
Cohoon, 1

not(FUN)

Michael Cohoon

If at any point you feel that this documentation is not goofy, please consult pages 38, 39, and 40.

Cohoon, 2

Cohoon, 3

1. Introduction

 not(FUN) (pronounced “Not Fun”) is a modern, beginner-friendly, object-oriented, strongly-

typed programming language. The name is derived from the fact that not(FUN) is not a functional

programming language. not(FUN) takes characteristics from languages like Java and C#, but is different

in the following ways:

1. Conventional arrays, while used behind the scenes, cannot be directly used. Instead, the

preferred style is to use “dynamic arrays,” similar to Java’s ArrayList. These dynamic arrays,

or Dynam, are supported by the not(FUN) language, contain multiple built-in functions, and

allow for the use of generics (denoted with <>).

2. While Java also has packages, in not(FUN) a class is required to be located inside a package.

The package name must be listed with the declaration of the class.

3. In addition to public, private, and package visibility types, the programmer may also define

customized object and variable visibility in order to include or exclude certain classes or

packages from directly accessing data. This must be done in the package’s .properties file.

4. Instead of the ! operator to denote “not,” they keyword not has been designated.

5. The not(FUN) language uses the keywords integer, bool, and decimal in place of

Java’s int, boolean, and double respectfully.

6. There is no automated memory management in not(FUN).

1.1 Hello World

 %% A Hello World example written in not(FUN).

 Console.output(“Hello world!”);

1.2 Program Structure

 The key organizational concepts in not(FUN) are as follows:

1. The beginning point of execution in a class must go through a public entry function (similar

to Java’s main method.

2. The entry function does not have to be void, but it can be.

3. All classes, functions, and loops must encompass the content within brackets to clearly

define and delimit its content.

4. Each bracket must be followed by a forward slash and its definition.

5. All Boolean values must be encapsulated inside of parentheses.

6. The double equals operator (==) is used for assigning values to variables, while the single

equals operator (=) is used for comparisons.

Cohoon, 4

Example Code:

package Utilities.Example

{ \beginclass

 integer max;

 public void findMax(integer x, integer y)

 { \beginfunction

 if(x > y)

 { \beginif

 max == x;

 } \endif

 else

 { \beginelse

 max == y;

 } \endelse

 } \endfunction

 public static void entry()

 { \beginfunction

 findMax(3, 5);

 Console.output(max);

 } \endfunction

} \endclass

 In this example, the class Example is declared in the package Utilities. The class contains

a member called max and two functions. The first function called is findMax() and takes in two

integer parameters. These parameters are local to the function and only be accessed by the

findMax() function. The function is void so it does not return a value, but does change the value of

the class member max. The second function is the entry() function, and is the entry point to the

class. The execution begins in the entry() function, which prints out the value of max to the console.

Cohoon, 5

1.3 Types and Variables

 There are two kinds of types in not(FUN): value types and reference types. Value types are

those in which the variable directly contains the data. Examples of these are primitive types such as

integer or decimal. Reference types are those in which the variable stores references to its data.

Objects are examples of reference types. Multiple variables can both reference the same object, and

therefore either could affect the objects state or data.

1.4 Statements Differing From Java and C#

Statement Example

Expression statement bool b == (false);

integer i == 007;

decimal d == 21.12;

if statement Dynam<decimal> d == Dynam.alloc();

public void addMin(decimal x, decimal y)

{ \beginfunction

 if(x < y)

 { \beginif

 d.add(x);

 } \endif

 else

 { \beginelse

 d.add(y);

 } \endelse

} \endfunction

while statement public Dynam integerToDynam(integer i)

{ \beginfunction

 bool flag == (false);

 Dynam<integer> d == Dynam.alloc();

 while(not(flag))

 { \beginfor

 integer temp == i % 10;

 if(i < 1)

 { \beginif

 d.add(temp);

 i == i / 10;

 } \endif

 else

 { \beginelse

 flag == (true);

 } \endelse

 } \endwhile

Cohoon, 6

 return d;

} \endfunction

for statement public bool initToZero(Dynam<integer> d)

{ \beginfunction

 bool isZero == (true);

 for(integer i == 0; i < d.size(); i++)

