Introduction to Compilers

- Crafting

Compilers
Principles, Techniques, & Tools

e
Ty 1
,,,,,,,,

L LA U

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu

Why are we here?

¢

Why Study Compilers?

It’s cool to ...
- build a large, complicated, ambitious software system, consisting
of thousands of lines of code, over an entire semester.
- use all the good stuff you learned in Algorithms.
- learn how programming languages work.
- see computer science theory come to life.
-]learn how to implement a programming language.

Building a compiler will make you a better programmer.
I guarantee it.

If you finish this project, I will be very proud of you.

More importantly:
if you finish this project, you will be VERY proud of yourself.

A long time ago....

Y

h o4

All you could do was push buttons and flip switches.

ST L v

Ty

. Censn

reeen el Al
vee

AR ™

A long time ago....

Code and data was (and still is) just an electrical signal.

e I

data |1 | O 1| O 1

-
-
==i — B—

encoding J— ' |

A long time ago....

We can think of changes in current as binary digits.

1010 1001 0000 0011
1000 1101 0100 0001 0000 0000

A long time ago....

We can think of changes in current as binary or hexadecimal digits.

1010 1001 0000 0011
1000 1101 0100 0001 0000 0000

A9 03
8D 41 00

But how could you store it?

A long time ago....

The first storage

4 s

FORTRAN STATEMENT l o i

]
JEE000C000CC00C0000C000000CC0000000CC000000000000000C00000G00
191320 21 222324 25 26 4 29 75 30 3 32 53 34 3536 37 36 39 40 41 42 4344 2345 47 43 4950 51 52 53 54 55 56 57 53 52 60 01 62 63 64 65 5567 6663 70 11 72{73 74 7596 0 10 78 80

H'HHHH]HHHIIHHIH'AHH’.HHIIHHIIH’.HIHHIIIH’.IIl]ﬂililﬂlllll

v

212222i2122 29 $22222222223212
3| ‘x!l~ } 3333333333333333333333333333333333333 "as :"'33'33333333
2:;"‘ Z;‘;"I{.‘,f.'M’i 1 f’1’;‘v‘-‘.‘?'”wi"eife-'z':‘”» 1';‘"“ % .414%2’.}1‘2":214‘:“‘4
;"'u""ssi'.-ii, 595555055 ":T-"--k‘ifti':'-%‘:”:'?"-.;i‘:n,)";f::f)?uE"x" RER
I

5:3;‘33;TCTC GGEEEDHEE E66G66C66E666600E6666066BE6666 66656
i i

?;}'l???f???]’???????]’l;777]’77777777777777777777.777777771 11711117
i
E‘i‘"HITE%ES“:ETESSBBJCC’EHESSHBBSS.Z8383SE883B}Soﬁ838S588888888838888886!88838883
%:’.’%‘1‘7:3!?993525'7‘:,"'39"-"“5 8$9999999958999088499989°999899999959999989999899/1598934141%
12345 BRI RRMEGIETRVU 322334 3536 37 38 55 40 41 12 4344 4546 47 4843 50 51 5253 54 55 6 57 5B 58 60 61 G2 €I CA G5 GB 6/ S80I T0 /1 72[7y M 78 17 8 72 20 |

00 FoRIES

(Taken from Chris Algozzine’s office.) . ,
(Written by Bill Gates and Paul Allen)

Now the pieces are in place.. . .

A long time ago....

FORTRAN
- FORmula TRANSslator

- for Scientific computing
- by John Backus from IBM

COBOL
- COmmon Business Oriented Language
- for business computing
- by Rear Admiral Grace Hopper

» Coins the term “Compiler” and
writes the first one
» Math faculty at Vassar College

Jumping ahead a few decades...

AT TORTRAN:
JOHN BACKUS

Compiler vs. Interpreter

Compiler
- a program that...
- translates one language to another that...
- outputs an executable program...
- that is expected to be better (somehow) than the input.
- Examples include C, C++, Java, TypeScript

Interpreter
- a program that...
- reads an executable program in some language...
- and runs that program.
- Examples include JavaScript, BASIC, Python

10

Before and After Compilation

Before: Three higher-level languages

60

PRINT “DONE"”

++val;
} until (val == limit)
console.write(“DONE”) ;

10 A =3 int limit = 3; var limit = 3;
20 X =1 int val = 1; var val = 1;
30 ‘print X repeat do

40 X = X + 1 { {

50 IF X <> A THEN GOTO 30 console.write(val);

alert(val);

++val;
} while (val <> limit);
alert (“DONE”) ;

What languages are these?

