
Validation of Object Oriented Metrics Using Open Source
Software System: An Empirical Study

Kalpana Johari
Centre for Development of Advanced Computing,

CDAC, NOIDA
NOIDA, India

kalpanajohari@cdacnoida.in

Arvinder Kaur
Guru Gobind Singh Indraprastha University

Sector-16 Dwarka
Delhi, India

arvinderkaurtakkar@yahoo.com

ABSTRACT
In today’s environment the relevance of Free Open Source Software
Systems is understood and appreciated both in academia and research.
The debate about the pros and cons of the open source vis-à-vis
proprietary software has been raging from ages ever since Richard
Stallman founded the Free Software Foundation in 1985. With the
changing trends in the domain of Object Oriented Systems there is a
need to measure the fault predictability of software metrics on open
source software systems. In this paper we present the results of
empirical study which was conducted using open source software,
JHotDraw 7.5.1. We computed the object oriented metrics, proposed by
Chidamber and Kemmerer, and performed bug- class mapping for the
software under study. We also studied the relationship between the
revisions made to open source software and its software metrics
measure.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Complexity measures,
Performance measures, Process metrics, Product metrics, Software
science.

General Terms
Measurement, Verification.

Keywords
object oriented metrics, open source software system, bug mapping,
empirical study, revision.

1. INTRODUCTION
The importance of open source software systems has been felt both in
software industry and research. Large number of software is being
developed using open source tools and more companies are investing in
open source software. Much of the research is being done on or using
open source software systems because such software is not
monopolized and they are free from licensing issues. Since open source
software are developed following a style different form the
conventional one, there arises a need to measure the quality of open
source software.
In this paper we are presenting the empirical study of open source
software system namely JhotDraw 7.5.1. The study was conducted to
validate the effectiveness of object oriented metrics suite, proposed by
Chidamber and Kemerer [6], in detecting the fault proneness in open
source software systems. Similar studies, meant to validate the metrics,
have been conducted by many researchers [1][2][3][4][5][7]. We
understand that studies conducted on wide variety of software are
important for providing the industrial acceptability to software metrics
[8].
We have computed class level object oriented metrics using ckjm-1.9 :
A tool for calculating Chidamber and Kemerer Java Metrics [14] and
Metrics 1.3.6 [15], an eclipse plugin. A SCM (software configuration
management) repository [13] maintains the details of revisions made to
open source software. We studied the description for each revision,
identified with a specific id, and filtered out those revisions that were
made as a result of bug fixture. Each revision contains the details of
classes being affected it. These were the classes that contained fault.
Using the said approach we mapped bugs with classes that were

modified due to bug fixture. The main contributions of this paper are as
follows. Firstly, since our analysis is based on medium level open
source software (JhotDraw 7.5.1) that has been used in number of
research [10][11], the results will have better acceptability. Moreover
due to the usage of open source, the details can be published. Secondly,
we have also studied the relationship between the number of revision
made to a class and the measure of software metrics suite. Software
may be revised in response to post release bug, a feature request, for
preventive activity or during the process of adapting the software to
some new environment, and therefore, such study of number of
revisions and the measure of software metrics can be used to predict the
maintainability of the software.
The paper is organized as follows. Section 2 presents a brief overview
of software metrics used in the study and describes the hypothesis
formulation. Section 3 gives an introduction to open source software.
Section 4 presents the analysis and results and the last section presents
conclusions and future scope.

