

John Dunham

1 MaRVN

MaRVN
Multi-threading and Recursive Variable

Notation

Language Specification
Version 0.42
John Dunham

John Dunham

2 MaRVN

1. Introduction

 An utterly dreadful amalgamation of C# and Erlang created by some Computer Science

Student who thinks he‟s far wittier than he actually is MaRVN (pronounced Marvin) is an

imperative language to lapse into endless recursion bemoaning the fact that such a gloriously

powerful language is used to interface with humans (of all things).MaRVN stands for Multi-

threading and Recursive Variable Notation. Although MaRVN is predominately based on C# it

does differ from the standard procedure a bit in a few major ways, particularly revolving around

the syntax and how the language handles recursion and threading.

1. All Strings are lists why people have been using anything else just boggles MaRVN‟s

compiler. For those who can‟t wrap their minds around list based Strings the data type

StringArray exists, although the MaRVN compiler will throw a snarky warning in anything but

an improbability field.

2. The only allowed form of recursion is tail end; if you want to do any other form of recursion it

must be done in a improbability field block.

3. C#‟s unsafe code blocks are now called Improbability fields as some wild stuff can happen in

them.

4. All statements should be worded in the form of complaints or be incredibly sarcastic,

recursion in particular which, being tail end, is laid out as iteration with every complaint

slavishly executed by the compiler. This, however, isn‟t enforced but strongly recommended by

the compiler through incredibly sarcastic warnings.

5. Programs are called superRants and subprograms are called rants.

6. Fields are declared with field blocks as show in the section on fields. They make for easier

more organized code.

1.1 Hello world

Using brainSizePlanet;

//I know this may not seem like a complaint but it‟s certainly sarcastic

Class HelloWorld{

static fruitlessRant beginRant(){

 console.sigh(“Hello World”);

endRant;

}

}

John Dunham

3 MaRVN

1.2 Program structure

As the compiler is wickedly Sardonic MaRVN is a little harder to do any code in, but if

the compilers somewhat arbitrary rule are met the language can be incredibly powerful.

1. Entry occurs at beginRant in every superRant (although with .dlls it is possible to not use a

beginRant).

2. Program blocks and statements are delimited by curly braces {} to indicate scoping.

3. To end a rant one must use an endRant. If the return type of the rant is fruitlessRant endRant;

will suffice, for programs with a return type endRant appropriateVariable; is the standard.

4. endRant may also be used in block statements to return the values to an ordinal set of

arguments to an array as show in later examples.

using brainSizePlanet;

class OhAnotherExample{

static fruitlessRant beginRant(){

 int x = 7;

//sighln is MaRVN‟s println

 console.sighln(square(x) – 7);

 fruitlessRant();

endRant;

}

public int square(int x){

 endRant x *x;

}

public fruitlessRant leftSideDiodeCheck(){

 Console.sighln(“The diodes down my left side still hurt, no need to check.”);

 endRant;

}

}

Just a very basic example of how the program would pass variables to a basic rant and

how a fruitless rant is called.

1.3 Types and variables

In MaRVN there predominately exist earthling and robot types of variables. While both

types are exceedingly dismal the earthling types include data that exists on the stack, meaning

John Dunham

4 MaRVN

floats, ints, and chars. The robot types point to collections of data that exist on the heap, meaning

the complex types such as Objects, Lists and Strings, and the actual variables exist on the Stack

and contain the memory address of the complex types. In Improbability Fields a third type exists,

the pointers which can be used to point to any data type, even other pointers, for the purposes of

the language robot types encapsulate pointers.

1.4 Statements Differing from C# and Erlang

Statement Example Notes

improbabilityField (args){

…

endRant args;

}

Or

improbabilityField (){

…

endRant;

}

String [] args = new Array [3];

improbabilityField(args){

int a = 42;

int b = &a;

int* p = b;

int c = *p;

endRant a,b,c;

}

>> args[0] = 42 ,args[1] = some

address, args[3] = 42

Please note that args

represents pass by result

parameters, so data may be

returned from the block in

an ordinal endRant.

(replaces unsafe{}) args is

optional. *note: the args is

there to enforce good style,

it is NOT actually

necessary in all cases as the

improbability field is

statically scoped and has all

the variable from the

“parent” scope.

