
 

 

 

 

 

Simula 

Where Would We Be Without It? 

 

 

 

By Joe Casey 

March 31, 2008



Joe Casey Theory – Simula 2/2/2009 

  1 

 

SIMULA I and Simula 67 are considered the beginnings of object-oriented 

programming, and as such they introduce such features as data abstraction, 

objects, classes, inheritance, and virtual procedures. The first release, SIMULA I 

(Simulation Language), was designed by Ole-Johan Dahl and Kristen Nygaard 

while at the Norwegian Computing Center in Oslo, Norway. Prior to SIMULA I, 

there was no tool to simulate and describe complex systems. Algol used a stack 

mechanism which was in direct conflict with a queue system more suited for 

simulation facilities. Nygaard understood this problem while working in the 1950s 

and 1960s in operation research, and with Dahl’s knowledge of compilers 

SIMULA I was written as an independent Algol based language (there was still a 

need for algorithmic operations). 

The first compiler was implemented on the UNIVAC 1107 in 1964 and was 

released in January 1965. After the language quickly gained the reputation as a 

simulation language, Nygaard and Dahl decided to extend its features, resulting 

in a general-purpose language. Work began by redesigning traditional 

subprograms found in ALGOL 60 and many other contemporary languages. They 

wanted coroutines, allowing the subprogram to restart where it had previously 

stopped. Thus the class construct, encapsulating data and its methods, was 

conceptualized and implemented for Simula 67. With classes came other 

important object-oriented features such as inheritance and data abstraction. The 

resulting language was released in 1967, and compilers began appearing on 

IBM, DEC, UNIVAC and many other computers. 



Joe Casey Theory – Simula 2/2/2009 

  2 

Simula 67 had a profound impact in the industry. As early as the 1970s, 

Simula was used as a platform for the development of Smalltalk. C++ was the 

outcome of Bjarne Stroustrup applying Simula to C in the 1980s. More recent 

languages, Java, Ada, Prolog, and C#, while not directly deriving from Simula 

use many of the original object-oriented features originated from Simula. For 

example, Simula uses a data type called Text to store string data. Text is a 

first-class object, just like Java’s String, and has various methods such as 

Length() and Sub(i,n) which can be preformed on the string data. 

The following are examples in Simula with corresponding examples in 

C++ or Java. 

Data Encapsulation with Text in Simula 

As mentioned above, Text is a default data type in Simula, but it is also 

an object with data members and methods. These are invoked using the familiar 

dot operator. Text also has a built-in pseudo-iterator which can be used by 

combining the methods more and getChar. There is a position data member 

inside Text which can be used to reference a single character inside the 

character data string. 

            begin 
               text T1; 
               InImage; 
               inspect SysIn do 
               begin 
                  T1 :- Image; 
                  while T1.More do 
                  begin 
                     character Char1, Char2; 
                     Char1 := T1.GetChar; 
                     if Char1=' ' then 
                     begin 
                        if T1.More then 
                        begin 
                           text T2; 



Joe Casey Theory – Simula 2/2/2009 

  3 

                           integer Position1, Position2; 
                           Position1 := T1.Pos; 
                           T2 :- T1; ! T2 holds current Pos,Length,etc; 
                           Char2 := T1.GetChar; 
                           while Char2=' ' do 
                              if T1.More then Char2 := T1.GetChar else 
                              begin 
                                 Char2 := '#'; 
                                 T1.SetPos(Position1) 
                              end; 
                           Position2 := T1.Pos; 
                           if Position1 ne Position2 then 
                           begin 
                              T2.PutChar(Char2); 
                              while T1.More do T2.PutChar(T1.GetChar); 
                              while T2.More do T2.PutChar(' '); 
                              T1 :- T2 
                           end; 
                           T1.SetPos(Position1) 
                        end 
                     end 
                  end; 
                  T1 :- T1.Strip; 
                  OutText(T1); 
                  OutImage 
               end 
            end 

 