2. OVERVIEW OF SOFTWARE METRICS
USED IN THE STUDY
We have applied class level metrics on open source software. This
section presents the definition of seven metrics used in the study. Of the
seven, six metrics are the one that were originally proposed by
Chidamber and Kemerer (C&K). We have used two different variants
of weighted method per class(WMC) metrics. One that simply counts
the number of methods in the class and the other one that counts the
sum of cyclomatic complexity of each method of a class. We have also
used token count of a class as a size metrics. This will help us in
comparing object oriented metrics with traditional size oriented metrics.
CBO - Coupling between object classes
The CBO metric for a class is the count of all those classes with which
the given class is coupled. Two classes may be coupled due to method
call, arguments, return type, field access, inheritance and exception.
DIT - Depth of Inheritance Tree
The (DIT) metric of a class is the measure of its inheritance level from
the top of hierarchy. In Java every class inherits from Object class
therefore the minimum DIT for a class is 1.
LCOM - Lack of cohesion in methods
A LCOM metric of a class is the count of set of methods in a class that
are disjoint with respect members of a class being accessed by them.
The original definition of this metric as presented in [6](which is the
one used in ckjm) considers all pairs of a class's methods.
NOC - Number of Children
NOC metrics measure the number of direct descendents of a class.
RFC- Response for a Class
The RFC metrics of a class is the measure of number of methods that
can be invoked in response to a message received by an object of the
class. Ideally RFC should measure the transitive closure of the call
graph for each method. The ckjm tool measures the count of methods
being called by the method of a class under study.
WMC - Weighted methods per class
WMC metric for a class is the sum of complexities of its methods. The
complexity of an individual method can be measured as cyclomatic
complexity or simply we can assign 1 as the complexity value .The
ckjm tool assigns 1 as the complexity measure to each method and

ACM SIGSOFT Software Engineering Notes Page 1 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088893 http://doi.acm.org/10.1145/2088883.2088893

therefore the WMC for any class is equal to number of methods in that
class. The cyclomatic complexity variant of WMC (WMC using CC)
has also been used in the study. WMC using CC was calculated using
metric 1.3.6 [15].
Token Count- The token count metrics is the measure of number of
tokens in a class. For example, in java an import statement in class
definition (import java.util.Date;) contains 3 tokens. The token count
does not include comments but it includes annotations.
2.1 Hypothesis Formulation
We drew up following 7 hypotheses to be tested in order to establish the
relationship between object oriented metrics(OOM) & fault proneness
of classes and OOM and revision count of a class. Similar hypothesis
were also drawn by Basili et al.[1] and Gyimo´thy et al. [7].
H1(CBO): A class that is highly coupled is more prone to errors than it
peer and may require more number of revisions.
H0(CBO): Coupling of class does not contribute to its fault proneness
and require no more revisions than its peer.
H1(DIT): Classes lower in class hierarchy are more error prone and
need to be revised more often than the one that are located up in the
hierarchy.
H0(DIT): Location of a class in class hierarchy does not affect number
of revisions and its fault proneness.
H1(LCOM): The class which shows poor cohesion are more fault prone
and require more revisions than its peer.
H0(LCOM): The classes with high value of lack of cohesion are no
more fault prone and does not require more revisions than the peer.
H1(NOC): A class with more children is less error prone than its peer.
This is mainly because a class with many child classes has to be very
simple and flexible in order to allow many different implementations
thus making it less fault prone and requiring fewer revisions. Our
hypothesis regarding NOC is similar to Gyimo´thy but is different from
the one drawn by Basili.
H0(NOC): The number of children for a class does not affect the fault
proneness of the class. This means that a class with any number of
children is as fault prone as its peer and requires as many revisions as its
peer.
H1(RFC): A class with high value of RFC is more fault prone and need
to be revised more often than its peer.
H0(RFC): A class with high value of RFC is no more fault prone and
requires no more revisions than its peer.
H1(WMC): A class with more number of methods requires more
number of revisions and more fault prone.
H0(WMC): A class with high WMC is no more fault prone and does
require as many revisions as any peer class.
H1(Token count): A class with large number of token is more fault
prone that its peer. This mainly due to the fact that large size makes a
class complex, requiring more revisions and the fault proneness of a
class may increase.
H0(Token count): A class with large token count is no more fault prone
and requires no more revisions than its peer.

3. INTRODUCTION TO CASE STUDY
In this section, we give a summary of software that we have
investigated, namely JhotDraw 7.5.1[12]. The software studied had the
following characteristics:
 Open source: in order to ensure availability of source code, revision

history and bug details.
 Implemented in java: Limitation of metrics measuring tools.