MaRVN(args){

…

endRant;

}

Or

MaRVN(){

…

endRant;

}

String [] args = new Array [2];

MaRVN (args){

Thread t = new

Thread(ClassName::getX);

Thread b = new Thread(getY);

t.Start(args[0]);

b.Start(args[1]);

endRant;

}

The all-important MaRVN

block. The MaRVN block

is basically a thread that

carves out a bit of the stack

and heap to allocate to the

threads it creates. The start

function in MaRVN is

overloaded to hold a

variable that will be used

for pass-by-result

assignment that will then be

passed to the original

variables in the argument

list and usable in the code.

endRant is only called once

all created threads have

either timed out or

executed, additionally

endRant t,b; will kill the

block and threads at once.

Note the scope resolution

operator used to specify a

rant in a class. Args is

optional. *note: the args is

there to enforce good style,

John Dunham

5 MaRVN

it is NOT actually

necessary in all cases as the

MaRVN Block is statically

scoped and has all the

variable from the “parent”

scope.

fieldType{…}; int{

x,y,z;

a = 2;

};

FieldType may be one of 3

tiers.

1.Static

2.Public,Protected, Private

3.Variable type

When nesting the following

hierarchy is used 1->2->3

and there may be no

duplicate 2s in a 1 scope or

duplicate 3s in a 2.

1.5 Classes and objects
 As MaRVN is born of two languages with support OOP classes and objects are quite

logically present.

class Point{

 private{

int x,y;

};

 public{ };

 protected{ };

 public Point(int x = 0, int y = 0){

 this.x = x;

 this.y = y;

 endRant;

 }

 public void setX (int x){

 this.x = x;

endRant;

 }

public void setY (int y){

 this.y = y;

 endRant;

 }

 public String toString(){

 endRant “(“ + x + “,” + y + “)”;

}

John Dunham

6 MaRVN

}

As show above default values are allowed in the constructors of MaRVN classes, for the

most part they function as those in C++ and C#(I was going back through my language when I

realized C# actually has these too, which I was not expecting) with ordinal importance and are

evaluated left to right (for instance Point(), Point(x) and Point(x,y) are all valid calls, but Point(y)

is not). Additionally, there is the presence of the public, private, and protected blocks for

variables to make code more readable and variable specifications more ordered (the languages

does support private int varname; and similar declarations but MaRVN will throw a warning).

These blocks if empty don‟t need to be there. Additionally there is a fourth block static which

can enclose the other three adding the static modifier to them. Note the semicolon at the end of

the blocks this is mainly to enforce that these code blocks are not rants or scopes (hence the lack

of endRant) additionally note that the class doesn‟t have an endRant (as they aren‟t subRants).

To create a new object the new operator must be used.

Point pointObj = new Point();

Additionally the MaRVNClass modifier may be added to the class header as follows:

class MaRVNClass Point{…}

The compiler will statically check for any signs of variable reassignment in the class and

throw errors at compile time. If this modifier is added to the class header all rants are considered

to be MaRVNRants.

For inheritance the extends keyword is used:

Class Box extends Point{ }

If the parent class wasn‟t a MaRVNClass the child may not be made a MaRVNClass, but

the child doesn‟t need to be a MaRVNClass if the parent was.

1.5.1 Accessibility

Accessibility Meaning

Public No limitations on access.

Protected Only classes of the inheritance hierarchy may

access.

Private Access is limited to the Class

MaRVNRant May only be accessed from within a MaRVN

block, data accessibility may be further altered as

follows (in regards to the MaRVN block): public

MaRVNRant, private MaRVNRant, protected

MaRVNRant. The default accessibility is public

MaRVNRant.

MaRVNClass The only types of classes that may be created in a

MaRVN block. Ex. class MaRVNClass

Point{…}

1.5.2 Fields
 MaRVN fields are the variables associated with the class. As mentioned before they are

declared in blocks with the accessibility modifier as shown below.

public{

John Dunham

7 MaRVN

int j;

};

private{

 String x;

};

protected{

 Boolean zed;

};

static{

public{

 double j;

}

private{

 Point p;

}

protected{

 char [] z;

}

};

Note that in the static declaration the public, private and protected blocks don‟t need

semicolons at the end of the braces. Fields may also be declared without these blocks, however

this methodology is preferred. Additionally, if a large number of one type exists the following

declaration is valid:

int{

 j,k,l;

 z =10;

 x =30;

};
Variables declared with no value may be comma delimited followed by a semi-colon and

variables to be initialized may be initialized as their own statement.