11

Before and Atter Compilation

During: Intermediate Representation (6502a Assembly. Ms-IL and Java bytecodes are similar.)

lda #$3 Acc = 3 0000 LDA #$03 A9 03
sta $0041 Mem[41] = 3 0002 STA $0041 8D 41 00
lda #$1 Acc = 1 0005 LDA #$01 A9 01
sta $0040 Mem[40] = 1 0007 STA $0040 8D 40 00
loop 1ldy $0040 Y = Mem[40] 000A LOOP LDY $0040 AC 40 00
ldx #$01 X =1 000D LDX #$01 A2 01
sys System Call 000F SYS FF
inc $0040 | Mem[40]++ 0010 INC $0040 EE 40 00
ldx $0040 | X = Mem[40] 0013 LDX $0040 AE 40 00
cpx $0041 Z bit = (x == Mem[41]) 0016 CPX $0041 EC 41 00
bne loop if z == 0 goto loop 0019 BNE LOOP DO EF
lda #$44 Acc = $44 (”“D”) 001B LDA #$44 A9 44
sta $0042 Mem[42] = $44 001D STA $0042 8D 42 00
lda #S$4F Acc = S4F (”0”) 0020 LDA #S$4F A9 4F
sta $0043 Mem[43] = S4F 0022 STA $0043 8D 43 00
lda #S4E Acc = S4E (”N”) 0025 LDA #S$S4E A9 4E
sta $0044 Mem[44] = S4E 0027 STA $0044 8D 44 00
lda #$45 Acc = $45 (“E”) 002A LDA #$45 A9 45
sta $0045 Mem[45] = $45 002C STA $0045 8D 45 00
lda #$00 Acc = $00 (null) 002F LDA #$00 A9 00
sta $0046 Mem[46] = $S00 0031 STA $0046 8D 46 00
ldx #$02 X =2 0034 LDX #$02 A2 02
ldy #$42 Y = §42 (address) 0036 LDY #$42 AQ 42
Sys System call 0038 SYS FF
brk Break 0039 BRK 00

Before and Atter Compilation

During: Intermediate Representation (6502a Assembly. Ms-IL and Java bytecodes are similar.

lda #$3 Acc = 3 0000 LDA #$03 A9 03
sta $0041 Mem[41] = 3 0002 STA $0041 8D 41 00
lda #$1 Acc = 1
S8 L00ko il 1010 1001 0000 OO11
loop 1dy $0040 | Y = Mem[40] 1000 1101 0100 0001 0000 0O0O0O

ldx #$01 X =1

sys System Call 000F SYS FF

inc $0040 | Mem[40]++ 0010 INC $0040 EE 40 00

ldx $0040 | X = Mem[40] 0013 LDX $0040 AE 40 00

cpx $0041 Z bit = (x == Mem[41]) 0016 CPX $0041 EC 41 00

bne loop if z == 0 goto loop 0019 BNE LOOP DO EF
lda #$44 Acc = $44 (“D”) 001B LDA #$44 A9 44
sta $0042 Mem[42] = $44 001D STA $0042 8D 42 00
lda #S$S4F Acc = S4F (”0”) 0020 LDA #S$S4F A9 4F
sta $0043 Mem[43] = S4F 0022 STA $0043 8D 43 00
lda #S$S4E Acc = S4E (”N”) 0025 LDA #S$S4E A9 4E
sta $0044 Mem[44] = S4E 0027 STA $0044 8D 44 00
lda #$45 Acc = $45 (“E”) 002A LDA #$45 A9 45
sta $0045 Mem[45] = $45 002C STA $0045 8D 45 00
lda #$00 Acc = $00 (null) 002F LDA #$00 A9 00
sta $0046 Mem[46] = $S00 0031 STA $0046 8D 46 00
ldx #$02 X =2 0034 LDX #$02 A2 02
ldy #$42 Y = §42 (address) 0036 LDY #$42 A0 42
Sys System call 0038 SYS FF
brk Break 0039 BRK 00