 { \beginfor

 %% checks to see if all the

 %% elements are zero

 if(not(d[i] == 0))

 { \beginif

 isZero == (false);

 break;

 } \endif

 } \endfor

 return (isZero);

} \endfunction

1.5 Classes and Objects

 New classes are created using class declarations. The example below is the declaration of a

class called Employee.

 package Resources.Payroll.Employee

 { \beginclass

 String firstName;

 String lastName;

 decimal hourly;

 public Employee(String fName, String lName, decimal hourly)

 { \beginfunction

 self.firstName == fName;

 self.lastName == lName;

 self.hourly == hourly;

 } \endfunction

 } \endclass

Cohoon, 7

 To create an instance of a class, the alloc() function must be called. This allocates memory

for the object and automatically calls the constructor of the class with the values it was passed. A

pointer to the instance’s memory location is returned.

 Employee emp == Employee.alloc(“John”, “Smith”, 14.50);

 The not(FUN) language does not have automatic garbage collecting. Once an object will no

longer be used, the programmer should call the dealloc() function to free up the space that the

object occupied.

 emp.dealloc();

1.5.1 Accessibility

 Each member of a class has a designated visibility, or accessibility. This allows or disallows

certain functions or classes from directly accessing that data member.

Accessibility Meaning
public Access not limited
package Access limited to the package the class is contained in.
protected Access limited to this class or classes derived from this class.
private Access limited to this class.
specified Access is determined by the classes or functions listed in the package’s .properties file.

If no accessibility has been listed for a particular class, the accessibility is defaulted to
package.

1.5.2 Fields

 A field is a variable that is associated with a class or with an instance of a class.

 package Graphics.Color

 { \beginclass

 public static Color Black == Color.alloc(0, 0, 0);

 public static Color White == Color.alloc(255, 255, 255);

 private byte red;

 private byte green;

 private byte blue;

 public Color(byte red, byte green, byte blue)

 { \beginfunction

 this.red == red;

 this.green == green;

 this.blue == blue;

 } \endfunction

Cohoon, 8

 } \endclass

1.5.3 Methods

 A function is a member that implements a computation or action that can be performed by an

object or class.

 The signature of a function must be unique in the class in which the function is declared.

1.5.3.1 Constructors

 The not(FUN) language supports both instance and static constructors. An instance constructor

is a member that implements the actions required to initialize an instance of a class. A static constructor

is a member that implements the actions required to initialize a class itself when it is first loaded.

1.5.3.2 Properties

 Properties are natural extensions of fields. Both are named members with associated types, and

the syntax for accessing fields and properties is the same. However, unlike fields, properties do not

denote storage locations. Instead, properties have assessors that specify the statement to be executed

when their values are read or written.

1.5.3.3 Events

 An trigger is a member that enables a class or object to provide notifications. Clients react to

triggers through trigger handlers. Trigger handlers are attached using the :< operator and removed

using the :> operator. The following example attaches a trigger handler to the Changed events of a

Dynam<String>.

 package Examples.Test

 { \beginclass

 static integer changeCount;

 public void DynamChanged(Object sender, TriggerArgs t)

 { \beginfunction

 changeCount++;

 } \endfunction

 public static void entry()

 { \beginfunction

 Dynam<String> names == Dynam.alloc();

 TriggerHandler t == TriggerHandler.alloc(ListChanged);

 names.Changed :< t;

 names.add(“Christine”);

 names.add(“Luis”);

 names.add(“Anthony”);

 Console.output(changeCount);

Cohoon, 9

 names.dealloc();

 t.dealloc();

 } \endfunction

 } \endclass

1.6 Arrays

 A Dynam, or dynamic array, is a data structure that contains a number of variables that are

accessed through computed indices. The variables contained in a Dynam, also called elements, do not

have to be of the same type. If generics are used to specify a particular type, then specific operations

and functions can be performed on elements on the Dynam. If generics are not used, then any class-

specific functions cannot be used. For example, if a Dynam contains a mixture of Employee objects

and Student objects, then the function getSalary() cannot be used on the Dynam without first

extracting the element and assigning it to a new Employee object. The getName() function can be

used on the elements of the Dynam if getName() is a function specified in a Person class that both

Employee and Student inherit from. However, if the Dynam was specified as being only of

Employee objects, then a function call to getSalary() would be allowed. All primitive types will

automatically be wrapped and unwrapped to objects when being added and extracted from a Dynam.

