

 Santa
Simple and New

Technical Articulation

Summary and Example Programs

Version 12.25

Jenna Ficula

This is the documentation for a new festive programming language, Santa, for a
language project in Theory of Programming Languages at Marist College.

1

1. Introduction
Santa or (Simple and New Technical Articulation) is a modern strongly-typed, object-oriented language best used

during the winter season in a procedural environment. It is based on Python, Java, and Christmas Spirit, but

differing in the following ways:

1. Brackets have been removed and instead Merry and Christmas determine when each function or class

initiates and stops.

2. Santa is strongly typed so all variables must be one of the included data types

3. Santa is statically scoped and utilizes early binding.

4. Everything is termed in the manner of the Holiday Season.

5. Santa is compiled.

6. There are no Null values in Santa, only Coal.

7. Return values are received. (ie. receive Coal) if a value is null.

8. Hohoho is print

1.1 Genealogy

The origins of Santa and how this language fits into the programming language genealogy. Python initially

originated from LISP, Common LISP and from features from functional programming languages such as SETL

and Haskell with some combined type features of C. Java also is derived from the origins of the programing

language C. Therefore, Santa sits at the bottom between the Java and Python.

2

Santa Language Specification

1.2 Hello world

Morally obligated to write the “Hello World” program Santa.

1. def helloWorld()

2. Merry

3. hohoho(“Hello World!”)

4. Christmas

1.3 Program structure

The most important organizational concepts in Santa are as follows

1. Every elf (class) is public to spread Christmas cheer.

2. Elves (classes) must be inside a workshop (similar to Java packages). Workshops can have multiple elves

and this is a mechanism to encapsulate a group of elves (classes) so that different workshops can have

elves of the same name.

1. Elf (class) attributes are get and set with the phrase elfself.attribute.

2. Santa uses white space like python and can be created with tabs or spaces although the preferred method is

spaces.

3. Functions are defined like in Python with def keyword but must have explicitly declared perimeter and

return types declared similar to Java.

4. The elf (class) as well as each function, for, and while loop must begin with Merry and end with Christmas

rather than brackets.

5. A main function is not required but you can use one.

5. workshop NorthPole

6. Merry

7. elf Child

8. Merry

9. def Child(elfself, Carol fname, Carol lname, Num gpa)

10. Merry

11. elfself.fname is fname

12. elfself.lname is name

13. elfself.gpa is 3.0

14. Christmas

15.

3

16. def displayGpa(elfself)

17. Merry

18. hohoho ("gpa " + elfself.gpa)

19. Christmas

20.

21. def displayChild(elfself)

22. Merry

23. hohoho ("First ", elfself.fname, "Last ", elfself.lname)

24. Christmas

25.

26. def Boolean isOnNiceList(elfself)

27. Merry

28. check if elfself.gpa() > 3.0

29. receive nice

30. else

31. receive naughty

32. Christmas

33. Christmas

34. Christmas

35. "This would create first object of Child class"

36. newchild = Child("Jenna", “Ficula”, 3.6)

37. newchild.displayChild()

38. >> First Jenna Last Ficula

This example declares a workshop NorthPole (package) and also an elf (class) named Child. This elf (class)

contains three attributes fname, lname, and gpa. It contains a default constructer which takes three arguments

which are specified by type Carol (String) and Num (Int) as wel as value. The getter and setter methods are created

with no programmer input necessary and can be allowed the class attributed to be referred to using elfself. The elf

also has methods displayGpa and displayChild to print out the gpa and name of child respectively using the

hohoho aka print command. The elf has a method isOnNiceList() which will return a Boolean (Naughty or Nice)

based on the current gpa of the given child. Keywords Merry and Christmas additionally frame each function and

the entire class declaration.

4

1.4 Types and variables

There are two kinds of types in Santa value types and reference types. Variables of value types directly contain

their data whereas variables of reference types store references to their data, the latter being known as objects.

With reference types, it is possible for two variables to reference the same object and thus possible for

operations on one variable to affect the object referenced by the other variable.

1.5 Statements Differeing from Python and Java

Statement Example

Expression statement def returnValue Main()
Merry

 Num Reindeer

 Reindeer is 0

 Carol child

 Child is “Jenna”

 Christmas

<<- equality (=) becomes is

Constructor def myElf (elfself, type value, type value)

 Merry

 elfself.attribute1 is “ ”

 elfself.attribute2 is 0

 Christmas

If Statement def returnValue Main()
Merry

 check if (x > 0)

 receive value

 check else if ()

 receive value

 else

 receive value

 Christmas

Define Arrays

(allIWantForChirstmasIs)

Define Dictionaries

(santasList)

Num allIWantForChirstmas gifts is [1, 2, 3, 4]

Num santasList myList is {

 'one' 1,

 'two' 2,

 'three' 3,

 'four' 4,}

For (FA LA LA)

statement

Num allIWantForChirstmasIs gifts is [1, 2, 3, 4]

FALALALALA (value) in gifts

Merry

 Hohoho (value)

Christmas

While (‘tis the season of)

Statement

 Num reindeer

 reindeer is 10

‘tis the season of (reindeer <= 10)

Merry

 Hohoho (reindeer)

 Reindeer += 1

Christmas

5

2. Lexical structure

2.1 Programs

A Santa program consists of one or more source files. A source file is an ordered sequence of (probably

Unicode) characters.