Before and After Compilation

lda #$3 A9 03 1010 1001 0000 0OO11
sta $0041 8D 41 00| 1000 1101 0100 0OO1 0000 OOOO
lda #$1 A9 01 1010 1001 0000 0OOO1
sta $0040 8D 40 00 | 1000 1101 0100 0000 0000 0000

loop 1ldy $0040 AC 40 00| 1010 1100 0100 0000 0000 0OOO
ldx #$01 A2 01 1010 0010 0000 0OOO1
sys FF 1111 1111

inc $0040 EE 40 00

10 A = 3
20 X = 1 ldx $0040 AE 40 00
30 print X

cpx $0041 EC 41 00

40 X = X + 1

50 IF X <> A THEN GOTO 30 ’> bne loop D0 EF

60 PRINT “DONE”

lda #$44 A9 44
sta $0042 8D 42 00
lda #S$S4F A9 4F
sta $0043 8D 43 00
lda #S4E A9 4E
sta $0044 8D 44 00
lda #$45 A9 45
sta $0045 8D 45 00
lda #$00 A9 00
sta $0046 8D 46 00
ldx #$02 A2 02
ldy #$42 A0 42
sSys FF

brk 00

14

Aside: von Neumann Architecture

STA op code (8D)

Results of
operations

lda #S$3
sta $0041

loc 0041:
0000 0011

TA

A9 03 1010 1001 0000 0OO11
8D 41 00| 1000 1101 0100 0001 0OOOO 0OOOO

Memory (stores both instructions and data)

Instructions and data across the front-side bus

Arithmetic and
logic unit

>

Control
unit

~<—> |nput and output devices

\\ Accumulator (register): 0000 0011

Central processing unit

15

Before and After Compilation

lda #$3 A9 03 1010 1001 0000 0OO11
sta $0041 8D 41 00| 1000 1101 0100 0OO1 0000 OOOO
lda #$1 A9 01 1010 1001 0000 0OOO1
sta $0040 8D 40 00 | 1000 1101 0100 0000 0000 0000

loop 1ldy $0040 AC 40 00| 1010 1100 0100 0000 0000 0OOO
ldx #$01 A2 01 1010 0010 0000 0OOO1
sys FF 1111 1111

inc $0040 EE 40 00

10 A = 3
20 X = 1 ldx $0040 AE 40 00
30 print X

cpx $0041 EC 41 00

40 X = X + 1

50 IF X <> A THEN GOTO 30 ’> bne loop D0 EF

60 PRINT “DONE”

lda #$44 A9 44
sta $0042 8D 42 00
lda #S$S4F A9 4F
sta $0043 8D 43 00
lda #S4E A9 4E
sta $0044 8D 44 00
lda #$45 A9 45
sta $0045 8D 45 00
lda #$00 A9 00
sta $0046 8D 46 00
ldx #$02 A2 02
ldy #$42 A0 42
sSys FF

brk 00

16

Betore and After Compilation

After: Machine Language

A9 03 8D 41 OOFA9 01 8D 40 00 AC 40 00 A2 01 FF EE 40 00 AE 40 00 EC 41 00 DO
EF A9 44 8D 42 00 A9 4F 8D 43 00 A9 4E 8D 44 00 A9 45 8D 45 00 A9 00 8D 46 00

A2 02 AQ0 42 FF 00

How are we going to execute this?

17

Before and After Compilation

Source Code

Before: Three higher-level languages

10 A =3 int limit = 3; var limit = 3;
20 X =1 int val = 1; var val = 1;
30 print X repeat do

40 X = X + 1 { {

50 IF X <> A THEN GOTO 30
60 PRINT “DONE”

console.write(val);
++val;
} until (val == limit)
console.write(“DONE”);

alert(val);

++val;
} while (val <> limit);
alert (“DONE”) ;

During: Intermediate Representation (6502a Assembly. Ms-IL and Java bytecodes are similar.)