 The reason that dynamic arrays are used over conventional arrays is because dynamic arrays are

allowed to dynamicly change size. The not(FUN) language is aimed to be beginner-friendly, and it a lot

easier on the programmer to have the aid of many built-in functions to manipulate a Dynam. The

programmer will not need to worry about growing an array or dealing with extra, unused cells at the

end of the array. Conventional arrays are used behind the scenes however. Strings are technically

arrays of characters. Conventional arrays are used behind the scenes because internal operations using

only dynamic arrays would cause unwelcomed overhead.

 Dynam d1 == Dynam.alloc();

 d1.add(„a‟);

 Dynam d2<integer> == Dynam.alloc();

 d2.add(007);

 Dynam d3<String> == Dynam.alloc(“one”, “two”, “three”);

 d3.delete(d3.elementAt(0));

 The first Dynam is created but not given any data. When the add() function is called, the size

increases by one, and the character „a‟ is inserted at the end of the Dynam. Any type of variable can

be added as an element to d1.

 The second Dynam is created also without any original data. When the add() function is

called, the size of the Dynam increases by one and the integer 007 is added to the Dynam. Because d2

can only contain integers, adding another type of variable will result in a compile-time error.

Cohoon, 10

 The third Dynam is created and initialize with the Strings “one,” “two,” and “three” into

the 0th, 1st, and 2nd indices respectively. The element at the 0th index (the String “one”) is then

removed.

Cohoon, 11

2. Lexical Structure

2.1 Programs

 A not(FUN) program consists of one or more source files. A source file is an ordered sequence of

Unicode characters.

 Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and

encoding scheme into a sequence of Unicode characters

2. Lexical Analysis, which translates a stream of Unicode input characters into a stream

of tokens.

3. Syntactic Analysis, which translates the stream of tokens into executable code.

2.2 Grammars

 This specification presents the syntax of the not(FUN) programming language where it differs

from Java and C#.

2.2.1 Lexical Grammar Where Different From Java and C#

 The lexical grammar of not(FUN) is similar to the lexical grammar of C#. However, unlike Java

and C#, identifiers cannot consist of digits or symbols, even if the identifier starts with a character.

 <String> --> “ <character list> <space> <character list> ”

 --> “ <character list> ”

 <identifier> --> <character> <character list>

 --> <character>

 <character list> --> <character> <character list>

 --> <character>

 <digit list> --> <digit> <digit list>

 --> <digit>

 <character> --> a, b, …, y, z

 --> A, B, …, Y, Z

 <space> --> space character

 <digit> --> 0, ..., 9

2.2.2 Syntactic (“Parse”) Grammar Where Differing From Java and C#

 function-statement:

 function-identifier (argument-list)

 { \beginfunction

 embedded-statement

 } \endfunction

Cohoon, 12

 if-statement:

 if ((boolean-expression))

 { \beginif

 embedded-statement

 } \endif

 if-else-if-statement:

 if ((boolean-expression))

 { \beginif

 embedded-statement

 } \endif

 else if ((boolean-expression))

 { \beginelseif

 embedded-statement

 } \endelseif

 if-else-statement:

 if ((boolean-expression))

 { \beginif

 embedded-statement

 } \endif

 else ((boolean-expression))

 { \beginelse

 embedded-statement

 } \endelse

 for-statement:

 for (initialization-statement; comparative-expression; increment-statement)

 { \beginfor

 embedded-statement

 } \endfor

 while-statement:

 while ((boolean-expression))

 { \beginwhile

 embedded-statement

 } \endwhile

Cohoon, 13

 do-while-statement:

 do()

 { \begindowhile

 embedded-statement

 while ((boolean-expression)) } \enddowhile

2.2.3 Grammar Notation

 The lexical and syntactic grammars are presented using BNF grammar productions. Each

grammar production defines a non-terminal symbol and the possible expansion of that non-terminal

symbol into sequences of non-terminal or terminal symbols. In grammar productions non-terminal

symbols are shown in italic type, and terminal symbols are shown in a fixed-width font.

