
  

 i  

 

 

 

 

 

 

Shingle 

Language Specification 
Version 1.0.0 

 

 



Shingle Language Specification Skyler Dodge 

  

 1  

1. Introduction 

Shingle is a simple, modern, object-oriented, and (strongly) type-safe programming language. Based on Java 
and C++, but differing in the following ways: 

1. Brackets have been removed and instead Start and End determine when each function or class 
initiates and stops. 

2. Input is used to get user data from keyboard rather than System.in or cin. 

3. Show is used to output to the screen rather than System.out.println or cout. 

1.1 Hello world 
Start class HelloWorld 
 Start static void Main() 
  Show “Hello World”; 
 End Main 
End class HelloWorld 
 

1.2 Program structure 
The key organizational concepts in Shingle are as follows: 

1. Start to determine when each function or class is initiated. 

2. End to determine when each function or class is finished. 

3. Indentations to help programmer see the structure more clearly. 

This example 
Start using namespace Acme.Collections  
 Start public class Stack  
  public Entry top; 

  Start public void Push(object data) 
   top = new Entry(top, data); 
  End Push 
 
  Start public object Pop() 
   Start if (top = null) 

throw new InvalidOperationException(); 
else 
 object result = top.data; 
 top = top.next; 
 return result; 
End if 

  End Pop 
 

  Start private class Entry  
   public Entry next; 
   public object data; 



Shingle Language Specification Skyler Dodge 

  

 2  

   Start public Entry(Entry next, object data) 
    this.next = next; 
    this.data = data; 
   End Entry 
  End class Entry 
 End class Stack 
End namespace Acme.Collections 

declares a class named Stack in a namespace called Acme.Collections. The fully qualified name of this 
class is Acme.Collections.Stack. The class contains several members: a field named top, two methods 
named Push and Pop, and a nested class named Entry. The Entry class further contains three members: a 
field named next, a field named data, and a constructor.  

 

1.3 Types and variables 
There are two kinds of types in Shingle: value types and reference types. Variables of value types directly 
contain their data whereas variables of reference types store references to their data, the latter being known as 
objects. With reference types, it is possible for two variables to reference the same object and thus possible for 
operations on one variable to affect the object referenced by the other variable.  
 

1.4 Statements Differing from Java and C++ 
 

Statement Example 

Expression statement Start static void Main() 
 int i = 123;      
 Show i;  
 i++; 
   Show i; 
End Main 

if statement Start static void Main(string[] args) 
 Start if (args.Length == 0)  
  Show "No arguments"; 
 else 
      Show "One or more arguments"; 
 End if 
End Main 

while statement Start static void Main() 
 int x = 0; 

   Start while (x < 5) 

      Show x; 

      x++; 

   End while 
End Main 

for statement Start static void Main() 
 Start for (int i = 0;i < 5;i++) 

      Show x; 

   End for 
End Main 

 
 

 



Shingle Language Specification Skyler Dodge 

  

 3  

1.5 Classes and objects 
New classes are created using class declarations.  

The following is a declaration of a simple class named Point: 
Start public class Point  
 public int x, y; 

 Start public Point(int a, int b)  
  x = a; 
  y = b; 
 End Point 
End class Point 

Instances of classes are created using the new operator, which allocates memory for a new instance, invokes a 
constructor to initialize the instance, and returns a reference to the instance. 

Point p1 = new Point(0, 0); 
Point p2 = new Point(10, 20); 

The memory occupied by an object is automatically reclaimed when the object is no longer in use. It is neither 
necessary nor possible to explicitly deallocate objects in Shingle, though you may be able to coax the garbage 
collector into action early. 

1.5.1 Accessibility 
Each member of a class has an associated accessibility, which controls the regions of program text that are able 
to access the member. There are three possible forms of accessibility. These are summarized in the following 
table. 
 
Accessibility Meaning 
public Access not limited 
protected Access limited to this class or classes derived from this class 
private Access limited to this class 

 

1.5.2 Fields 
A field is a variable that is associated with a class or with an instance of a class. 

Start public class Color  
 public static Color Black = new Color(0, 0, 0); 
 public static Color White = new Color(255, 255, 255); 

 private byte r, g, b; 

 Start public Color(byte x, byte y, byte z) 
  r = x; 
  g = y; 
  b = z; 
 End Color 
End class Color 

 

1.5.3 Methods 
A method is a member that implements a computation or action that can be performed by an object or class.  

The signature of a method must be unique in the class in which the method is declared.  

 



Shingle Language Specification Skyler Dodge 

  

 4  

1.5.3.1 Constructors 
Shingle supports both instance and static constructors. An instance constructor is a member that implements the 
actions required to initialize an instance of a class. A static constructor is a member that implements the actions 
required to initialize a class itself when it is first loaded. 