1.5.3 Methods
In MaRVN methods are called rants (as they are subprograms to the superRant) and they

are the implementation of code that may be called by another part of the program dependent

upon the accessibility modifier. Rants may use the public, private, protected and MaRVNRant

accessibility modifiers. Additionally, rants must have an endRant regardless of the return type

specified in the signature.

Each class may only have one rant with the same signature, overloading a rant is allowed

as the full signature changes.

1.5.3.1 Constructors
 MaRVN supports both instance and static constructors. Instance constructor initializes

the data for a single instance of the object and is formatted as such:

public Point(){…}

John Dunham

8 MaRVN

 Static constructors are also allowed and are activated as soon as an instance of the class is

created. Static constructors are less preferred as they can sometimes make code harder to read

and take some control of the program from the programmer but no warning is thrown when

attempting to use them as they do have their uses.

 static Point(){…}

1.5.3.2 Properties
 Properties in MaRVN are a somewhat more static variation of fields (in the sense that

they are nonvolatile). A MaRVN rant may use properties to store data needed to restart the rant

after it and its object have be destroyed. The access is done through an access() rant specified in

the Properties class that facilitates the use of properties. Writes are done with

write(whatHasToBeAdded). Both are invoked by an instance of Properties. Properties files are

independent from the program and must be loaded or created, if a create is called and the

properties file already exists an exception will be thrown.

1.5.3.3 Events
 In MaRVN events are called mishaps. To MaRVN, regardless of the value of the event,

they are all a mistake, hence mishap. Mishaps are handled by GPPs, short for General

Phenomenon Proxies (or Genuine People Personality chose your poison), and are affixed with :+

and removed with :- .

using brainSizePlanet;

class OhAnotherExample{

static fruitlessRant beginRant(){

 String agrajagName = “Surprised Whale”;

 Properties agrajagNameFile = new Properties(“agrajagNames.txt”);

 int maxNameChenges = agrajagNameFile.load(“max”);

int numNameChanges = 0;

 agrajagName.Changed :+ GPP(ohBoy);

 while(42 == brainSizePlanet.AQLUE){

 if(Math.random() % 1000 == 42){

 agrajagName = agrajagNameFile.load((String)numNameChanges);

 numNameChanges ++;

 if(numNameChanges > maxNameChanges)

 numNameChanges =0;

 }

 endRant;

}

public fruitlessRant ohBoy(){

 Console.sighln(“ARTHUR DENT!”);

 endRant;

}

}

John Dunham

9 MaRVN

 Some notes, Math.random() in MaRVN picks a random number from 0 to the max value

of unsigned long (2
64

 − 1)explaining the use of % which is the standard modulo. The constructor

of Properties has a load built in. 42 == brainSizePlanet.AQLUE is equivalent to true as

brainSizePlanet.AQLUE is a constant from brainSizePlanet equal to 42 (AQLUE stands for

Answer to the Question of Life, the Universe and Everything which may or may not change).

True would suffice for an infinite loop as well.

1.6 Arrays
 In MaRVN arrays aren‟t particularly emphasized or altered, drawing their base syntax

from C#. The use of arrays is strongly discouraged with recursion and parallel programming in

MaRVN and will throw warnings in MaRVN blocks, a list, queue or stack structure is preferred

in MaRVN blocks if a collection of objects is needed.

Example of Array declarations:

int [] anArray = new Array[6]; //an array of integers length 6

int [] anotherArray = {1,2,3,4,5,6} //an array of integers length 6

int [,] enoughArrays = new Array [2,3] //multidimensional array

int [][] jadedWithArrays = new Array [2] [] //the second and/or first array may be left blank and

both may have length specifications

John Dunham

10 MaRVN

2. Lexical structure

2.1 Programs
 In MaRVN superRants are composed of one or more source files one of which should

have a beginRant method to allow the superRant to execute (except if one were to use .dll). A

source file is composed of characters of the Unicode variety as shown in all of the previous

examples.

The compilation process is as follows.

1. The compiler converts the source file to a standardized Unicode character set so it may be

properly analyzed.

2. The converted source is then sent through the lexical analyzer to convert the Unicode

character stream to lex tokens.

3. The lex tokens are then taken and passed through the syntactical parser which creates the

concrete syntax tree which may then be checked for semantics and ultimately become usable

executable code.

2.2 Grammars
 This specification presents the syntax of the MaRVN programming language where it

differs from C# and Erlang.