 The first line of a grammar production is the name of the non-terminal symbol being defined,

followed by a colon. Each successive indented line contains a possible expansion of the non-terminal

given as a sequence of non-terminal or terminal symbols. For example, the production:

while-statement

 while((boolean-expression))

 { \beginwhile

 embedded-statement

 } \endwhile

defines a while-statement to consist of the token while, followed by the token “(“, followed by

another token “(“, followed by a boolean-expression, followed by the token “)”, followed by another

token “)”, followed by the token “{ \beginwhile” to denote the start of the while block, followed

by an embedded-statement, followed by the token “{ \endwhile” to denote the termination of the

while-statement.

 When there is more than one possible expansion of a non-terminal symbol, the alternatives are

listed on separate lines. For example, the production:

 statement-list:

 statement

 statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a

statement. In other words, the definition is recursive and specifies that a statement list consist of one or

more statements.

Cohoon, 14

2.3 Lexical Analysis

2.3.1 Line Terminators

 Line terminators divide the characters of not(FUN) into source file lines.

 new-line:

 Carriage return character(U+000D)

 Line feed character(U+000A)

 Carriage return character(U+000D) followed by a line feed character(U+000A)

 Next line character(U+0085)

 Line separator character(U+2028)

 Paragraph separator character(U+2029)

2.3.2 Comments

 Two forms of comments are supported: single line comments and delimited comments. Single-

line comments start with the characters %% and are extended to the end of the source line. Delimited

comments start with the characters %%\ and end with the characters %%/. Delimited comments may

span multiple lines. Comments do not nest.

2.3.3 White Space

 White space is defined as any character with Unicode class Zs (which includes the space

character) as well as the horizontal tab character, the vertical tab character, and the form feed

character.

 whitespace:

 Any character with Unicode class Zs

 Horizontal tab character(U+0009)

 Vertical tab character(U+000B)

 Form feed character(U+000C)

2.4 Tokens

 There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators.

White space and comments are not tokens, though they act as separators for tokens.

 token:

 identifier

 keyword

 integer-literal

 decimal-literal

Cohoon, 15

 character-literal

 string-literal

 operator-or-punctuator

2.4.1 Keywords different from Java and C#

 A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an

identifier.

 List of reserved keywords:

 \beginclass

 \endclass

 \beginfunction

 \endfunction

 \beginif

 \endif

 \beginfor

 \endfor

 \beginwhile

 \endwhile

 \begindowhile

 \enddowhile

 \beginelseif

 \endelseif

 Dynam

 integer

 uinteger

 decimal

 udecimal

 nil

 specified

 Removed keywords:

 goto

 int

 double

 short

 long

 float

 namespace

Cohoon, 16

3. Basic Concepts

3.1 Application Startup

 Application startup occurs when the execution environment calls a designated function, which is

referred to as the application’s entry point. This entry point function is always named entry, and can

have one of the following signatures:

 public static void entry()

 public static void entry(Dynam <String> args)

 public static integer entry()

 public static integer entry(Dynam <String> args)

 public static String entry()

 public static String entry(Dynam <String> args)

3.2 Application Termination

 Application termination returns control to the execution environment.

 If the return type of the application’s entry point function is int, the value returned serves as

the application’s termination status code. The purpose of this code is to allow communication of

success or failure to the execution environment.

 If the return type of the application’s entry point function is String, the value returned is a

precise String of the information pertaining to the success or failure.

 If the return type of the application’s entry point function is void, the } \endfunction

token terminates the function. To break out of the function earlier, the return statement will also

result in function termination. Either way, the no information regard success or failure is given from a

void entry().

3.3 Scope

 The not(FUN) language utilizes static scope. Static scope is when the scope of a variable is

determined prior to execution, and is based on the spatial relationship of the subprograms. If a variable

is assigned values more than once, the closest one to the call is used. If the variable is rewritten in that

subprogram, that one is used. If not, it goes up a function call to check to see if that layer has the

variable.