1.5.3.2 Properties 
Properties are a natural extension of fields. Both are named members with associated types, and the syntax for 
accessing fields and properties is the same. Unlike fields, properties do not denote storage locations, but rather 
have accessors that specify the statements to be executed when their values are read or written. 

1.5.3.3 Events 
An event is a member that enables a class or object to provide notifications. Clients react to events through event 
handlers. Event handlers are attached using the += operator and removed using the -= operator. The following 
example attaches an event handler to the Changed event of a List<string>. 

Start public class Test 
 static int changeCount = 0; 

 Start static void ListChanged(object sender, EventArgs e) 
     changeCount++; 
 End ListChanged 
 
 Start static void Main() 
  List<string> names = new List<string>(); 
  names.Changed += new EventHandler(ListChanged); 
  names.Add("Christine"); 
  names.Add("Luis"); 
  names.Add("Anthony"); 
  Show changeCount;  // Outputs "3" 
 End Main 
End class Test 

 

1.6 Arrays 
An array is a data structure that contains a number of variables that are accessed through computed indices. The 
variables contained in an array, also called the elements of the array, are all of the same type, and this type is 
called the element type of the array. The following example allocates a one-dimensional array. 

int[] a1 = new int[10]; 

The a1 array contains 10 elements of type int. 



 5 

2. Lexical structure 

2.1 Programs 
A Shingle program consists of one or more source files. A source file is an ordered sequence of (probably 
Unicode) characters.  

Conceptually speaking, a program is compiled using three steps: 

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into a 
sequence of Unicode characters. 

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.  

3. Syntactic analysis, which translates the stream of tokens into executable code. 

2.2 Grammars 
This specification presents the syntax of the Shingle programming language where it differs from Java and C++. 

2.2.1 Lexical grammar where different from Java and C++ 
A Shingle program cannot allow a keyword or reserved word to be used as a user-defined identifier.  It also does 
not allow for names to be re-initialized in the same scope. 

 

2.2.2 Syntactic (“parse” ) grammar where different from Java and C++ 
A Shingle program contains a Start command at the beginning of each call, and an End command at the finish 
of each call.  Initialization can only occur within these commands.  Each Start command must have an End 
command in order to terminate.  Identifiers of the same type can be concatenated or added together, but different 
types cannot. 

 

2.2.3 Grammar notation 
The lexical and syntactic grammars are presented using BNF grammar productions. Each grammar production 
defines a non-terminal symbol and the possible expansions of that non-terminal symbol into sequences of non-
terminal or terminal symbols. In grammar productions, non-terminal symbols are shown in italic type, and 
terminal symbols are shown in a fixed-width font.  

The first line of a grammar production is the name of the non-terminal symbol being defined, followed by a 
colon. Each successive indented line contains a possible expansion of the non-terminal given as a sequence of 
non-terminal or terminal symbols. For example, the production: 

while-statement: 
Start while   (   boolean-expression   ) 

          embedded-statement 

      End while 

defines a while-statement to consist of the token Start, followed by the token while, followed by the token 
“(”, followed by a boolean-expression, followed by the token “)”, followed by an embedded-statement, 
followed by the token combination End while to denote the termination of the while-statement. 



Shingle Language Specification Skyler Dodge 

  

 6  

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on separate 
lines. For example, the production: 

statement-list: 
statement 
statement-list   statement 

defines a statement-list to either consist of a statement or consist of a statement-list followed by a statement. In 
other words, the definition is recursive and specifies that a statement list consists of one or more statements. 

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the phrase 
“one of” may precede a list of expansions given on a single line. This is simply shorthand for listing each of the 
alternatives on a separate line. For example, the production: 

real-type-suffix:  one of 
F  f  D  d  M  m 

is shorthand for: 

real-type-suffix: 
F 

f 

D 

d 

M 

m 

 

2.3 Lexical analysis 

2.3.1 Line terminators 
Line terminators divide the characters of a Shingle source file into lines. 

new-line: 
Carriage return character (U+000D) 
Line feed character (U+000A) 
Carriage return character (U+000D) followed by line feed character (U+000A) 
Next line character (U+0085) 
Line separator character (U+2028) 
Paragraph separator character (U+2029) 

2.3.2 Comments 
Two forms of comments are supported: single-line comments and delimited comments. Single-line comments 
start with the characters // and extend to the end of the source line. Delimited comments start with the 
characters /* and end with the characters */. Delimited comments may span multiple lines, but do not nest.  

