may have its individual
properties manipulated easier.
conjure x sigil Point(4 2)

The memory occupied by an object is automatically reclaimed when an object goes out of scope.
However it is good practice in C'thulu to always banish unused or unreferenced conjurations
1.5.1 Accessibility

Steinert3	
	

C’thulu	 Language	 Specification	

Each member of a class has an associated accessibility, which controls the regions of program text that
are able to access the member. There are four possible forms of accessibility. These are summarized in
the following table.

Accessibility Meaning
Public Access not limited
Private Access limited to this class
Protected Access limited to this class or classes derived from

this class

Supernatural Access is limited to other supernatural rituals or
cults.

1.5.2 Fields
A property is a variable that is associated with a class or with an instance of a cult.
public cult Color
 conjure Black sigil Color(0, 0, 0)
 conjure White sigil Color(255 255 255)
 'r
 'g
 'b
 public Color(r g b)
 mutate color'r r
 mutate color'g g
 mutate color'b b

1.5.3 Methods
A ritual is a member that implements a computation or action that can be performed by an object or class.
An anonymous slave method is a Shoggoth, named for the slave race of the old ones, these are essentially
one-shot rituals.

1.5.3.1 Constructors
C'thulu constructs new lists from the conjure command. Conjure x will create a new list denoted by the
variable x. If sigil is appended, then it becomes a special class object with properties of that class that
may be manipulated

1.5.3.2 Properties
Properties are a natural extension of fields. Both are named members with associated types, and the
syntax for accessing fields and properties is the same. However, unlike fields, properties do not denote
storage locations. Instead, properties have accessors that specify the statements to be executed when their
values are read or
written.

1.5.3.3 Events
A manipulation is a member that enables a class or object to provide notifications.
Clients react to events through a manipulator. Event handlers are attached using the += operator and
removed
using the -= operator. The following example attaches an event handler to
the Changed event of a List<string>.
Public cult Test
conjure changeCount

 ritual ListChanged(sender Arg)
 mutate changeCount changeCount + 1

Steinert4	
	

C’thulu	 Language	 Specification	

Cult of Cthulu
Cult of Test
The Stars are Right

public Cult Main
conjure names
names'Changed += new Manipulator(ListChanged);
names'Add("Christine")
names.Add("Luis")
names.Add("Anthony")
Evoke(changeCount)

1.6 Arrays
An array is a data structure that contains a number of variables that are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array. The following example allocates a one-dimensional, a
two-dimensional, and a three-dimensional array.
make'array(a 10)
make'array(a2 10 5)
make'array(a3 10 5 2)

The a1 array contains 10 elements, the a2 array contains 50 (10 × 5) elements, and the a3 array
contains 100 elements.

2. Lexical structure
2.1 Programs
A C'thulu program consists of one or more source files. A source file is an ordered sequence of (probably
Unicode) characters. Conceptually speaking, a program is compiled using three steps:
1. Transformation, which converts a file from a particular character repertoire and encoding scheme into a
sequence of Unicode characters.
2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.
3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars
This specification presents the syntax of the C'thulu programming language where it differs from Python
and Lisp.

2.2.1 Lexical grammar where different from Python and Lisp
Strings are akin to the Lisp language in that they are lists of characters, strings are treated as literals and
must use specific operators to print or manipulate. otherwise C'thulu displays the literal. For example:

supernatural sigil student
 'first'name
 'last'name
 'gpa

conjure student stu ---creates a new student object with empty lists for its properties
 mutate'stu'first'name "H.P."
 mutate'stu'last'name "Lovecraft"
 mutate'stu'gpa "3.4"

Summon stu
>>("H.P." "Lovecraft" "3.4")

Steinert5	
	

C’thulu	 Language	 Specification	

Evoke'String(stu)
>>"H.P. Lovecraft 3.4"
Summon stu'first'name
>>(H . P .)
Evoke'String(stu'first'name)
>>"H.P."

by summoning the variable stu, it returns the list in its entirety. However, by using the sigil's (object's)
properties, and using the Evoke'String() operator, a string version of that property is sent to the console.
The same may be accomplished with the entire list by using Evoke'String(stu).