Cohoon, 17

 Example code:

 package Examples.SuperExplosion

 { \beginclass

 integer timeToExplosion == 007;

 public static void entry(Dynam<String> args)

 { \beginfunction

 integer timeToExplosion == 21;

 tilDoom();

 } \endfunction

 public void tilDoom()

 { \beginfunction

 Console.output(timeToExplosion);

 } \endfunction

 } \endclass

 Tree diagram:

Cohoon, 18

3.4 Memory Management

 The not(FUN) programming language does not employ automatic memory management.

Programmers are required to manually allocate and deallocate the memory required for objects. The

alloc() function should be called when instantiating the object with values, and when the object is

no longer needed, the dealloc() function should be called to free up the memory it was occupying.

This greatly differs from Java which uses a garbage collector to automatically manage memory. Hidden

pointers are used, and this process is similar to C#, which uses a destructor function to destruct an

instance of a class.

Cohoon, 19

4. Types

 In the not(FUN) programming language, types are divided into two main categories: value types

and reference types.

4.1 Value Types

 not(FUN) has eight different value types, and stores them on the stack. They are:

 bool, integer, uinteger, decimal, udecimal, char, byte, enum

4.2 Reference Types

 not(FUN) contains reference types which are stored on the heap. The reference types include:

 String, Dynam, and user-defined objects

 It is not possible for the programmer to directly access pointers.

Cohoon, 20

5. Variables

 Variables represent storage locations. Every variable has a type that determines what values

can be stored in that variable. The not(FUN) programming language is a type-safe language.

5.1 Variable Categories

Types and examples:

bool – Stores a value of either true or false

bool b == (false);

integer – Stores any signed numerical value that is a whole number

integer i == -5921;

uinteger – Stores any unsigned numerical value that is a whole number

uinteger ui == 315;

decimal – Stores any signed numerical value that is contains a floating point portion

decimal d == 0.235;

udecimal – Stores any unsigned numerical value that is contains a floating point portion

udecimal ud == 24.15;

char – Stores any single Unicode character

char c == „a‟;

byte – Stores an eight-bit signed two’s complement integer

byte b == 100;

enum – Stores a named value

enum Planets (MERCURY, VENUS, EARTH, MARS, JUPITER, SATURN, URANUS,

 NEPTUNE, PLUTO); %% I learned Pluto was a planet, so it

 is staying as one.

String – Stores a series of Unicode characters, including characters, symbols, spaces, and digits.

String s == “This is a test String for Alan. Moo.”;

Dynam – Stores different types into a single type (Dynam) in the form of a dynamic array

Dynam dyn == Dynam.alloc(“one”, 2, „t‟);

Cohoon, 21

 Static variables are those that do not belong to a certain function or object. They belong to the

class and do not need to be instantiated. There is only one copy that gets accessed. The keyword

static is used to denote static variables.

 static String bestBond = “Craig”; %% Just kidding. :)

 Constant variables are those who value cannot be changed. Once a constant variable has been

instantiated, it must forever remain that value. The keyword const is used to denote constant

variables.

 const uinteger priceOfGas = 5;

Cohoon, 22

6. Parameter Passing

6.1 Methods

 not(FUN) utilizes positional parameters, which is where a parameter is linked to its position and

must be specified in the order in which it appears. Each parameter must go in its correct position, and

parameters may not be omitted. Furthermore, in-mode semantics are used to implement pass-by-value

parameter passing. When a parameter is passed by value, the value of the actual parameter is used to

initialize the corresponding formal parameter, which then acts as a local variable in the subprogram.

This is done by copying the actual parameter and assigning it to the formal parameter.

6.2 Examples

package Examples.GPA

 { \beginclass

 public static void entry()

 { \beginfunction

 decimal gpaChem == 3.5;

 decimal gpaMath == 4.0;

 integer numClasses == 2;

 decimal gpaTotal == calc(gpaChem, gpaMath,

 numClasses);

 } \endfunction

 public decimal calc(decimal gpaOne, decimal gpaTwo,

 numClasses)

 { \beginfunction

 decimal gpa == (gpaOne + gpaTwo) / numClasses;

 return gpa;

 } \endfunction

 } \endclass

Cohoon, 23

 In this example, the entry() function does not take any parameter or have a return address.

The values of the actual parameters gpaChem, gpaMath, and numClasses from entry() are

copied to the formal parameters of gpaOne, gpaTwo, and numClasses in calc() respectively.