2.2.1 Lexical grammar where different from C# and

Erlang

 identifier : (doesn‟t equal keywords)

 \b[a-zA-Z \u005F]+\b

 literal :
integer-literal

real-literal

character-literal

string-literal

operators:

operator-or-punctuator

 fieldType:

 s ta t ic

 p r ivate

 p ro tec ted

 publ ic

 VariableTypes

 VariableTypes:

 Earthlings

 Robots

John Dunham

11 MaRVN

2.2.2 Syntactic (“parse”) grammar where different

from C# and Erlang

 MaRVN-block:

 M aRV N (String-array) { statementList endRant ; }

 M aRV N () { statementList endRant ; }

 improbability-Field:

 improbabi l i t yFie ld (String-array) { statementList endRant String-array; }

 improbabi l i t yFie ld () { statementList endRant; }

 fieldBlock:

 fieldType { statementList};

 fieldType { fieldBlock };

 fieldBlockList:

 FieldBlock ;

 FieldBlock, FieldBlockList ;

 statement :

 var iab leType statement

identifier = literal ;

identifier = identifier ;

identifier = statement

 literal operator statement

identifier operator statement

literal ;

identifier ;

 { statementList }

{ statementList };

 (there are LOADS of these, this is but a few)

 statementList:

 statement statementList

 statement

 String-array:

 String-Array-identifier

 (*note this indicates that the string array is a particular type of robot that has been

 defined before in C# and the exercise to define it is a bit overboard)

2.2.3 Grammar notation
The lexical and syntactic grammars are presented using BNF grammar productions.

Each grammar production defines a non-terminal symbol and the possible expansions of that

non-terminal symbol into sequences of nonterminal or terminal symbols. In grammar

John Dunham

12 MaRVN

productions, non-terminal symbols are shown in italic type, and terminal symbols are shown in a

fixed-width font.

The first line of a grammar production is the name of the non-terminal symbol being

defined, followed by a colon. Each successive indented line contains a possible expansion of the

non-terminal given as a sequence of non-terminal or terminal symbols. For example, the

production:

while-statement:

 while (Boolean-expression) statement

defines a while-statement to consist of the token while, followed by the token “(”, followed by a

Boolean-expression, followed by the token “)”, followed by a statement (a statement is delimited

by {} or a ; .

When there is more than one possible expansion of a non-terminal symbol, the

alternatives are listed on separatelines. For example, the production:

statement-list:

statement

statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a

statement. In other words, the definition is recursive and specifies that a statement list consists of

one or more statements.

2.3 Lexical analysis

2.3.1 Line terminators
Line terminators divide the characters of a MaRVN source file into lines.

new-line:

Carriage return character (U+000D)

Line feed character (U+000A)

Carriage return character (U+000D) followed by line feed character (U+000A)

Next line character (U+0085)

Line separator character (U+2028)

Paragraph separator character (U+2029)

2.3.2 Comments
Identical to C#, // indicates single line comments and /*…*/ deliminates multiline

comments.

2.3.3 White space
White space is defined as any character with Unicode class Zs (which includes the space character) as

well as the horizontal tab character, the vertical tab character, and the form feed character.

whitespace:

Any character with Unicode class Zs

Horizontal tab character (U+0009)

Vertical tab character (U+000B)

John Dunham

13 MaRVN

Form feed character (U+000C)

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators.

White space and comments are not tokens, though they act as separators for tokens.

token:

identifier

keyword

integer-literal

real-literal

character-literal

string-literal

operator-or-punctuator

 tokens specific to MaRVN:

 keywords:

MaRVNRant, MaRVN, MaRVNClass, extends, fruitlessRant, endRant,

improbabilityField, beginRant, as well as all keywords originally featured in C# except

for goto, void, return and unsafe.
 Operators:

 :- :+ ~ ::

2.4.1 Keywords different from Erlang or C#
New keywords:

New keyword Why

MaRVNRant The most vital element of MaRVN. A MaRVNRant

specifies a class/rant that may only be accessed

from a MaRVN block. A MaRVNRant is a rant

optimized for parallel programming, meaning no

variable reassignment, tail-end recursion and the

like.

MaRVN Used for MaRVN blocks (MaRVN(some pass by

result variables){some parallel code}) which

partition a portion of the stack and heap for the

code to prevent collisions with non-MaRVN

blocks. Additionally variables can be returned from

the MaRVN block using an ordinal endRant. For

example endRant aList, aStack; would do the

following assignments for MaRVN(globalList,

globalStack){}

globalList = aList and globalStack = aStack

MaRVNClass Specifies a class that may be instantiated in a

MaRVN block. No variables may be reassigned.