2.2.2 Syntactic (“parse”) grammar where different from Python and Lisp
If-Then
 If boolean-exp then statement
 OR
 If boolean-exp
 statement

If-Else
 If boolean-exp
 statement
 Else
 statement

If-Else-If

 If boolean-exp
 statement
 Else If boolean-exp
 statement
 Else
 statement

While
 whilst boolean-exp
 statements

For
 for var whilst boolean-exp do parameter
 statements

2.2.3 Grammar notation
The lexical and syntactic grammars are presented using BNF grammar productions. Each grammar
production defines a non-terminal symbol and the possible expansions of that non-terminal symbol into
sequences of nonterminal or terminal symbols. For example, the production:
while-statement:
while boolean-expression
 embedded-statement
defines a while-statement to consist of the token while, followed by a whitespace and reading in the
boolean statement (which is identified by a look-ahead that finds what is beyond the next whitespace)

Steinert6	
	

C’thulu	 Language	 Specification	

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on
separate lines. For example, the production:
statement-list:
statement
statement-list statement
defines a statement-list to either consist of a statement or consist of a statement-list followed by a
statement. In other words, the definition is recursive and specifies that a statement list consists of one or
more statements.

2.3 Lexical analysis
2.3.1 Line terminators
Line terminators divide the characters of a C'thulu source file into lines.
new-line:
 Carriage return character (U+000D)
 Line feed character (U+000A)
 Carriage return character (U+000D) followed by line feed character (U+000A)
 Next line character (U+0085)
 Line separator character (U+2028)
 Paragraph separator character (U+2029)

2.3.2 Comments
Two forms of comments are supported: single-line comments and delimited comments. Single-line
comments start with the character ` and extend to the end of the source line. Delimited comments start
with the characters `! and end with the characters !`. Delimited comments may span multiple lines.
Comments do not nest.

2.3.3 White space
White space is defined as any character with Unicode class Zs (which includes the space character) as
well as the horizontal tab character, the vertical tab character, and the form feed character.
whitespace:
 Any character with Unicode class Zs
 Horizontal tab character (U+0009)
 Vertical tab character (U+000B)
 Form feed character (U+000C)

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens.
token:
 identifier
 keyword
 integer-literal: digit-list
 real-literal: digit-list . digit-list
 character-literal: character
 string-literal: " character-list "
 "character-list SPACE character-list"
 operator-or-punctuator:
 Mathematical: +, - , mod, *, /, ^, +=, -=, =
 Logical: =, <=, >=, ~,
 Punctuation: () [] . " '

Steinert7	
	

C’thulu	 Language	 Specification	

2.4.1 Keywords different from Python or Lisp
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier.
New keywords: one of
supernatural, cult, ritual, conjure, summon, invoke, evoke, manipulator,
manipulation, shoggoth, mutate, banish, conjoin, sigil, cast, spawn, elder,
curse, whilst

Removed keywords:
do, goto, cdr, car, cons, int, float, while, print

3. Basic concepts
3.1 Application Startup
Application startup occurs when the execution environment calls a designated method, which is referred
to as the application's entry point. This entry point method is always named The Stars are Right.
That is all. This language can only work if the stars are right, otherwise it is not the time to summon
C'thulu's powerful application-building lists.

3.2 Application termination
Application termination returns control to the execution environment. The application will always end
with Summon C'thulu, the rise of our tenticalled Lord. The stars are right and therefore the end has
come. Lord C'thulu shall rise up and end all, so the termination of your application is taken care of.

The only exception to this rule is if the user has made an error when working with the program. Bad data
is unacceptable and as such the application will terminate, banishing all tainted variables.

3.3 Scope
Like most implementations of Lisp, C'thulu uses dynamic scope, thus it relies on the order of the call
stack to determine a variable's value. For example:

conjure x mutate 0

supernatural ritual sub1(var)
 mutate x x+1
supernatural ritual sub2(var)
 mutate x x+2
 summon sub1(x)

sub2(x)
>> 3

Since x is 0, as sub2 is called, it is mutated to 2, then sub1 is called, the value is mutated to 3.

3.4 Automatic memory management
Alan++ employs automatic memory management, which frees developers from manually allocating and
freeing the memory occupied by objects. Automatic memory management policies are implemented by
banishment. It differs from Python and Lisp in the following ways:

Main	

Sub1	 Sub	 2	

Sub1	

x+1	
x+2	

Steinert8	
	

C’thulu	 Language	 Specification	

 1. A banish command may be called on any reference variable at anytime to destroy it as well
as the pointers that referenced it.
 2. If two pointers pointed to the same memory, both would be destroyed, rendering any aliasing
inert.
 3. However, C'thulu does not entrust humans to always do their banishments and will take
care of it as a variable travels out of scope or at termination.