The value of the variable gpa is returned and assigned to the variable gpaTotal in entry(). The

return address is then popped off the stack so the program knows where to resume from.

Cohoon, 24

package Examples.Point

 { \beginclass

 integer x;

 integer y;

 bool isFirstQuadrant;

 public Point(integer x, integer y)

 { \beginfunction

 self.x == x;

 self.y == y;

 if(getQuadrant() == 1)

 { \beginif

 self.isFirstQuadrant == (true);

 } \endif

 else

 { \beginelse

 self.isFirstQuadrant == (false);

 } \endelse

 } \endfunction

 public integer getQuadrant()

 { \beginfunction

 if((self.x >= 0) && (self.y >= 0))

 { \beginif

 return 1;

 } \endif

 else if((self.x < 0) && (self.y >= 0))

 { \beginelseif

 return 2;

 } \endelseif

 else if((self.x < 0) && (self.y < 0))

 { \beginelseif

 return 3;

 } \endelseif

 else

 { \beginelse

 return 4;

 } \endelse

 } \endfunction

Cohoon, 25

 public static void entry()

 { \beginfunction

 Point p == Point.alloc(2, 2);

 Console.output((p.isFirstQuadrant()));

 p.dealloc();

 } \endfunction

 } \endclass

 In this example, entry() does not have any local variables or parameters. The entry()

function has a Point object called p, and a reference to p is placed on the activation record. The

Point constructor does not have any local variables, but it does have two parameters called x and y.

The return address of entry() is also stored. The getQuadrant() function is called by Point

constructor, and getQuadrant() does not have any local variables or parameters. It stores the

return address of the Point constructor.

Cohoon, 26

7. Conversions

 A conversion enables an expression to be treated as being of a particular type.

7.1 Implicit Conversions

 Implicit conversions are those done automatically. The not(FUN) programming language does

not support implicit conversions. The exception to this rule is division operator dealing with dividing an

integer by a decimal. If this is the case, and the quotient is being assigned to another decimal

variable, the integer will automatically be converted to a double for just that calculation.

Otherwise, if there is a type mismatch, an appropriate error will be printed to the console.

7.2 Explicit Conversions

 Explicit conversions are those done intentionally by the programmer to convert an expression to

a particular type or to convert one type to another. This is done through casting. The programmer must

specify the type to convert by enclosing the type inside parentheses before the variable or expression.

 Conversion example:

 integer i == 3;

 Console.output((decimal) i);

 In the above example, the output is 3.0 and not 3. This is because the integer value was

converted to a decimal.

Cohoon, 27

8. Statements

 Examples of statements in not(FUN) that differ from Java and C#, as noted in the introduction:

Dynamic array example:

 Dynam<integer> dyn == Dynam.alloc();

 dyn.add(3);

 dyn.add(0);

 dyn.add(1);

 dyn.delete(d3.elementAt(1));

 Console.output(dyn);

 dyn.dealloc();

 The output of this example is: 3, 1. It is formatted through an implicit call to the toString()

function.

 Package and class header example:

 package Bond.DieAnotherDay.Brosnan

 { \beginclass

 %% embedded statements

 } \endclass

 In this case, the class name is Brosnan, but the full package path must be included.

 Custom visibility example:

 In the class:

 package ExampleCode.Caterpillar

 { \beginclass

 specified String hippo == “User-defined visibility.”;

 } \endclass

 In the Caterpillar.properties file:

 specified = [self, ExampleCode.TuringMachine,

 ExampleCode.Stopwatch, Crazy.Awesome];

 In this example, only the classes TuringMachine and Stopwatch in the ExampleCode

package, Awesome in the Crazy package, and the Caterpillar class itself can directly see and

access the String hippo.