Conceptually speaking, a Santa program is compiled using three steps

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into a

sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars

This specification presents the syntax of the Santa programming language where it differs from Python and

Java.

2.2.1 Lexical grammar where different from Python and Java

BNF grammar productions for Santa

The lexical grammar of Santa is very similar to Python with some Java influences. Since Python more

heavily influences syntax, the proceeding grammars show the differences between Python and Santa.

<Assignment operator> → is

<Mathematical operator> → + | * | / | -

<Comparison operator> → == | != | <= | >=

<Keyword> → <Language Defined>

 → <Variable Defined>

<Begin Block> → Merry

<End Block> → Christmas

2.2.2 Syntactic (“parse”) grammar where different from Python and Java

The syntactic grammar for Santa is similar to a blending of Python and java. The

Santa syntactic grammar is outlined below.

<workshop declaration> → workshop <identifier>

<elf declaration> → <access modifier> elf <identifier>

<method declaration> → <access modifier> <object type> <identifier> <parameter list>

 → <access modifier> <object type> <identifier>

<parameter list> → <parameter> <parameter list>

 → <parameter>

<parameter> → <object type> <identifier>

6

2.3 Lexical analysis

2.3.1 Comments

There are two forms of comments supported in Santa single-line comments and delimited comments.

Single-line comments start with the characters <<<- (representative of a sideways Christmas tree) and extend to the

end of the source line.
 .------,
 .\/. |______|
 __}{_/_ _|_Ll___|_
 / }{ \ [__________] .\/.
 '/\' / \ __\/_/_
 () o o () / /\ \
 \ ~~~ . / '/\'
 \/ \ '...' / \/
 \\ {`------'} //
 \\ /`---/',`\\ //
 \/' o | |\ \`//
 /' | | \/ /\
 __,. -- ~~ ~| o `\| |~ ~~ -- . __
 | |
 jgs \ o /
 `._ _.'
 ^~- . - ~^

 Delimited comments were initially going to be an entire keyboard snowman as demonstrated above beside the

commented out lines of code. After much consideration, it was decided to change to create delaminated comments

to begin with the characters ** <<- and end with the characters - >>** (representative of a Christmas tree with a star

on top). Delimited comments may span multiple lines. Comments do not nest.

2.4 Tokens

There are several kinds of tokens identifiers, keywords, literals, operators, and punctuators. White space and

comments are not tokens, though they act as separators for tokens where needed.

Santa Language Specification

tokens

identifier

keyword

integer-literal

real-literal

character-literal

string-literal

operator-or-punctuator

2.4.1 Keywords different from Python or Java

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier

except when prefaced by the @ character.

New Keywords New Keywords Continued Removed Keywords:

• Merry (begin)

• Christmas (end)

• FALALALALA (for)

• ‘tis the season of (while)

• elf (class)

• Carol (String)

• Num (int, double, all number types)

• elfself. (self.)

• hohoho (print)

• receive (return)

• check if (if)

• allIWantForChristmas

(list / array)

• santasList (dict)

• is (= assignment)

• coal (null)

• for

• void

• class

• int

• self

• println

• true

• false

• null

7

3. Types

Santa types are divided into two main categories Value types and Reference types. (Maybe you have some other

thoughts here. I hope so.)

3.1 Value types (different from Python and Java)

Num – a general purpose number value type that can be written as an int, fractional, or decimal

component

ex Num christmasLights = 10000

Char – a Unicode character, a single component of a Carol

ex. Char firstLetterOfSanta = “S”

Carol – a string which is a set of Chars.

*In Santa it is inferred by the programming language that a Carol is an allIWantForChristmas (array) of

Chars*

ex. Carol toy = “Racecar”

Boolean – a value which can either be Naughy (False) or Nice (True)

Coal – a null type representing no value

3.2 Reference types (differing from Python and Java)

allIWantForChristmas – a systematic arrangement of data (an array)

ex.

Carol allIWantForChristmas is [“Doll”, “Gameboy”, “Candy,” “Car”]

Num allIWantForChristmas is [1,2,3,4,5]

Combo allIWantForChristmas is [1, “Toy,” 5, “Jewelry”]

santasList – an associative array where the keys are of the same type. (He’s checking it twice) aka a

dictionary

ex.

Num santasList myList is {

 'one' 1,

 'two' 2,

 'three' 3,

 'four' 4,

}

A santasHelper is an object which is an instance of an Elf (class). The reference values are pointers to these elves

and a special coal reference, which refers to no elf.

8

4. Example Programs

The Santa programming language in six example programs that demonstrate its use; especially what’s new and

improved over current languages Java and Python, on which it is based.

