
1

Introduction to Compilers

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu

2

Why are we here?

3

Why Study Compilers?

It’s cool to …
• build a large, complicated, ambitious software system, consisting

of thousands of lines of code, over an entire semester.
• use all the good stuff you learned in Algorithms.
• learn how programming languages work.
• see computer science theory come to life.
• learn how to implement a programming language.

Building a compiler will make you a better programmer.
I guarantee it.

If you finish this project, I will be very proud of you.

More importantly:
if you finish this project, you will be VERY proud of yourself.

4

A long time ago….

All you could do was push buttons and flip switches.

5

Code and data was (and still is) just an electrical signal.

A long time ago….

clock

data

encoding

6

We can think of changes in current as binary digits.

1010 1001 0000 0011
1000 1101 0100 0001 0000 0000

A long time ago….

7

We can think of changes in current as binary or hexadecimal digits.

1010 1001 0000 0011
1000 1101 0100 0001 0000 0000

A9 03
8D 41 00

But how could you store it?

A long time ago….

8

The first storage

(Taken from Chris Algozzine’s office.)

Now the pieces are in place . . .

A long time ago….

(Written by Bill Gates and Paul Allen)

9

FORTRAN
• FORmula TRANslator
• for Scientific computing
• by John Backus from IBM

COBOL
• COmmon Business Oriented Language
• for business computing
• by Rear Admiral Grace Hopper

‣ Coins the term “Compiler” and
writes the first one

‣ Math faculty at Vassar College

Jumping ahead a few decades…

A long time ago….

10

Compiler vs. Interpreter

Compiler
• a program that…
• translates one language to another that…
• outputs an executable program…
• that is expected to be better (somehow) than the input.
• Examples include C, C++, Java, TypeScript

Interpreter
• a program that…
• reads an executable program in some language…
• and runs that program.
• Examples include JavaScript, BASIC, Python

11

Before and After Compilation

What languages are these?

12

Before and After Compilation

13

Before and After Compilation

1010 1001 0000 0011

1000 1101 0100 0001 0000 0000

14

Before and After Compilation

1010 1001 0000 0011
1000 1101 0100 0001 0000 0000

1010 1001 0000 0001
1000 1101 0100 0000 0000 0000

1010 1100 0100 0000 0000 0000
1010 0010 0000 0001
1111 1111

.

.

.

15

Aside: von Neumann Architecture

1010 1001 0000 0011
1000 1101 0100 0001 0000 0000

0000 0011

loc 0041:
0000 0011

Accumulator (register):

STA op code (8D)

across the front-side bus

16

Before and After Compilation

1010 1001 0000 0011
1000 1101 0100 0001 0000 0000

1010 1001 0000 0001
1000 1101 0100 0000 0000 0000

1010 1100 0100 0000 0000 0000
1010 0010 0000 0001
1111 1111

.

.

.

17

Before and After Compilation

How are we going to execute this?

18

Before and After Compilation
Source Code

Machine Language

19

Super-High Level View

Machine Language

Source Code

Translator?

20

Super-High Level View

Machine Language

Source Code

Compiler
Goals

• recognize programs
• generate code
• manage storage

21

Super-High Level View

Machine Language

Source Code

Compiler
Goals

• recognize legal programs
• generate correct code
• efficiently manage storage

Errors and
Warnings

22

Super-High Level View

Front	End

Back	End

Intermediate
Representa@on

Machine Language

Source Code

Goals
• Front end translates code into IR
• Back end translates IR into Machine Language

for the target platform.