3.1 Case study: JhotDraw 7.5.1 [9]
JhotDraw 7 is a framework for 2-dimensional drawing editors and for
document-oriented applications. It is implemented in java. It is based on
Erich Gamma’s JhotDraw which is an adaption of HotDraw. JhotDraw
7 is a result of major revisions applied to previous versions of
JhotDraw. It was developed by Werner Randelshofer. So far about 7
different versions of JhotDraw7 has been released. The latest version is
JhotDraw7.6.1. Our case study is based on JhotDraw 7.5.1. The latest
version with availability of all the revisions is the reason behind

choosing the 7.5.1 version of JhotDraw 7. Table I provides the details of
JhotDraw 7.5.1. There are 613 classes and interfaces. The source code
and the revision history for JhotDraw 7.5.1 is available on
sourceforge.net. Each revision is identified by an id, contains the
description about the revision, revision date and it also contains the
details about the changes made during the revision. One revision may
affect more than one class. We considered revisions that were made
after the release of JhotDraw 7.5.1 and before the release of
JhotDraw7.6.1. We assume that these revisions were made to JhotDraw
7.5.1. There were 47 such revisions. The bug report for the software is
also available on sourceforge.net. Bug details are maintained using bug
tracker system. Each bug is assigned an id. The bug report date and a
brief description about the bug are also maintained. The bugs that were
reported before the release of JhotDraw 7.5.1 and fixed after the release
date are the one that existed in the software being investigated. For bug
mapping, we studied the revisions made after the release of
JhotDraw7.5.1 and out of the total 59 revisions we identified 42
revisions as the bug fixtures. Table II presents the bug distribution.

Table 1. Summary of JhotDraw
JHotDraw 7
Size (KLOC) approx 52KLOC

Language Java
Version control tool SVN
Version 7.5.1
Number of classes 613
No. of revisions before the next release 57
Number of bugs mapped 42

Table 2. Bug Distribution

Number of Bugs
JHotDraw7.5.1
Number of classes %

0 250 40.72%

1 236 38.44%

2 92 14.98%

3-5 35 5.70%

4. DATA ANALYSIS
This section presents an empirical assessment of object oriented metrics
in predicting the revision count and fault proneness of classes.
Regression analyses being widely used technique, we have used it to
measure dependent variable on the basis of independent variables. We
employed linear regression analysis approach. This analysis technique
has been used in [7]. This section consists of two subsections: the first
one gives the descriptive statistics of software studied and the second
section presents the results of univariate linear regression analysis.
4.1 Descriptive Statistics and Correlation Analysis
Table III presents the descriptive statistics of software metrics
calculated for an open source software. The results indicate that the
usage of inheritance in the software was low. Number of children per
class was also observed to be very few. The results are similar to the
one found in [1][2][7]. For LCOM, the maximum value is generally
high. This is mainly due to the fact the LCOM is square of the number
of methods in the class. The same observation has been noted in [7].
The token count metrics gives the measure of size and the size varies
over a wide range.
We applied correlation analysis to compute coefficient of correlation(r)
between software metrics measure and bug count per class as given in
table IV. This is a commonly used statistical measure to determine
dependency of dependent variable on explanatory variables. The
technique has been used in number of research. The value of r ranges
between -1 and +1. The value of r closer to 1 indicates a positive
correlation whereas value of r closer to -1 indicates negative correlation.
Correlation coefficient with 0 values indicates no correlation between
the variant. That is the two variants are independent of each other. The

ACM SIGSOFT Software Engineering Notes Page 2 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088893 http://doi.acm.org/10.1145/2088883.2088893