Basically a specification of the static keyword.

extends Used in inheritance.

Removed keywords:

Removed Why

Goto It‟s not a keyword anymore, now just trying to

compile a program with a goto shuts down your

John Dunham

14 MaRVN

computer and changes your desktop background to

a look of disapproval (MaRVN doesn‟t play

around, but let‟s leave that to the person

implementing it).

Modified keywords:

Original keyword New keyword Why

Void fruitlessRant As subprograms are rants this

enforces that the rant returned

nothing(it was fruitless)

Return endRant endRant is more accurate to

describe how the return works in

this language. While brackets are

still there all rants require this to

end rant.

Unsafe improbabilityField Crazy stuff can happen in unsafe

code blocks, one time a

thermonuclear warhead was

transformed into a bowl of

petunias and a program got

overwritten by its own data.

main beginRant Programs are called super rants,

it only makes sense that the entry

point begins them.

John Dunham

15 MaRVN

3. Basic concepts

3.1 Application Startup
In MaRVN application startup is through the beginRant rant using either of the following

signatures:

Static fruitlessRant beginRant(){…endRant;}

Static fruitlessRant beginRant(String [] args){…endRant;}

As shown above the application startup(entry point for the application) may be called with

arguments that can be used to initialize aspects of the code or not. This String [] can be particularly useful

in testing code.

Note that MaRVN has no int return type for the application startup. This is due to the fact that

MaRVN considers all applications ultimately fruitless and as such all superRants are in fact

fruitlessRants.

3.2 Application termination
 In MaRVN application termination occurs at the beginRant rant‟s endRant. As the entry point

of the application in MaRVN is analogous to void by default the termination status of the application

will return 0 indicating that the application ran successfully and rendered control back to whatever

execution environment ran the application (In MaRVN generally the CLR). If nothing is returned it is

entirely likely that something is fatally wrong with your code and MaRVN will take solace in the fact that

that you can‟t mess anything else up or ask it to add 2 and 2 with your locked down computer.

3.3 Scope

MaRVN‟s scope is static, predominately because dynamic scope can end up with hard to

determine errors.

class ohBoyStaticScope{

int x = 42;

public int aBloodyScopeCheck(){

return x;

}

Public fruitlessRant scopePrinter(){

 int x = 21;

Console.sighln(aBloodyScopeCheck());

}

static fruitlessRant beginRant(){

scopePrinter();

 console.sighln(x);

 endRant;

}

}

John Dunham

16 MaRVN

As shown above the scoping of MaRVN is staunchly static. The value of x in beginRant and

aBloodyScopeCheck is pulled from the scope that encloses the scope of the rant that needs it. As a result

this program will print 42 twice, were the scope dynamic it would print 21 (newline) 42.

3.4 Automatic memory management

 MaRVN uses garbage collection to handle memory management with a mark and delete

algorithm (meaning the robots to be deleted will be marked then deleted). The garbage collection

is automatic, but a request for collection may be made of the garbage collector with the call

brainSizePlanet.pickUpThatPaper();

 Additionally, programmer defined memory management is possible with the use of a

destructor similar to C++:

 ~Point(){…endRant;}

 Once the robot goes out of scope (as only robots may use a destructor as they “live” on

the heap) the destructor will kill off any earthlings and execute any code that handles fields that

live on the heap. This is advantageous when dealing with pointers as the object will destroy itself

when no longer needed not caring about references. Additionally, the scope being referred to is

that of the scope that the instance of the object was made in.

 The preprocessor directive:

 Using noGarbageCollection;

 This must be used in any class that will not use garabage collection, if used in the entry

point class it will disable the Garbage Collection for the execution NOT RECOMMENDED.

 This memory management technique is dangerous and only to be used by the most

advanced of users, but it exists for the sake of doing more complex jobs with MaRVN.

John Dunham

17 MaRVN

4. Types

 In MaRVN Earthling and Robot types are the two existing types. For MaRVN the type

checking is via name type equivalence
4.1 Earthling types

Type Size(bytes) Valid values Example declaration

int 4 -2 billion to 2 billion int x =42;

long 8 -9 quintillion to 9 quintillion long zed = 2112;

short 2 -32,767 to 32,767 short q = 700;

byte 1 0 to 255 byte b = 300;

double 8 15 sig figs double lue = .042;

float 4 7 sig figs float f = 1.01;

decimal 24 28 to 29 sig figs decimal d = -1.222;

char 2 Unicode characters char c = „w‟;

bool 2 true, false bool isTrue = true;

 The above examples are identical to those specified in C# as they trump the Erlang

primitives when it comes to ease of use for the programmer and they afford a lot more write

ability in the code. Additionally the signed and unsigned key words may be used to allow for

negatives in the variable or not. int, long, short, double, decimal, and float are all implicitly

signed, while byte is implicitly unsigned.