4. Types
C'thulu types are divided into two main categories: Value types and Reference types.

4.1 Value types
In most languages, the types of int, float, boolean, or character would be placed here. While C'thulu
recognizes these types, it does so dynamically for the purposes of computation and does not allow
definition of these types. C'thulu works strictly with lists of values, thus a mutation of a variable will be
converted to a list.

4.2 Reference types
The list is the most basic form of the reference type, though special lists may be formed into arrays or
vectors. One specific type of list, denoted by the sigil keyword, is an "object" list, which contains
properties as defined by object-oriented languages (similar to a struct in C).

5. Variables
Variables represent storage locations. Every variable has a type that determines what values can be stored
in the variable. Lists may contain different sets of values, all dynamically typed akin to Python.
However, it should be noted that arrays must contain the same variable type.

5.1 Variable categories
Integer:
 Any value that is a whole number.
 mutate x 0 => x = (0)

Float:
 Any number that represents a fractional value that lies between two whole numbers.
 mutate x 3.14 => x = ([3.14])

Character:
 Any single character that may be represented by the Unicode table, be it a symbol, integer,
or letter (with the exception of whitespace/newline characters) treated as a literal unless otherwise
specified.
 mutate x "c" => x = (c)

String:
 Any combination of characters and whitespace characters (terminated by a newline
 character), treated as a literal, unless otherwise specified.
 mutate x "Lord C'thulu waits in R'yleh" => (L o r d C ' t h u l u w a i t s i n R ' y l e h)

Boolean
 A value that can be used to evaluated truth or falsity

Steinert9	
	

C’thulu	 Language	 Specification	

 mutate x true => (TRUE)
 mutate x false => (NULL)

6. Parameter Passing
6.1 Method
C'thulu strictly uses Pass-by-Reference parameter passing (InOut) to pass a list's memory addresses to
avoid copying the entirety of lists. This way an element may be passed and operated on as necessary
given the necessary permissions.

6.2 Examples
conjure x sigil student("H.P." "Lovecraft" 3.14)
conjure y mutate 0.5
shoggoth (summon x'gpa + y)
>> 3.64

7. Conversions
A conversion enables an expression to be treated as being of a particluar type.
7.1 Implicit conversions
Most conversions in C'thulu are hands-off and are taken care of by the typing system. If a variable's
behavior matches up with the function calls, all is well. Any misuse of varaibles or type-error detections
are passed on to the user to be corrected via an explicit conversion if absolutely necessary.

7.2 Explicit conversions (Mutate some literals!)
The best example of an explicit type conversion in C'thulu is with the String-literals. Since all strings are
treated as literals and will not be changed until explicitly stated by the user via a 'String function, this
leaves input as pure as it was given. The list will be what is evaluated and operated on, however the
string itself will only be outputted as a string if told specifically by the user. Otherwise, C'thulu
recognizes the string as a list of characters and nothing more.

8. Statements
Examples of statements in C'thulu that differ from Python and Lisp, as noted in the introduction one:
 1. Variables/lists are created by the conjure command. Objects are denoted by the sigil
 keyword.
 2. C'thulu uses whitespace termination and indentation rather than slews of parentheses or
braces.
 3. Garbage collection is either manual or automatic.
 4. C'thulu strictly operates using lists and objects, forming a unique functionally object- based
language.
 5. Case-sensitivity is eliminated, ridding users of pesky capitalization-errors within the code
throwing errors.

9. Example Programs
1. Encryption / Decryption example:

Local	 Variable	 x	 =	 ("HP"	 "Lovecraft"	 3.14)	

Parameters:	 	 x'gpa,	 y	

Return	 Address	

Steinert10	
	

C’thulu	 Language	 Specification	

Cult of C'thulu
The Stars are Right
`Here is the encryption function
public ritual encrypt(str num)
 invoke str
 evoke'String(tostring(shiftup (ascii str) num))

` And here is the decryption function
public ritual decrypt(str num)
 invoke str
 evoke'String(tostring(shiftdown (ascii str) num))

`function takes a list of characters and converts them into their numeric representations

private ritual ascii(str)
 `conditional: if the end of the list is reached, eval nil, return nothing
 if str'length = 0
 summon null

