

SOAPScript
“For squeaky-clean code, use SOAPScript”

Language Summary
Bob Nisco

Version 0.5 β

Nisco 2

This page intentionally left blank?

It’s a paradox more so than a question.

Nisco 3

1. Introduction

SOAPScript, or more formally, Simple Objective And Procedural Script, is exactly what it
sounds like: a modern strongly-typed language best used as in an objective and procedural
environment. It also has a tagline to accompany it, “For squeaky-clean code, use SOAPScript.”
When writing code you should be repeating the secondary mantra to yourself, “wash rinse, don’t
repeat yourself.”

The main theory behind SOAPScript is that code is read more often than it is written;

therefore, the language should foster the creation of the most beautiful and readable code possible.
SOAPScript is also focused on programmer happiness leading to increased productivity. Therefore,
readability and writability are the most important criteria of SOAPScript. When beautiful, elegant
code is written, it is a positive side effect that maintainability is also improved. In order to stay
within the “squeaky-clean” ideology that underlies SOAPScript, there is a certain style guideline that
will be outlined throughout this language summary document.

 SOAPScript is mostly based on Python with the intention of making it strongly typed by
adding some flavors of Java, but differing in the following ways:

1. SOAPScript is strongly typed. Variables must be one of the included data types (see section
3 for more information).

2. SOAPScript is compiled.
3. SOAPScript explicitly states the scope of classes, methods, and attributes.
4. SOAPScript is statically scoped and ergo utilizes early binding.

1.1 Hello World

public void HelloWorld():
 System.print("Hello World")

1.2 Program Structure

 The key organizational concepts in SOAPScript are as followed:

1. Every class must be inside a module (the SOAPScript equivalent to Java’s packages or
C++’s namespaces). Modules can have multiple modules underneath it in a hierarchy, which
is delimited by a period (eg: GrandparentModule.ParentModule.ChildModule).

2. Execution of instructions is sequential.
3. Blocks of code are bounded by meaningful whitespace and colons, much like Python. The

user has the choice to use spaces or tabs to delimit whitespace, but it must be the same
within a single file. The preferred SOAPScript style is to utilize hard tabs.

4. Getters and Setters for all class attributes are created on the fly with the prefixes get and set
followed by the attributes capitalized name (much like Objective-C’s synthesize property).

5. Assignment is delimited by the equal “=” sign.
6. Test for equality is delimited by two equals signs (“==”) and the test for object identity is

delimited by three equals signs (“===”). On the converse, the test for inequality is delimited

Nisco 4

by an exclamation mark and an equal sign (“!=”) and the test for object identity inequality is
delimited by an exclamation mark and two equal signs (“!==”).

The following program example will serve as an introduction to SOAPScript programs.

module Marist:
 public class Student:
 private String firstName, lastName, major

 # Default constructor
 public Student():
 self.setFirstName("")
 self.setLastName("")
 self.setMajor("")

 # Overloaded constructor
 public Student(String fn, String ln, String mjr):
 self.setFirstName(fn)
 self.setLastName(ln)
 self.setMajor(mjr)

 public Boolean hasTechnologyMajor():
 if (self.getMajor() == "Computer Science" ||
 self.getMajor() == "Information Systems" ||
 self.getMajor() == "Information Technology"):
 return True
 else:
 return False

 This example declares a class called Student, under the module Marist. The fully qualified
name of this class is Marist.Student. The class contains three privately scoped attributes, firstName,
lastName, and major. It contains a default, no-arguments constructor and an overloaded constructor
which takes arguments. The accessor and modifier methods (“getters and setters”) are created on
the fly, with no programmer input necessary. This class also has a single method,
hasTechnologyMajor that will return a Boolean if the instance of the Student class has a major that
is equal to Computer Science, Information Systems, or Information Technology.

1.3 Types and Variables

 In sticking with the simplicity of SOAPScript, everything is treated as an object. For
example, the programmer will never have to deal with worrying about a class Integer differing from
a primitive int. Not only will all types be children of Object, but all programmer-defined classes will
be subclassed from the parent class Object as well (this distinction does not need to be explicitly
stated). All types and variables will store a reference to their data. Each type will have methods
defined to cast to different types but will never do so unless explicitly stated (e.g.: an instance of
Decimal can be cast to an Integer, but not without the programmer explicitly stating a cast, and
understanding that there may be a loss of precision).