Errors and
Warnings

23

High Level View: Front End

Front	End

Source Code

Front End
• Recognize legal and illegal code
• Keep track of variables and types
• Report errors and warnings
• Produce the Intermediate Representation (IR)

• Consists of three parts:

24

High Level View: Front End

Lex Parse Semantic	
Analysis

Source Code

25

High Level View: Front End

Lex Parse Semantic	
Analysis

Source Code

Words Sentences Meaning

26

High Level View: Front End

Lex Parse Semantic	
Analysis

Source Code

Words

GLaDOS
cke
cake
ate

Sentences Meaning

27

High Level View: Front End

Lex Parse Semantic	
Analysis

Source Code

Words

GLaDOS
cke
cake
ate

Sentences

ate cake GLaDOS

GLaDOS ate cake

Meaning

28

High Level View: Front End

Lex Parse Semantic	
Analysis

Source Code

Words

GLaDOS
cke
cake
ate

MeaningSentences

ate cake GLaDOS

GLaDOS ate cake GLaDOS ate cake
noun verb direct

object

29

High Level View: Lex

Lex Parse Semantic	
Analysis

Token
Stream

Source Code

Symbol List

Errors and
Warnings

Lexical Analysis
• Maps characters into an ordered stream of tokens

x := x + y
becomes
<id,x> <assign> <id,x> <add> <id,y>

• Typical tokens: id int while print if
• Eliminates white space
• Report meaningful errors and warnings
• Produce a token stream

• Focus on words/lexemes/tokens

30

High Level View: Parse

Lex Parse Semantic	
Analysis

Token
Stream

CST

Source Code

Symbol Table

Errors and
Warnings

Parse
• Recognize context-free syntax
• Recognize variables and type
• Report meaningful errors and warnings
• Produce a parse tree (aka: Concrete Syntax Tree)

• Focus on syntax

31

High Level View: Semantic Analysis

Lex Parse Semantic	
Analysis

Token
Stream

CST

AST (IR)

Source Code

Symbol Table

Errors and
Warnings

Semantic Analysis
• Produce a intermediate representation in the form of

an Abstract Syntax Tree (AST)
• Check type
• Check scope
• Report meaningful errors and warnings

• Focus on meaning

32

High Level View: Back End

Lex Parse Semantic	
Analysis

Token
Stream

CST

AST (IR)

Source Code

Symbol Table

Errors and
Warnings

Back	End

Machine Language

33

High Level View: Back End

Lex Parse Semantic	
Analysis

Code	
Generation

Token
Stream

CST

AST (IR)

Machine Language

Source Code

Symbol Table

Errors and
Warnings

Code Generation
• Translates IR into Machine Language

for the target platform
• Chose instructions for each IR operation
• Allocate registers
• Ensure conformance with target system

34

High Level View

Lex Parse Semantic	
Analysis

Code	
Generation

Token
Stream

CST

AST (IR)

Machine Language

Source Code

Symbol Table

Errors and
Warnings

Project 1 Project 2 Project 3

Project 4

35

Lex Parse Semantic	
Analysis

Code	
Generation

Token
Stream

CST

AST (IR)

Machine Language

Source Code

Symbol Table

Errors and
Warnings

There’s more to the back end of a compiler:
• Lots of AST optimizations
• Instruction Selection
• Lots of instruction optimizations
• Register Allocation

Sadly, we don’t have time to
implement these along with
everything else in a single semester.
But here’s a peek…

High Level View: Back End

From	Cooper	&	Torczon	

36

Lex Parse Semantic	
Analysis

Code	
Generation

Instruction	
Optimizations

Instruction	
Selection

AST	
Optimizations

Register	
Allocation

Token
Stream

CST

AST (IR)

Machine Language

Source Code

Symbol Table

Errors and
Warnings

High Level View: Back End

37

I wonder . . .

Front	End

Back	End

Machine Language

Source Code

How abstract should we get here?

38

Windows / Intel

Mac / M1

Linux / zOS

Java

TypeScript

?

Can we build n × m compilers with n + m components?

I wonder . . .

39

Windows / Intel

Mac / M2

Linux / zOS

Java

TypeScript

Can we build n × m compilers with n + m components?
With the right Intermediate Representation, yes.

I wonder . . .

40

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

41

Example

Parsing

Lex: Did we get the words right?
This	is	based	on	an	example	from	the	great	Alex	Aiken.