4.2 Robot types

 As Robot types include objects, Strings and arrays that exist in the heap with an address

in the stack the memory allocation for the stack is a 4 byte memory address (as it is in C#). For

the heap the limit is literally the memory of the system it is running on. One creates a Robot as

follows:

 Point p = new Point();

 The variable p holds the memory address of the object itself while the new operator

carves out the needed space in memory for the Robot. These variables are similar to pointers,

however, p = &anotherPoint will not work outside of an improbabilityField block. For all intents

and purposes Robot types are pointers and they are allowed to behave as such within

improbabilityField blocks, similarly to C# and unsafe blocks.

John Dunham

18 MaRVN

4. Variables

Variables represent storage locations. Every variable has a type that determines what

values can be stored in the variable. MaRVN is a strongly typed language by default the

variables are mutable, but in MaRVN blocks all variables are non-mutable.

5.1 Variable examples & 5.2 Variable categories
In MaRVN there are a great deal of potential variables. As mentioned before there are the

Earthling types (which all have an example in the previous section under Earthling types). Some

standardized variable types that exist for robot types include the following:

Pointers, not really a robot type, as in MaRVN they are allocated on the stack, but

anything on the heap has at least one pointer:

 //creates an int pointer

 int *p;

 int x = 7;

//sets the pointer equal to the address of x

 p = &x;

 //will print the contents of x

 Console.sighln(*p);

Strings, exist on the heap in the form of a list, and can be declared verbosely with the

new constructor or with just the double quotes.

 String helloDullards = new String(“hello”);

 String goodbyeDullards = “So Long and Thanks for all the Fish”;

StringArrays Syntaxtically identical to Strings, but exist for those who are unable to

comprehend the glory of List based Strings, or need an array based string for whatever reason.

 StringArray helloDullards = new String(“hello”);

 StringArray goodbyeDullards = “So Long and Thanks for all the Fish”;

Arrays, in MaRVN pure arrays are NOT dynamically allocated, that‟s what lists, queues

and stacks are for:

int [] anArray = new Array[6];

int [] anotherArray = {1,2,3,4,5,6};

5.3 Activation Record examples
Consult parameter passing‟s activation record.

John Dunham

19 MaRVN

5. Parameter Passing

6.1 Method

 MaRVN uses In(by value or reference), In-Out(by reference) and in the case of MaRVN blocks,

Improbability fields and threads, pass by result. For all of the cases the In and Out Reads/writes are left to

right.

6.2 Examples
In Parameter passing is the default parameter passing technique of MaRVN. In parameter passing

in MaRVN is done by copy in which the values of the actual parameters are passed into the formal

parameters. If Robot Types are passed they are passed by reference by default.

Example call:

foo(12,31);

Function example:

 public fruitlessRant foo (int x, int y){

 Console.sighln(x*y);

 endRant;

}

Activation record:

Code beginRant …foo(12,31);…

foo Console.sighln(x*y);

endRant;

Data beginRant Local Params: null

foo Local Params: null

Parameters: int x=12

 int y=31

return address:

 “&beginRant”

 In-Out Parameter passing in MaRVN is identical to C# using the ref key word to indicate that a

variable is passed by reference (the only way In-Out is allowed in MaRVN) indicating that the formal

parameters are aliases.

 Example call:

 int x = 7;

 int z = 4;

 foo(ref x,z);

Function example:

 Public fruitlessRant foo(int y, int q){

 y = y*q;

 q++;

 endRant;

John Dunham

20 MaRVN

 }

Pass by result occurs in MaRVN blocks, improbabilityFields and Threads. Pass by result

in MaRVN uses aliases indicating that all pass by result calls are implicit and only occur in the

following signatures {MaRVN(args){… endRant;}; , improbabilityField(args){… endRant

args;}; , threadID.start(arg);}. The first two of these for the passing mechanism is more or less

to enforce what values will be changed, although the variables are generally in scope as it stands.