Nisco 5

1.4 Statements Differing from Python and Java

Statement Example
Constructor public void MyClass():

 self.setAttribute1("")
 self.setAttribute2(42)

public void MyClass(String a, Integer b):
 self.setAttribute1(a)
 self.setAttribute2(b)

If/Else-If/Else Block if (x < 0):
 System.print("Negative Number")
else if (x == 0):
 System.print("Zero")
else:
 System.print("Positive Number")

Casting private Decimal pi = 3.14
private Integer x = 0
Programmer understands lack of precision by
casting a decimal to integer
x = pi.toDecimal()
private String y = ""
y = x.toString()

Defining Arrays &
Dictionaries

private Integer[] intArray = [1, 2, 3, 4]
private Integer{} intDict = {
 'one' : 1,
 'two' : 2,
 'three' : 3,
 'four' : 4,
}

Nisco 6

2. Lexical Structure

2.1 Programs

 A SOAPScript program consists of one or more source files. A source file is an ordered
sequence of (probably Unicode) characters.

Conceptually speaking, a SOAPScript program is compiled using three steps:
1. Transformation, which converts a file from a particular character repertoire and encoding

scheme into a sequence of Unicode characters.
2. Lexical analysis, which translates a stream of Unicode input characters into a stream of

tokens.
3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars

 This specification presents the syntax of the SOAPScript programming language where it
differs from Python and Java.

2.2.1 Lexical grammar where different from Python and Java

 The lexical grammar of SOAPScript is very similar to Python and Java mixed together. Since
Python more heavily influences SOAPScript’s syntax, the proceeding grammars show the
differences between Python and SOAPScript.

<null value> -> Null
<access modifier> -> private

-> public
-> protected

2.2.2 Syntactic (“parse”) grammar where different from Python and Java

 The syntactic grammar for SOAPScript is similar to a blending of Python and java. The
SOAPScript syntactic grammar is outlined below.

<module declaration> -> module <identifier>
<class declaration> -> <access modifier> class <identifier>
<method declaration> -> <access modifier> <object type> <identifier> <parameter list>
 -> <access modifier> <object type> <identifier>
<parameter list> -> <parameter> <parameter list>
 -> <parameter>
<parameter> -> <object type> <identifier>

Nisco 7

2.3 Lexical Analysis

2.3.1 Comments

 There are two types of comments supported by SOAPScript. Single-line comments start
with a the character “#” and extend to the end of the source line. Delimited comments start with
the characters “##” and end at the end of the source line that begins with “##”. Delimited
comments may span multiple lines.

It is not necessary, but it is the preferred SOAPScript style for each line within the delimited
comment block to also start the line with a “#.” Examples and usage of these comments can be
seen in section 4, Examples.

2.4 Tokens

 There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators.
White space and comments are not tokens, though they act as separators for tokens.

Tokens:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

2.4.1 Keywords different from Python or Java

 A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as
an identifier.

 New keywords: Null, public, protected, private, static, function

 Removed keywords: None, @staticmethod, new, is, is not, def

Nisco 8

3. Types

 All data types in SOAPScript are Object types. They are all subclassed from the parent class,
Object. This hierarchy makes arrays and dictionaries of mixed types possible in this statically typed
language.

3.1 Object types

 Integer – a number that can be written without a fractional or decimal component.
 private Integer gradeForThisAssignment = 100

 Decimal – a general purpose, floating-point number that uses double precision as defined by
IEEE 754.
 private Decimal aSliceOfPi = 3.14159265

 Char – a Unicode character.
 private Char firstLetterOfAlphabet = “A”

 String – a set of Chars.
 private String fruitFlies = “Like an apple.”

 Array – a systematic arrangement of data.
 private String[] worthwhileMajors = [“Computer Science”, “Information Systems”,
“Information Technology”]

 private Object[] mixedArray = [42, “Rush”, 3.14]

 Dictionary – an associative array where the keys are of String type.
 private Integer[] myRatingOfLanguages = {

 'COBOL' : -4,
 'Fortran' : 2,
 'Pascal' : 7,
 'Scala' : 9,
 'LISP' : 4,
 'ML' : 3,	
 'Erlang' : 7,
}

private Object[] mixedDictionary = {
 'name' : "Bob Nisco",
 'major' : "Computer Science",
 'graduationYear' : 2014,
}

Nisco 9

4. Examples

4.1 Caesar Cipher

module Caesar:
 public class Cipher:
 # Make a class with one attribute, string
 private String str

 # Default constructor
 public Cipher():
 self.setStr("")

 # Overloaded constructor which takes in a string
 public Cipher(String s):
 self.setStr(s)

 ##
 # An encrypt class method that will set the str variable of
 # this class to the encrypted version of the string based
 # on the Integer shftAmt passed to it
 ##
 public void encrypt(Integer shftAmt):
 private String result = ""
 ##
 # SOAPScript knows that a string is just an array of

Chars under the hood, so no need to use any fancy
notation for iterating over the string,
char by char.