Tokens
While [while] found at (6:1)
LParen [(] found at (6:9)
Id [y] found at (6:10)
BoolOp [<] found at (6:12)
Id [z] found at (6:15)
RParen [)] found at (6:16)
LBrace [{] found at (6:18)
TypeDef [int] found at (7:4)
Id [x] found at (7:10)
Id [x] found at (8:6)
Assign [=] found at (8:8)
Id [a] found at (8:10)
IntOp [+] found at (8:12)
Id [b] found at (8:14)
Semicolon found at (8:15)
Id [y] found at (9:6)
Assign [=] found at (9:8)
Id [y] found at (9:10)
IntOp [+] found at (9:12)
Id [x] found at (9:14)
Semicolon found at (9:15)
RBrace [}] found at (10:3)
Lexical Analysis complete with 0 WARNING(S) and 0 ERROR(S)

42

Example

Parsing

Parse: Did we get the sentences right?

CST

id

id

43

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

44

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

45

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

void

void

bool

int int

void

intvoid

46

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

int int

void

void

bool

int

void

intvoid

47

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

int int

int

void

void

bool

int

void

intvoid

48

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

int int

int

void

void

bool

int intintvoid

void

Yes!

49

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

int int

int

void

void

bool

int intbool

void

No!

bool
void

What if…

50

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

int int

int

void

void

bool

int

int intintvoid

void

51

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

SA: Did we get the meaning (scope and type) right?

AST

const int a = 3
const int b = 4

Assume these declarations so we can derive types.}

int int

int

int

int

void

void

bool

intint

int

int

int

int int

intvoid

void

52

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

IR: Instead of using the AST as our IR we could use other code.

const int a = 3
const int b = 4

Assume these declarations.}

53

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

IR: A “hoisting” optimization

const int a = 3
const int b = 4

Assume these declarations.}

54

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

IR: A “constant folding” optimization

const int a = 3
const int b = 4

Assume these declarations.}

7

55

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

Code Gen: This is MIPS. We’ll use being 6502a op codes as our ML.
(Maybe RISC-V too.)

sw $1, 0x7

56

Example

Parsing

This	is	based	on	an	example	from	the	great	Alex	Aiken.

ML Optimization: replace set and branch with branch less than.

sw $1, 0x7

57

Example

Parsing

Code Gen: 6502a op codes

58

Our Goal

Machine Language

Source Code

Your	Compiler

59

I wonder . . .

Could we get an AI to write this for us?

This output1 from ChatGPT3 on
January 13, 2023 is not bad.
It’s not exactly what we’re
going to do in this class, but it’s
a good template and — best of
all — a clean and well-
structured design.

There are thousands of lines of
detail to be written, but this is a
decent start.

1 This	was	generated	by	a	recent	(now	graduated)	Compilers	student.

60

I wonder . . .

Could we get an AI to write this for us?

These lex and codeGen functions are
neither complete nor accurate for our purposes,
but they are both a “good start” towards that end.

61

I wonder . . .

Could we get an AI to write this for us?
Should we use an AI to help us write this?

Let’s talk about it.

Midjourney
> ChatGPT AI composing a C++ compiler
software development retro-futuristic
colorful bright space

62

I wonder . . .

Could we get an AI to write this for us?
Should we use an AI to help us write this?

Let’s talk about it.
You don’t have to. Obviously.

Midjourney
> ChatGPT AI composing a C++ compiler
software development retro-futuristic
colorful bright space

63

I wonder . . .

Could we get an AI to write this for us?
Should we use an AI to help us write this?

Let’s talk about it.
You don’t have to. Obviously.
But if you do, here are some minimum requirements:

• As ever, any code that’s not 100% yours and yours alone must be
marked as such and documented with sources.
‣ Whether you get help from ChatGPT3 online or Wilhelm in Marion Hall, you

have to acknowledge it and cite it or it is unquestionably plagiarism.
‣ Copying and pasting from the Hall of Fame or GitHub or some other online

source is unquestionably plagiarism unless you cite it, so this is consistent.
• I’m interested in learning about how well (or not) AI-assisted

software development worked for you.
‣ If you make use of an AI in this project, you must document your experience

with it for each project: what worked and what didn’t, challenges, unexpected
occurrences, etc. Include a reflection on the experience as well. You will soon
be a professional in this field and I want to know your opinions on this.