Cohoon, 28

 not operator example:

 if(not(somethingStrangeInTheNeighborhood))

 { \beginif

 goOutside();

 } \endif

 else

 { \beginelse

 callGhostBusters();

 } \endelse

 Primitive type example:

 integer i == 11;

 bool b == (false);

 decimal d == 6.12;

 Memory management example:

 Ninja n == Ninja.alloc(); %% to allocate new memory

 n.dealloc(); %% to deallocate memory used by n

Cohoon, 29

9. Example Programs

 package Math.Stuff.Fibonacci

 { \beginclass

 public integer nthNumber(integer n)

 { \beginfunction

 if(n <= 2)

 { \beginif

 return 1;

 } \endif

 else

 { \beginelse

 return nthNumber(n – 1) + nthNumber(n – 2);

 } \endelse

 } \endfunction

 public static void entry()

 { \beginfunction

 integer num == Console.input.Integer();

 Console.output(nthNumber(num));

 } \endfunction

 } \endclass

 The above example is the Fibonacci sequence written in not(FUN). The class and package are

specified at the beginning of the class, and keywords denote the start and end of all content enclosed

inside of a brace. This makes it easier for the programmer to determine what function or loop ends at

which brace. Input from the user is neatly built in through the console function, and the type of input

can be specified at the point of reading. Console.input.Integer () expects to receive and

integer, and if that does not happen, an exception is thrown and the user is prompted that the input

must be an integer. Alternatively, Console.input.getInput() can be used to receive any

keyboard regardless of its type. Printing to the console is also very simple, and

Console.output(nthNumber(num)) is all that is required to print the nth number of the

sequence.

Cohoon, 30

 package Schools.Classroom.Student

 { \beginclass

 String name;

 integer grade;

 %% Class constructor

 public Student(String name, integer grade)

 { \beginfunction

 self.name == name;

 self.grade == grade;

 } \endfunction

 public double getClassAverage(Dynam<Student> dyn)

 { \beginfunction

 integer sum == 0;

 for(integer i == 0; i < dyn.size(); i++)

 { \beginfor

 sum == sum + dyn[i].getGrade();

 } \endfor

 return sum / dyn.size();

 } \endfunction

 public integer getGrade()

 { \beginfunction

 return self.grade;

 } \endfunction

 public static void entry()

 { \beginfunction

 Student s1 == Student.alloc(“Chico”, 80);

 Student s2 == Student.alloc(“Harpo”, 95);

 Student s3 == Student.alloc(“Groucho”, 60);

 Dynam<Student> students == Dynam.alloc(s1, s2, s3);

 Console.output(getClassAverage(students));

Cohoon, 31

 Student s4 == Student.alloc(“Alan”, -2);

 students.add(s4);

 Console.output(getClassAverage(students));

 s1.dealloc();

 s2.dealloc();

 s3.dealloc();

 s4.dealloc();

 students.dealloc();

 } \endfunction

 } \endclass

 In the example above, the class Student is implemented in the not(FUN) programming

language. The Student objects are created and then stored in the Dynam called students. The

class average is calculated by passing the Dynam into the function and traversing it, storing each grade

into a sum variable. The sum is the dividing by the size of the Dynam (the number of Students) and is

returned. In this scenario, a student misbehaved in another class and had to be put into this classroom.

Thus, the student needs to be stored into the Dynam containing all of the Student objects. If a Java

array was used, we would need to spend time growing the array. In not(FUN), the Dynam is a dynamic

array that automatically increases in size when a new element is added, and automatically shrinks when

an element is removed. This is quicker and easier on the programmer. The two outputs would be 78

and 58 in that order. Since the fourth student’s grade was so low, the class did not get their pizza party.

Cohoon, 32

 package Network.Web

 { \beginclass

 public static Document download()

 { \beginfunction

 WebClient c == WebClient.alloc(“www.labouseur.com”);

 Document d == Document.alloc(c.getDocument());

 c.dealloc();

 return d;

 } \endfunction

 public static void entry()

 { \beginfunction

 Document doc == Document.alloc(download());

 Console.output(doc);

 doc.dealloc();

 } \endfunction

 } \endclass

 In the above example, it can be seen how not(FUN) deals with memory management. When the

programmer needs to reserve memory for an object, the programmer must call the alloc() function.

Any parameters passed into the alloc() function are passed directly into the constructor of that

object. Once the programmer is certain that the object will no longer be used or referenced, the

dealloc() function should be called to free up the memory space the object was using.