 ##
 for (Char c in self.str):
 result += self.shiftChar(c, shftAmt)
 self.setStr(result)

 ##
 # An overloaded method that not only accepts different

parameters, but is static so that it can be used in other
programs that import the Caesar module, but don't
necessarily want to instantiate an instance of
the Cipher class.

 ##
 public static String encrypt(String str, Integer shftAmt):
 private String result = ""
 for (Char c in str):
 result += self.shiftChar(c, shftAmt)

Nisco 10

 return result

 public void decrypt(Integer shftAmt):
 self.setStr(self.encrypt(shftAmt * -1))

 public static String decrypt(String str, Integer shftAmt):
 return self.encrypt(str, shftAmt * -1)

 private Char shiftChar(Char c, Integer shftAmt):
 ##
 # - The first toASCII() call is actually calling the

Char.toASCII() function.
 # - The toASCII() call at the end is technically

calling the Integer.toASCII() casting method.
SOAPScript is smart enough to infer that we were

 # dealing with integers previously, due to the
toInteger() call and that no other operation was
happening with a variable with a data type other
than Integer.

 ##
 return (((c.toUpper().toASCII() - 65 + shftAmt) % 26)

+ 65).toASCII()

This Caesar cipher example shows off the power of the type system within SOAPScript.
Since all data types are handled as objects, the iteration over a String does not take any extra
boilerplate code, nor does the conversion from a Char to an ASCII value. The flexibility of having
all data types as objects allows for some really powerful, built-in features leading to increased
programmer happiness and overall clean code.

Nisco 11

4.2 Generic Linked List

module LinkedList:
 ##
 # A simple LinkedListNode class to show how
 # generics works within SOAPScript
 ##
 public class LinkedListNode<E>:
 private E data
 private LinkedListNode<E> next

 # Default constructor
 public LinkedListNode<E>():
 self.setData(Null)
 self.setData(Null)

 # Overloaded constructor
 public LinkedListNode<E>(E data):
 self.setData(data)
 self.setNext(Null)

 # Overloaded constructor
 public LinkedListNode<E>(E data, LinkedListNode<E> next):
 self.setData(data)
 self.setNext(next)

 public void insertAfter(LinkedListNode<E> next):
 LinkedListNode<E> oldNext = self.getNext()
 next.setNext(oldNext)
 self.setNext(next)

 public class LinkedList<E>:
 private LinkedListNode<E> head

 public LinkedList<E>():
 self.setHead(LinkedListNode<E>())

 public LinkedList<E>(LinkedListNode<E> first):
 self.setHead(first)

 public LinkedListNode<E> getLast():
 LinkedListNode<E> current = self.getHead()
 while (current.getNext() != Null):
 current = current.getNext()
 return current

Nisco 12

 public void insertAtEnd(E data):
 self.getLast().setNext(LinkedListNode<E>(data))

 public void insertAtEnd(LinkedListNode<E> next):
 self.getLast().setNext(next)

 public static void main(String[] args):
 public LinkedList<String> mySemester =

LinkedList<String>()

 mySemester.insertAtEnd("Theory of Programming

Languages")
 mySemester.insertAtEnd("Database Management Systems")
 mySemester.insertAtEnd("Software Development")
 mySemester.insertAtEnd("Computer Organization &

Architecture")
 mySemester.insertAtEnd("Systems Analysis & Design")

 for (String s in mySemester):
 System.print(s + "\n")

The generic linked list example shows just how cleanly SOAPScript handles generics. It is
nearly effortless to define your own generic class, and it is still fully readable, statically typed, and
does not rely on duck typing for generic classes like Python does.

Nisco 13

4.3 Fibonacci

module Math:
 public class Fibonacci:
 public static Integer fib(Integer i):
 if (i == 0):
 return 0
 else if (i == 1):
 return 1
 return fib(i - 1) + fib(n - 2)

 A simple Fibonacci example that shows how SOAPScript handles recursive functions. This
example outlines the ease of recursion by defining 2 base cases and the recursive call.

4.4 Convert Array to Dictionary

module Example:
 public class ArrToDict:
 private Integer[] arr = [1, 2, 3, 4]

 public ArrToDict():
 public Integer{} dict = {}

for (Integer i in arr):
 dict[i.toString()] = i
 return dict

 A relatively simple example of showing off the powers of converting an array to a dictionary.