coefficient of correlation cannot provide the prediction of bug count in
the class. For that we need to do regression analysis. The results show a
strong correlation between bug count and some of the metrics. WMC
and WMC(CC) showed almost same correlation with the bug count. A
higher value token count shows the relationship between bug count and
size. Similar results for size has been observed by [7][9]. The results of
correlation analysis also indicate that the bug count per class is not
dependent on all the metrics of object oriented metrics suite. The bug
count displayed strong positive correlation with WMC (Both) and RFC.
The results also show that bug count is independent of DIT and NOC
and is moderately dependent of CBO and LCOM.
We also computed correlation coefficient for software metrics and
count of revision per class, where measure of metrics was independent
variable and count of revision per class was dependent variable. The
results showed similar values as the one observed for bug count.
Considering the correlation results presented in table IV, we can
conclude that number of revision per class can be predicted using
metrics suite. A very high value of r for bug count and revision count,
as mentioned in table V also supports the same. Since revisions are
made in response to any maintenance related activity. The software
metrics can predict the maintenance effort required for the software
system.
4.2 Regression Analyses
This section describes the analyses we performed to find out the
relationship between measure of metrics and bug count. We also
performed regression analysis to find out relationship between measure
of software metrics and revision count. We used linear regression
analysis to assess the validity of software metrics as predictor of
number of faults in the class. We applied univariate linear regression
technique. Univariate regression analyses establish the relationship
between dependent variable (bug count and revision count) and
explanatory variable (software metrics). Table VI shows the results of
univariate linear regression analysis for bug count of JhotDraw and
table VII shows the result for univariate linear regression analysis
revision count.

Table 3. Descriptive Statistics for JhotDraw
 CBO DIT LCOM NO

C
RFC WMC WM

C
(CC)

Toke
n
count

Mea
n

6.18 1.23 97.18 .31 36.6
7

11.72 21.0
3

795.56

Med
ian

4 1 15 0 24 8 13 453

tdDe
v

7.61 1.61 277.30 1.27 36.5
5

11.65 31.3 1176.6
2

Max 66 7 3602 14 285 92 461 16309

Min 0 0 0 0 0 0 0 9

Table 4. Result of Correlation analysis between revision count and
bug count

 Revision Count
Bug Count 0.8809

We also computed correlation coefficient for software metrics and
count of revision per class, where measure of metrics was independent
variable and count of revision per class was dependent variable. The
results showed similar values as the one observed for bug count.
Considering the correlation results presented in table IV, we can
conclude that number of revision per class can be predicted using
metrics suite. A very high value of r for bug count and revision count,
as mentioned in table V also supports the same. Since revisions are
made in response to any maintenance related activity. The software
metrics can predict the maintenance effort required for the software
system. This needs to be assessed empirically.

4.3 Validation of Hypothesis
The results of regression analysis clearly indicate that the null
hypothesis pertaining to WMC, token count, RFC and CBO can be
rejected. The study indicate high significance of WMC, Token count,
RFC and CBO in predicting the fault proneness and number of revisions
made to a class.
The results related to NOC shows no significance of number of children
in predicting revision count and fault proneness. Therefore we can
reject the null hypothesis and accept the alternate hypothesis.
The regression analysis for DIT (Depth of Inheritance) and LCOM
showed least significance in predicting the revision count and bug
count. The results are similar to the one observed in [7].

5. CONCLUSION AND FUTURE WORK
We presented the empirically study to assess the validity of object
oriented metrics in predicting the revision count and fault proneness of
a class. The major contributions of this study are:
The study shows the applicability of object oriented metrics in
predicting the number of revisions that a class under goes. Since the
revision made to a class are a part of maintenance activity. This study
can be used as a motivating factor for exploring the applicability of
software metrics in estimation of maintenance effort.
Since the study is conducted using open source tools applied on open
source software system, it will help in supporting the industrial
acceptability of software metrics.
We used an open source case study therefore the data and results can be
easily distributed. The applicability of software metrics in predicting the
revision count per class need to empirically established using more case
studies. We are currently focusing on study of more open source
software system and shall formulate a model for predicting the
maintenance effort required in open source software.

Table 5. Results Of Correlation Analysis For Software Metrics & Bug Count And Software Metrics & Revision Count

Table 6. Results For Univariate Linear Regression Analysis Bug Count Of Jhot Draw 7.5.1

 CBO DIT LCOM NOC RFC WMC WMC(CC) Token count
Bug count 0.2409 -0.0089 0.2359 0.0654 0.3641 0.3186 0.3037 0.3218