 Example:

 String [] args = new Array[3];

 improbabilityField(args){

 int h = 12;

int y =16;

int z =17;

 endRant h,y,z;

};

Code beginRant … String [] args =

new String[3];
…

improbabilityField int h = 12;

int y =16;

int z =17;

endRant h,y,z;

Data beginRant Local Params: String[]

args = {null,null,null}

improbabilityField Local Params:

 int h= 12

Code beginRant …int x = 7;

int z = 4;

foo(ref x,z);…

foo y = y*q;

q++;

endRant;

Data beginRant Local Params: int x =7

 int z =4

foo Local Params: null

Parameters: int y= &x

 int q= z

return address:

 “&beginRant”

John Dunham

21 MaRVN

 int y =16

 int z =17

Parameters:

 args

return address:

 “&beginRant”

note If the value of an array element is initialized it will be set to null if passed into the field.

John Dunham

22 MaRVN

7.Conversions

A conversion enables an expression to be treated as being of a particular type. In

MaRVN implicit conversion and explicit conversions with an emphasis on the explicit

conversions.

7.1 Implicit conversions

 Implicit conversions occur in two places in MaRVN, the first being in String

concatenation. Say one was trying to put an int into a String, it would be a pain to cast all of

them to String, so an implicit conversion is needed for ease:

 String z = “1,2,3”;

 int newInt = 4;

 z = z + “,” + newInt;

 As shown above the MaRVN compiler will do an implicit conversion of newInt to String

through some internalized mechanism yielding the final string “1,2,3,4”. As shown above the

string syntax for MaRVN is more like C# for declaration, but the Eralang syntax is also valid

(this cuts down on readability in some cases, but makes recursion with strings far easier to

handle and basic string creation a breeze).

 Another example of explicit conversion is in mathematical functions. Meaning if a

mathematical function requires the two variables to be the same it will cast the smaller (in terms

of memory size) up to the same type of the larger. The hierarchy is as follows:

byte ->short ->int ->long

float -> double -> decimal

byte ->short ->int ->long ->float ->double ->decimal

Unsigned variables (save byte) will not implicitly cast. The simplest example of this in

action is through integer and non-integer division:

//this will yield 1

int x = 5/3;

//this will yield 1.667 casting 3 to a double

double x = 5.0/3;

//this throws a type mismatch error as double can‟t be cast implicitly to an int

int x = 5.0/3;

//this will not throw an error as the implicit cast flow is preserved

double x = 5/3;

Even if the implicit conversion does follow the flow in mathematic examples it will

throw warnings indicating that explicit conversions are preferred in these cases.

7.2 Explicit conversions

Explicit conversion in MaRVN is done using (type)variableToCast which is identical to

the casting of C#. Using the explicit casting in MaRVN allows you to do quite a bit including

going against the cast flow of the numeric variable types:

John Dunham

23 MaRVN

//this will now execute, however, it will throw a warning at compile time due to potential

loss in accuracy

int x = (int)5.0/3;

8. Statements

Examples of statements in MaRVN that differs from C# and ERLANG:

1. Unlike Erlang the ; is used to delimit the end of a statement.

2. Accessibility may be denoted using the following statement block:

accessibilityType{variables and methods can go here};

3. Variable type may be similarly delimited using this statement block:

 VariableType{variable identifiers and assignment};

9. Example Programs

9.1 example of a MaRVNRant for a very basic

parser
Public MaRVNRant bool hasSemicolon(String statement){

if (statement.length > 0){

 if (statement.charAt(0) == „;‟){

 endRant true;

 }

 else{

//this will cascade back true if there exists a semicolon

 endRant hasSemicolon(statement.tail());

 }

}

else{

 endRant false;

}

}

9.2 Example of a MaRVNClass for typical recursive

functions
using BrainSizePlanet;

class MaRVNClass MExample{

John Dunham

24 MaRVN

 //Will return i!

public int factorial(int i){

 if(i >1)

 endRant i * fact(i-1);

 else

 endRant 1;

}

//Works exactly like the erlang on assignment 2

public String decrypt (String toShift, int shiftAmt){

 endRant decrypt(ShiftAmt, toShift, toShift.head(), toShift.length);

}

public String decrypt (int shiftAmt ,String toShift, char currentChar, int currentLength){

 if (currentLength == 1){

 if(currentChar == (char)32){

 //implicitly casts to a char based on ascii table

 endRant [32];

 }

 else{

 endRant [(((int)currentChar + (26-shiftAmt)) – 65 %26 +65)];