2.3.3 White space 
White space is defined as any character with Unicode class Zs (which includes the space character) as well as 
the horizontal tab character, the vertical tab character, and the form feed character. 

whitespace: 
Any character with Unicode class Zs 
Horizontal tab character (U+0009) 
Vertical tab character (U+000B) 
Form feed character (U+000C) 



Shingle Language Specification Skyler Dodge 

  

 7  

2.4 Tokens 
There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space and 
comments are not tokens, though they act as separators for tokens. 

token: 
identifier 
keyword 
integer-literal 
real-literal 
character-literal 
string-literal 
operator-or-punctuator 

 

All valid tokens in Shingle: Start, End, Show, Input, int, double, char, string, boolean, 
 and any user-defined identifiers or names. 

 

2.4.1 Keywords different from Java or C++ 
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier except 
when prefaced by the @ character. 

New keywords:  one of 
Start   End  Show  Input 

 

Removed  keywords:  
do   then   System.out.println  cout  System.in  cin 

 



Shingle Language Specification Skyler Dodge 

  

 8  

3. Basic concepts 

3.1 Application Startup 
Application startup occurs when the execution environment calls a designated method, which is referred to as 
the application's entry point. This entry point method is always named Main, and can have one of either of the 
following signatures: 

Start static void Main()...End Main 

Start static void Main(string[] args)...End Main 

As shown, program cannot begin or finish without the Start and End commands.  Also shown is the ability to 
supply Main with an array of string arguments. 

3.2 Application termination 
Application termination returns control to the execution environment.  

If the return type of the entry point method is void, reaching the outer-most end which terminates that method, 
or executing a return statement that has no expression, results in a termination status code of 0. The purpose 
of this code is to allow communication of success or failure to the execution environment. 

 

3.3 Scope 
Start static void Main()        
 int x = 5; 
 Start void Sub1(int a) 
  int x = a-1; 
  Sub2(x);            Symbol Table Diagram: 
 End Sub1 
 Start Sub2(int a)  
  return a-2; 
 End Sub2 
 Sub1(x); 
End Main 

 

3.4 Automatic memory management 
Shingle employs automatic memory management, which frees developers from manually allocating and freeing 
the memory occupied by objects. Automatic memory management policies are implemented by a garbage 
collector. It differs from Java and C++ in the following ways: 

1. Within a program, garbage collection and deletion of identifiers to free up space can be forced. 

2. Within a given scope, identifiers are kept until they are no longer needed or already used. 

3. Non-used identifiers at termination of program are kept until program is re-initialized. 

Static scoping: Reference to x is to Main's x 
Dynamic scoping: Reference to x is to Sub1's x 



Shingle Language Specification Skyler Dodge 

  

 9  

4. Types 

Shingle types are divided into two main categories: Value types and reference types.  

4.1 Value types (different from Java and C++) 
 int, double, char, string, boolean 

 

4.2 Reference types (differing from Java and C++) 
 &int, &string 

 



Shingle Language Specification Skyler Dodge 

  

 10  

5. Variables 

Variables represent storage locations. Every variable has a type that determines what values can be stored in the 
variable. Shingle is a type-safe language 

5.1 Variable categories 
int: any number without a decimal point can be stored 
 Start static void Main() 
  int a = 0; 
  int b = -5000; 
  int c = 5000; 
 End Main 
 

double: any number with a decimal point can be stored 
 Start static void Main() 
  double a = .5; 
  double b = -5000.12345; 
  double c = 5000.12345; 
 End Main 

char: any single character can be stored 
 Start static void Main() 
  char a = ‘A’; 
  char b = ‘\t’; 
  char c = ‘#’; 
 End Main 

string: any combination of characters can be stored, or even one character 
 Start static void Main() 
  string a = “Hello World”; 
  string b = “Hi, this is fun…\t NOT!”; 
  string c = “\n”; 
 End Main 
 

boolean: true or false can be stored 
 Start static void Main() 
  boolean flag = true; 
  boolean otherflag = false; 
 End Main 
 



Shingle Language Specification Skyler Dodge 

  

 11  

6. Paramater Passing 

 

6.1 Method 
Methods that strictly use In parameters are looping functions such as for and while.  Since the internal number 
is only used as a looping organizational tool, there is no return of the value. 

Methods that strictly use Out parameters are any methods that return a value. 

Methods that use InOut parameters are methods that take an inputted value, change it, and eventually output a 
value of the same type.  These methods also tend to use In and Out parameters. 

Pass by value is used to initiate former parameters.  These involve calls to subroutines that give a value back up 
to the method that called it. 

Pass by reference is used by InOut parameters, but sends the address of the value to the called subprograms. 

 

6.2 Examples 
 Pass-by-Value example:          Activation record: 

 Start public void Main()    Main - 
 int a = 5; 
 Start public Sub3(int x)   Sub3 - 
  return x-3; 
 End Sub3 
 Sub3(a); 
End Main 
 
Pass-by-reference example:          Activation record: 
 
Start public void Main()    Main - 
 int a = 5; 
 Start public Sub(int x, int &y) Sub  - 
  return x-y; 
 End Sub 
 Sub(a,3); 
End Main 
 

Local variable: a = 5 

Local variable: x 

Parameter: int 

Return address 

Local variable: a = 5 

Local variables: x, &y 

Parameter: int 

Return address 



Shingle Language Specification Skyler Dodge 

  

 12  

7. Conversions 

A conversion enables an expression to be treated as being of a particular type.  