Revision count 0.2948 -0.0127 0.2370 0.0639 0.3902 0.2988 0.3211 0.3314

 CBO DIT LCOM NOC RFC WMC WMC(CC) Token
count

Intercept 0.69434 0.88579 0.80110 0.86399 0.53393 0.57633 0.83621 0.67317

coefficient 0.02992 -0.00526 0.00080 0.04829 0.00942 0.02584 0.03152 0.05912

R-Squared 0.0580 0.000 0.0556 0.0043 0.1326 0.1015 0.0922 0.1036

p-value 0.0000 0.0000 0.0000 0.0632 0.0001 0.0000 0.0000 0.0000

ACM SIGSOFT Software Engineering Notes Page 3 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088893 http://doi.acm.org/10.1145/2088883.2088893

Table 7. Results For Univariate Linear Regression Analysis Revision Count Of Jhot Draw 7.5.1
 CBO DIT LCOM NOC RFC WMC WMC(CC) Token

count
Intercept 0.59834 0.93162 1.00763 0.60210 0.70336 0.54831 0.8692 0.77213

coefficient 0.08326 -0.00381 0.00731 0.02185 0.02769 0.01451 0.03872 0.04011

R-Squared 0.0869 0.0002 0.0562 0.0041 0.1523 0.0891 0.1031 0.1098

p-value 0.0000 0.0000 0.0000 0.0756 0.0001 0.0000 0.0000 0.0000

6. REFERENCES
[1] V. R. Basili, L. Briand, and W. L. Melo, “A validation of object-oriented

design metrics as quality indicators,” IEEE Transactions on Software
Engineering, vol. 22, pp. 751–761, 1996.

[2] R. Subramanyam, M.S. Krishnan, “Empirical Analysis of CK Metrics for
Object-Oriented Design Complexity: Implications for Software Defects,”
IEEE Transaction on Software Engineering, vol. 29, no. 4, pp. 297-310,
2003.

[3] S.R. Chidamber, D.P. Darcy, C.F. Kemerer, “ Managerial Use of Metrics
for Object Oriented Software: An Exploratory Analysis,” IEEE Transacion
on Software Engineering, vol. 24 no. 8, pp. 629-639, 1998.

[4] L.C. Briand, W.L. Melo, J. Wu¨st, “Assessing the Applicability of Fault-
Proneness Models Across Object-Oriented Software Projects,” IEEE
Transaction on Software Engineering, vol. 28 no. 7, pp. 706-720, 2002.

[5] H.M. Olague, L.H. Etzkorn ,S. Gholston, S. Quattlebaum, “Empirical
Validation of Three Software Metrics Suites to Predict Fault-Proneness of
Object-Oriented Classes Developed Using Highly Iterative or Agile
Software Development Processes,” IEEE Transaction on Software
Engineering, vol. 33 no. 6, pp. 402-419, 2007.

[6] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476–493, 1994.

[7] T. Gyimo´thy, R. Ferenc, I. Siket, “Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction,” IEEE
Transaction on Software Engineering, vol. 31 no. 10, pp. 897-910, 2005.

[8] T. Zimmermann, R. Premraj, A. Zellar, “Predicting Defects for Eclipse,”
In: 3rd International Workshop on Predictor Models in Software
Engineering, PROMISE’07. 2007.

[9] N.E. Fenton, M. Neil, “Software Metrics: Successes, failures and new
directions,” Journal of System and Software, vol. 47, issue 2-3, pp. 149-
157, 1999.

[10] M. Marian, L. Moonen, A. van Deursen, “A Classification of Crosscutting
Concern,” In: 21st IEEE International Conference on Software
Maintenance, ICSM’05, pp. 673-676, 2005.

[11] G. Canfora, L. Cerulo, M. Di Penta, “On the use of Line Co-change for
Idenifying Crosscutting Concern Code,” In: 22nd IEEE International
Conference on Software Maintenance, ICSM’06, pp. 213-222, 2006.

[12] JhotDraw 7,
http://www.randelshofer.ch/oop/JhotDraw/Documentation/index.html

[13] Open source software, www.sourceforge.net
[14] Ckjm-1.9, http://www.spinellis.gr/sw/ckjm/doc/index.html
[15] Metrics 1.3.6, http://metrics.sourceforge.net/

ACM SIGSOFT Software Engineering Notes Page 4 January 2012 Volume 37 Number 1

DOI: 10.1145/2088883.2088893 http://doi.acm.org/10.1145/2088883.2088893