 }

}

else if(currentChar == (char)32){

//.tail() and .head() are methods of the String Class that return a String and

char respectively

 endRant [32| decrypt(ShiftAmt, toShift.tail(), toShift.tail().head(),

 toShift.tail().length)];

}

else{

 endRant [(((int)currentChar + (26-shiftAmt)) – 65 %26 +65)|

 decrypt(ShiftAmt, toShift.tail(), toShift.tail().head(),

 toShift.tail().length)];

}

}

}

9.3 A MaRVN Block using the MaRVN class
using BrainSizePlanet;

//no import for the class as it is assumed to be in the same package of classes for this example.

class MBExample{

static fruitlessRant beginRant(){

 String[] aBitStringy= new Array [2];

John Dunham

25 MaRVN

 MaRVN(aBitStringy){

//These use the scope resolution operator to use rants outside of the current

class, otherwise it would just be the method name

 Thread t1 = new Thread(mExample::factorial(7));

 Thread t2 = new Thread(mExample::decrypt(“Heart of Gold“,7));

//These actually start the thread with the argument acting as the return

point for the endRants

t1.start(aBitStringy[0]);

t2.start(aBitStringy[1]);

//will stop the code in the MaRVN block so beginRant doesn‟t end before

the concurrent rants have executed. Please note this code isn‟t astounding,

rather just to give a feel for the syntax, as doing this in such small code

would be pure folly.

MaRVN.haltSequentialUntil(t1,t2);

endRant;

 }

 Console.sighln(“Factorial result:” + aBitStringy[0] + “\nDecrypt result: ” +

 aBitStringy[1]);

 endRant;

}

}

9.4 Some example input with looping
using BrainSizePlanet;

class OhBoyUserInput{

static fruitlessRant beginRant(){

 String userInput = “”;

 int cash = 1000;

int bet, randomNum, moneyChange;

//So begins a game in which you either win big or break even

//Will exit if you hit zero or 1000000 dollars outputting every single loss.

 while(cash >0 && cash < 1000000){

userInput = Console.order(“Place your bets”);

 bet = Integer.parseInt(userInput);

randomNum = Math.random()%50

 if(randomNum < 25){

 moneyChange = bet * Math.random()%3;

 cash -= moneyChange;

John Dunham

26 MaRVN

Console.sighln(“Dreadful, you lost $” + moneyChange + “

 yielding $“ + cash “.“);

}

else{

moneyChange = bet * Math.random()%3;

 cash += moneyChange;

Console.sighln(“Boring, you gained $” + moneyChange + “

 yielding $“ + cash “.“);

}

 }

 endRant;

}

}

10. Conclusion
 I will admit that my language is a bit odd. This partially stems from the fact that that

name was the first concrete idea I had for this project and I just ran from there. The sarcasm

suggestion aside I feel as though this language has some rather nice features absent in C# and

Erlang that makes it more powerful.

 First and foremost MaRVN retains Erlang‟s ability to handle concurrency nicely (I

picked out some of the better behind the scenes aspects of Erlang and my favorite syntax) yet

variable reassignment and good selection control structures exist, setting it apart from its parent.

Additionally, there exist the MaRVN blocks which nicely create an environment in the execution

for Erlang like concurrency in an isolated and concurrent Thread allowing for imperative code

and lock free concurrent code(Erlang code) to run simultaneously in the same execution,

something I thought would be seriously interesting to see the use/power of.

 I certainly overused C# for this, but as it stands C# is a pretty awesome language. In

retrospect the addition of an args field to MaRVN blocks and improbabilityFields was a bit

irrational, but I feel that it adds a bit more readability to the code and it enforces that the

variables passed will be altered in the block of code. Additionally a major improvement over C#

is the way MaRVN handles fields which to me is by far a more tidy way of handling fields as

enforces good code style in the field declarations, which if there is one thing I have learned

deciphering the code of others is a major issue.

 The MaRVN language is an interesting language with some interesting features (at least

to me) and I would actually love to code in this language. It must be noted, however, that there

are a lot of options in MaRVN which certainly boosts write ability, but the readability takes a

less than dramatic hit (meaning it‟s not as bad as say PHP and it looks like a godsend to an APL

programmer) as certain aspects do exist in an effort to improve readability (ex the field blocks).

Ultimately, MaRVN makes a decent attempt at blending the power of functional programming

with the relative ease of imperative in an attempt to create a wholly new experience from either

of its constituent parts.