Data Encapsulation with String in Java 

import java.io.DataInputStream; 
import java.io.IOException; 
 
public class StringEncapsulation { 
  
 public static void main(String[] args) { 
  DataInputStream input = new DataInputStream(System.in); 
        String line = ""; 
         
        try { 
            line = input.readLine(); 
        } catch (IOException e) {} 
         
        for(int i = 0; i< line.length(); i++) { 
         if ( line.charAt(i) == ' ') { 
          int j = i + 1; 
          while ( j < line.length() ) { 
           if( line.charAt(j) == ' ') 
            j++; 
           else 
            break; 
          } 
           
          if ( i + 1 != j ) { 
           String fixedLine =  



Joe Casey Theory – Simula 2/2/2009 

  4 

             line.substring(0, i) + 
line.substring(j-1, line.length()); 
           line = fixedLine; 
          } 
         } 
        } 
        line.trim(); 
        System.out.println(line); 
 } 
} 

 

Inheritance in Simula 

Classes are declared with the keyword class. In derived classes, the 

base class precedes the class keyword, and child class constructors 

automatically invoke the constructor of the super class, including parameters. 

Thus, any parameters specified in the derived class will be in addition to the 

parameters of the super class. 

Here, too, reference variables are used to reference the objects. Simula 

has two different assignment operators, one for value (:=) and another for 

reference (:-). The pointer is used to invoke member methods just like C++. 

Begin 
   Class Shape (l,w); integer l, w; 
      virtual: procedure area is procedure area;; 
   Begin 
   End; 
 
   Shape Class Rectangle; ! (l, w) integer l, w; 
   Begin 
      procedure area; 
      begin 
         OutInt(l * w, 5); 
         OutImage; 
      end; 
   End; 
 
   Shape Class Triangle; ! (h, w) integer h, w; 
   Begin 
      procedure area; 
      begin 
         OutFix(l * w / 2, 2, 5); 
         OutImage; 
      end; 



Joe Casey Theory – Simula 2/2/2009 

  5 

   End; 
 
   Ref (Shape) rect; 
   Ref (Shape) tri; 
   real rectArea, triArea; 
 
   ! Main program; 
   rect :- New Rectangle(3,4); 
   tri :- New Triangle(8,8); 
 
   OutText("Rectangle area: "); 
   rect.area; 
 
   OutText("Triangle area: "); 
   tri.area; 
End 
 
 

Inheritance in C++ (some inconsequential implementation is omitted) 

As opposed to Simula, derived class constructors need to explicitly define 

parameters.  

class Shape 
{ 
     public: 
  Shape(); 
         ~Shape(); 
         Shape( int length, int width ); 
         virtual double area(); 
  int width; 
  int length; 
 private: 
}; 
 
class Rectangle : public Shape 
{ 
 public: 
  Rectangle(); 
  ~Rectangle(); 
  Rectangle( int length, int width ); 
  double area(); 
 private: 
}; 
 
class Triangle : public Shape 
{ 
 public: 
  Triangle(); 
  ~Triangle(); 
  Triangle( int height, int width ); 
  double area(); 
 private: 



Joe Casey Theory – Simula 2/2/2009 

  6 

}; 

Shape:: Shape( int length, int width ) 
{ 
 this->length = length; 
 this->width = width; 
} 
 
 
double Shape:: area( ) 
{ 
 return 0; 
} 

Rectangle:: Rectangle(int length, int width) : Shape(length, width) 
{} 
 
double Rectangle:: area() 
{ 
 return length*width; 
} 

Triangle:: Triangle(int height, int width) : Shape(height, width) 
{} 
 
double Triangle:: area() 
{ 
 return (length/2.0)*width; 
} 

int _tmain() 
{ 
 Shape *rect, *tri; 
     rect = new Rectangle(3,4); 
 tri = new Triangle(8,8); 
 
 cout << "Rectangle area: " << rect->area() << endl; 
 cout << "Triangle area: " << tri->area() << endl; 
}



Joe Casey Theory – Simula 2/2/2009 

  7 

References 
 
 
Dahl, Ole-Johan and Kristen Nygaard, How Object-Oriented Programming 

Started. http://heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/ 
F_OO_start.html. Retrieved March 28, 2008. 
 

Pooley, Rob, An Introduction to Programming in Simula.  
http://www.macs.hw.ac.uk/~rjp/bookhtml/. Retrieved March 28, 2008. 

 
Sebesta, Robert W., Concepts of Programming Languages: Eighth Edition. 

Pearson, p. 76-77. 
 
Sklenar, Jaroslav, Introduction to OOP in Simula.  

http://staff.um.edu.mt/jskl1/talk.html. Retrieved March 29, 2008. 