4. Examples
4.1 Caesar Cipher Encrypt

2 def Carol encrypt(Carol str, Num ShftAmt)

3 Merry

4 gift is ""

5 FALALALALA i in range(len(str))

6 Merry

7 char is str[i]

8 check if (char.isUpper())

9 gift += chr((ord(char) + ShftAmt -65) % 26 + 65)

10 else

11 gift += chr((ord(char) + ShftAmt - 97) % 26 + 97)

12 receive gift

13 Christmas

14 Christmas

4.2 Caesar Cipher Decrypt

1. def Carol decrypt(Carol Str, Num ShftAmt)

2. Merry

3. gift is encrypt(Str, ShftAmt * -1)

4. receive gift

5. Christmas

9

4.3 Factorial

6. def Num factorial(Num n)

7. Merry

8. check if n == 0

9. received 1

10. else

11. received n * factorial(n-1)

12. Christmas

4.4 Bubble Sort

1. def allIWantForChirstmas bubbleSort(allIWantForChirstmas gifts)

2. Merry

3. FALALALALA value in range(len(gifts)-1,0,-1)

4. Merry

5. FALALALALA i in range(value)

6. Merry

7. check if gifts[i]> gifts [i+1]

8. temp is gifts[i]

9. gifts [i] is gifts[i+1]

10. gifts [i+1] is temp

11. Christmas

12. Christmas

13. Christmas

14. Num allIWantForChirstmas gifts is [54,26,93,17,77,31,44,55,20]

15. bubbleSort(gifts)

16. hohoho(gifts)

10

4.5 Quick Sort

1. def partition(gifts,smallest,biggest)

2. Merry

3. i is (smallest-1)

4. pivot is gifts[biggest]

5. FALALALALA j in range(smallest, biggest)

6. Merry

7. check if gifts[j] <= pivot

8. i is i+1

9. gifts[i], gifts[j] is gifts[j], gifts[i]

10. gifts[i+1], gifts[biggest] is gifts[biggest], gifts[i+1]

11. receive (i+1)

12. Christmas

13. Christmas

14.

15. def quickSort(gifts,smallest,biggest)

16. Merry

17. check if smallest < biggest

18. pi is partition(gifts, smallest, biggest)

19. quickSort(gifts, smallest, pi-1)

20. quickSort(gifts, pi+1, biggest)

21. Christmas

22.

23. Num allIWantForChirstmas gifts is [10, 7, 8, 9, 1, 5]

24. n is len(gifts)

25. quickSort(gifts,0,n-1)

26. FALALALALA i in range(n)

11

27. hohoho(gifts[i])

4.6 Binary (Christmas) Tree

elf Node
Merry
 def Node(elfself, Num val)
 Merry
 elfself.l is Coal
 elfself.r is Coal
 elfself.v is val
 Christmas
Christmas

elf christmasTree
Merry
 def christmasTree(elfself)
 Merry
 elfself.root is Coal
 Christmas

 def getRoot(elfself)
 Merry
 receive elfself.root
 Christmas

 def add(self, val)
 Merry
 check if(elfself.root == Coal)
 elfself.root is Node(val)
 else
 elfself.add(val, elfself.root)
 Christmas

 def add(elfself, val, node)
 Merry
 check if(val < node.v)
 check if(node.l != Coal)
 elfself.add(val, node.l)
 else
 node.l is Node(val)
 else
 check if(node.r != Coal)
 self._add(val, node.r)
 else
 node.r is
 Node(val)
 Christmas

12

 def find(self, val)
 Merry
 check if(elfself.root != Coal)
 receive elfself.find(val, elfself.root)
 else
 receive Coal
 Christmas

 def find(self, val, node)
 Merry
 check if(val == node.v)
 receive node
 check else if (val < node.v and node.l != Coal)
 elfself.find(val, node.l)
 check else if(val > node.v and node.r != Coal)
 elfself.find(val, node.r)
 Christmas

 def deleteChristmasTree (elfself)
 Merry
 elfself.root is Coal
 Christmas

 def hohohoChristmasTree(elfself)
 Merry
 check if(elfself.root != Coal)
 elfself.hohohoChristmasTree (elfself.root)
 Christmas

 def hohohoChristmasTree(elfself, node)
 Merry
 check if(node != Coal)
 elfself.hohohoChristmasTree (node.l)
 hohoho Carol(node.v) + ' '
 elfself.hohohoChristmasTree (node.r)
 Christmas
Christmas

christmastree is christmastree()
christmastree.add(3)
christmastree.add(4)
christmastree.add(0)
christmastree.add(8)
christmastree.add(2)
christmastree.hohohoTree()
hohoho (christmastree.find(3)).v
hohoho christmastree.find(10)
christmastree.deleteChristmasTree()
christmastree.hohohoTree()

13

*<<- output – A Christmas Binary Tree
 ^
 < 3 >
 < 0 4 >
 < 2 8 >
 ||
->>*