Cohoon, 33

 package Examples.Math

 { \beginclass

 public static integer floor(decimal d)

 { \beginfunction

 return (integer) d;

 } \endfunction

 public static integer ceiling(decimal d)

 { \beginfunction

 integer i == (integer) d;

 if(d = (decimal) i)

 { \beginif

 return i;

 } \endif

 else

 { \beginelse

 return i + 1;

 } \endelse

 } \endfunction

 public static void entry()

 { \beginfunction

 decimal dec == 3.14;

 Console.output(dec.floor());

 Console.output(dec.ceiling());

 } \endfunction

 } \endclass

 The above example shows the explicit conversions of not(FUN). If a variable is to be converted

to a different type, the type must be specified in parentheses preceding the variable. This class used

casting to implement the floor() and ceiling() functions for decimals. Unlike Java, in the

not(FUN) programming language, the == operator is used for assignment, and the = operator is used for

comparison.

Cohoon, 34

10. Conclusion

 The not(FUN) programming language incorporates what modern object-oriented programming

languages do well, and makes adjustments to the areas that have some issues. The not(FUN) language

was supposed to be beginner-friendly, and that is accomplished in many ways. Both output and input to

the console are extremely easy, and they simply require the programmer to call a built-in function.

When reading keyboard data, the programmer has the option of specifying what data type he is looking

for, and if a different type is received, an exception is thrown and the user is automatically prompted.

After every bracket in a class, function, loop, and if-statement, the programmer is required to

denote what the bracket is doing and what code it is containing. This visually allows the programmer to

determine what code block is finishing where, and allows for an easier time for beginner programmers

to insert code into the proper locations. This feature also promotes self-commenting code.

 An important new feature to the not(FUN) language is the specified accessibility. This

feature enables the programmer to specify what classes and packages can directly see and access a

certain variable or function. The visibility is set in the .properties file of the class, and all variables or

functions in that class that have the specified visibility can only be accessed by the classes and

packages explicitly stated in the .properties file. This new feature enables the programmer to finely

select only the classes that should be allowed to see this data, promoting data privacy and security. This

capability was not implemented in Java or C#.

 While arrays are used behind the scenes, the programmer cannot directly implement the use of

arrays. Instead, the programmer is encouraged to use the Dynam, or dynamic array. The Dynam is

similar to Java’s ArrayList, and its size dynamically changes depending on the number of elements inside.

If the Dynam is full but needs to add another element, it automatically will add another cell to insert the

new data. If an item is removed from the Dynam, the size is automatically decremented, saving space in

Cohoon, 35

memory. As arrays cannot dynamically change in size, the programmer would either need to grow the

array, or have unused cells occupying memory.

 The programmer is unable to directly utilize pointers, and functions implement pass-by-value

parameter passing. This is done to ensure that memory is not corrupted or deleted when it should not

have been. Also, the programmer must conduct his own memory management. When an object is

created, the alloc() function is called. This allocates space in memory and automatically calls the

constructor of the object. When the programmer is finished using an object, the dealloc() function

should be called to free up the space that the object was in. This allows for other data to be stored in

that location. Because memory management is left for the programmer to control, there are no long

pauses caused by the garbage collector hijacking the program.

 The keywords that not(FUN) supports increases code readability. The self-commenting code

allows for others to read through the code and efficiently understand the process. Because of the code

readability, an idea of strong writability is slightly compromised. The rationale behind favoring

readability over writability is this: code that is easier to read and understand is easier to debug.

Readability promotes “debugability” and allows for multiple programmers to efficiently and effectively

understand and analyze code segments. Easy-to-follow code is also well suited for beginning

programmers.

 Overall, I believe that not(FUN) programming language has a some very useful features that I

wish that real, modern languages incorporated. Specifically, the ability to set custom accessibility limits

for variables or functions would be extremely useful, allowing for very specific accesses to certain pieces

of data. The language itself may sometimes be a little bulky, but it is an easy-to-follow, simple language

that has a powerful capacity to automate certain functions that Java and C# do not include. Many

unique ideas from this language have the potential to be valuable to the programmer, and if real

Cohoon, 36

languages incorporated some of these possibilities, it would be easier to create secure and efficient

code.

Cohoon, 37

Cohoon, 38

Cohoon, 39

Cohoon, 40

Cohoon, 41