 `else: take the head of the list, convert it to int, and return the new list
 else
 curse (char'code(elder str) ascii (spawn str))

`used for encryption, shifts the number forewards through the ASCII table
`up to 126 and then loops back to 33

private ritual shiftup (str num)
 if str'length = 0
 summon null
 elseif (elder str + num) > 126
 `if the number + the current position is > 126, mod the total shift by 126
 `then use the smalled value to move up the difference from 32

 conjure shifted'val mutate (elder str + num) mod 126
 curse (shifted'val + 32 shiftup (spawn str) num)
 else
 `Otherwise, just move through the list and encrypt by the value given
 curse ((elder str) + num shiftup((spawn str) num)

`used for decryption, behaves the opposite of shiftup
private ritual shiftdown (str num)
 if str'length = 0
 summon null
 else if (elder str) - num < 33
 conjure shifted'val mutate (elder str) - 33 - num
 curse (shifted'val - 127 shiftdown((spawn str) num)))
 else
 curse ((elder str) - num shiftdown((spawn str) num)))

Steinert11	
	

C’thulu	 Language	 Specification	

`this is used to take the ascii ints and convert them into into chars -> string

private ritual tostring (str)
 if str'length = 0
 summon null
 else
 curse (code'char(elder str) tostring (spawn str))
summon C'thulu

2. Basic class creation

Public Cult Student
‘first
‘last
‘gpa

Public sigil student(Name’first Name’last gpa)
 Mutate Student’first Name’first
 Mutate Student’last Name’last
 Mutate Student’gpa gpa

Public sigil student()
 Mutate Student’first “”
 Mutate Student’last “”
 Mutate student’gpa 0

Public ritual getStudent()

 Evoke’String(“Student Name:” Student’first Student’last)
 Evoke’String(“GPA:” student’gpa)

 Public Ritual setStudent(Name’first Name’last gpa)

 Mutate Student’first Name’first
 Mutate Student’last Name’last
 Mutate Student’gpa gpa

3. Simple Imparative Loops

Cult of C’thulu
The stars are right

Conjure x mutate 0
Conjure lista mutate x
Evoke lista

While lista’length < 10
 Mutate x x+1
 Lista’conjoin(x)
 Evoke lista

Steinert12	
	

C’thulu	 Language	 Specification	

Summon C’thulu

>>(0)
>> (0 1)
>>(0 1 2)
>>(0 1 2 3)
>>….
>> (0 1 2 3 4 5 6 7 8 9)

4. Looping via recursion

Cult of C’thulu
The Stars are Right

conjure lista mutate (0 1 2 3 4 5 6 7 8 9)

Shoggoth(evoke (curse ((elder lista ^ 2) spawn lista))

Summon C’thulu
>>(0 1 4 9 16 25 36 49 64 81)

10. Conclusion

Obviously any spawn of C'thulu is superior than the creations of any other lesser being that has come into
existence since he was condemned beneath the sea by the stars that torment him and his followers so.
This language, based on a god's likeness is no exception.

The concept behind the C'thulu language was to take two extremely powerful languages, Lisp and Python,
and attempt to blend their features into a hybrid language that gives the same flexibility of an object-
oriented language like Python, with a strictly functional language like Lisp.

Lisp is a notoriously powerful language, yet it is avoided by most programmers just due to its sheer
complexity, not to mention all of those nasty parentheses. So the idea was to implement some of the
more robust features of an object-oriented language as a crutch to wean programmers into functional
programming which may benefit from, but not rely on the object-oriented paradigm.

My main reason for choosing Python is it is simple, direct, and easy to read. Combine that with the
power and depth of a language like Lisp and you have a language fit to rival the most diabolical being to
have ever slithered into our dimension.

After tidying up some of Lisp's functions (and giving them some theatrical flaire), all that needed to be
done was compromise the scope and typing methods of the two languages to give it a more reliable and
hands-off feeling that let the programmer just fill in the blanks and let the compiler deal with the type-

Steinert13	
	

C’thulu	 Language	 Specification	

conversions. As it is, within functional programming the programmer should not rely on what the
variable "should be", but rather should know that the program should not rely on something that could be
so trivially broken. Thus it institutes a very firm reinforcement of good programming habits, along with
the reward that, upon the successful completion of a program, our Lord and Master C'thulu shall be freed
and the programmer will not be banished to the inter-dimensional void where the other garbage ends up.