 

7.1 Implicit conversions (are bad in Shingle) 
Start static void Main() 
 boolean flag = true; 
 Show “True is actually int = 1.\n”; 
 Show “False is actually int = 0.”; 
End Main 
   

 

7.2 Explicit conversions (much better in Shingle) 
Start static void Main() 
 Point p1 = new Point(10,10); 
 Show “I have explicitly told p1 what it was going to be.” 
End Main 
 

 
Further explicit conversions can be done using a number of either pre-defined and user-defined classes by use of 
constructors in those classes. 
 



Shingle Language Specification Skyler Dodge 

  

 13  

8. Statements 

Regarding statements, Shingle differs from Java and C++ in the following areas: 

1. There are no brackets. 

2. Start command must be immediately before. 

3. End command must be immediately after. 

 

 

 



Shingle Language Specification Skyler Dodge 

  

 14  

9. Example Programs 

Example program 1: 
Start class Shape 
 private int height, width; 
 private Color color; 
 Start Shape(int ht, int wid, Color clr) 
  height = ht; 
  weight = wid; 
  color = clr; 
 End Shape 
 Start void setSize(int ht, int wid) 
  height = ht; 
  width = wid; 
 End setSize 
 Start string getSize() 
  return height + “ “ + width; 
 End getSize 
End class Shape 
 
Example program 2: 
Start static void Main() 
 string[] ary1 = new string[10]; 
 Start for (int i = 0;i < ary1.Length;i++) 
  ary1[i] = i.toString(); 
  Show ary1[i]; 
 End for 
End Main 
 
Example program 3: 
Start static void Main() 
 string str = “Hello”; 
 char chr; 
 Start for (int i = 0;i < str.Length;i++) 
  chr = str.charAt(i); 
  Show chr; 
 End for 
End Main 
 

Example program 4: 
Start static void Main(string[] args) 
 Show “Please input an integer.”; 
 Input int x; 
 Show “Your number:” + x; 
 x++; 
 Show “Your number + 1:” + x; 
End Main 
 

 



Shingle Language Specification Skyler Dodge 

  

 15  

10. Conclusion 

I believe that my programming language, Shingle, is an improvement over Java and C++ because it is easier to 
read but still carries the same implementation and functionality found in Java and C++.  It is most closely 
related to Java due to my familiarity with Java, and only a few things from C++, which is similar to Java 
anyway, at least in functionality. 

So, as far as improving it, I first took out the brackets in order to make it easier to just keep typing, rather than 
stopping all the time to put right and left brackets in their appropriate places.  I always got so frustrated with that 
aspect, especially in the beginning, because it would take extra time just to put them in.  So, instead of brackets, 
I added a Start command to the beginning of everything, as well as an End command, because it makes it 
easier to read.  I just think it makes it more organized to have clearly defined commands such as Start and 
End, that almost anyone could understand and any good typist could type with ease, instead of brackets. 

I also changed System.out.println and cout to Show, because the Java version is a very long command to 
type just to get output, and the C++ version isn’t very clear.  When using Java, every time I wanted to output 
something to the screen, I had to type System.out.println, and it just got very annoying to have to type so 
much to do such a simple task.  When I came across other languages that just use print or write, it just made 
sense to me.  There’s no need for type-checking, because all it’s doing is throwing it on the screen to show it to 
whoever wants to see it.  That’s why I wanted to use something like that, and came up with the Show command, 
which is much shorter to type and makes sense. 

Also because it was unclear, I changed cin to Input, and got rid of System.in due to its high use on the 
Scanner class just to get input from the user.  Granted cin is shorter to type than Input, but when I first 
started learning C++, it was very unclear what that meant.  And System.in has to rely on a context to hold it, 
such as Scanner, so I don’t feel that makes it any easier.  You’d have to make an instance of Scanner, and 
then use System.in within it, so I felt like taking the middle ground and allowing for a quick access method 
without having to import other classes, and that’s where the method Input comes in. 

Therefore, I believe Shingle takes the usefulness of Java and C++ and adds more of a readable structure to it to 
make it a definite improvement.  It takes all the good and gets rid of the bad, especially of Java.  Now it is easy 
to read, easy to write, easy to understand, and easy to implement.  The Start and End methods provide a very 
understandable structure, the Input method is very easy to utilize, and the Show method just makes sense. All 
these things combined, I feel that Shingle comes out on top above Java and C++.  

 