lda #$3
sta $0041

lda #$1
sta $0040

loop ldy $0040
1dx #$01
sys

inc $0040
1dx $0040

cpx $0041
bne loop

lda #$44

sta $0042
lda #$4F

sta $0043
lda #S$S4E

sta $0044
lda #$45

sta $0045
lda #$00

sta $0046
1ldx #$02

ldy #$42

sys

brk

Acc = 3 0000
Mem[41] = 3 0002
Acc = 1 0005
Mem[40] = 1 0007
Y = Mem[40] 000A LOOP
X =1 000D
System Call 000F
Mem[40]++ 0010
X = Mem[40] 0013
Z bit = (x == Mem[41]) 0016
if z == 0 goto loop 0019
Acc = $44 (”D”) 001B
Mem[42] = $44 001D
Acc = $4F (”0”) 0020
Mem[43] = S4F 0022
Acc = S4E (“N”) 0025
Mem[44] = S4E 0027
Acc = $45 (“E”) 002A
Mem[45] = $45 002cC
Acc = $00 (null) 002F
Mem[46] = 500 0031
X =2 0034
Y = §42 (address) 0036
System call 0038
Break 0039

LDA #$03 A9 03
STA $0041 8D 41 00
LDA #$01 A9 01
STA $0040 8D 40 00
LDY $0040 AC 40 00
LDX #$01 A2 01
SYS FF

INC $0040 EE 40 00
LDX $0040 AE 40 00
CPX $0041 EC 41 00
BNE LOOP DO EF
LDA #$44 A9 44
STA $0042 8D 42 00
LDA #S$4F A9 4F
STA $0043 8D 43 00
LDA #S$4E A9 4E
STA $0044 8D 44 00
LDA #$45 A9 45
STA $0045 8D 45 00
LDA #$00 A9 00
STA $0046 8D 46 00
LDX #$02 A2 02
LDY #$42 A0 42
SYS FF

BRK 00

After: Machine Language

A9 03 8D 41 00 A9 01 8D 40 00 AC 40 00 A2 01 FF EE 40 00 AE 40 00 EC 41 00 DO
EF A9 44 8D 42 00 A9 4F 8D 43 00 A9 4E 8D 44 00 A9 45 8D 45 00 A9 00 8D 46 00
A2 02 A0 42 FF 00

Machine Language

18

Super-High Level View

Source Code

l

Translator?

l

Machine Language

19

Super-High Level View

Source Code

N

Compiler

Goals

* recognize programs
- generate code

* manage storage

Machine Language

20

Super-High Level View

Source Code

N

Compiler —> I Frrors and l
Warnings
GOaIS

- recognize legal programs
- generate correct code

- efficiently manage storage

Machine Language

21

Super-High Level View

Source Code

l

Front End

v

Goals [Errors and] Intermvediajce
- Front end translates code into IR wernines) Representation
- Back end translates IR into Machine Language
for the target platform.

Back End

l

Machine Language

22

High Level View: Front End

Source Code

l

Front End

Front End

- Recognize legal and illegal code
- Keep track of variables and types

- Report errors and warnings

- Produce the Intermediate Representation (IR)

- Consists of three parts:

23

High Level View: Front End

Source Code

l

Lex

Parse

Semantic
Analysis

24

High Level View: Front End

Source Code

l

Lex

Words

Parse

Sentences

Semantic
Analysis

Meaning

25

High Level View: Front End

Source Code

l

Lex

Words

GLaDOS
—cke—
cake
ate

Parse

Sentences

Semantic
Analysis

Meaning

26

High Level View: Front End

Source Code

l

Lex

Words

GLaDOS
—cke—
cake
ate

Parse

Sentences

1~

) ~ (T PAC—
—arte—eare—GEHapbOoS

GLaDOS ate cake

Semantic
Analysis

Meaning

27

High Level View: Front End

Source Code

l

Lex

Words

GLaDOS
—cke—
cake
ate

Parse

Sentences

1~

) ~ (T PAC—
—arte—eare—GEHapbOoS

GLaDOS ate cake

Semantic
Analysis

Meaning

GLaDOS‘ate‘cake

noun

verb

direct
object

28

High Level View: Lex

Sou rce Code Errors and

/[Warnings

Token

Lex Stream Parse

T =

Lexical Analysis

- Maps characters into an ordered stream of tokens
X 1= X + Yy

becomes

<id, x> <assign> <id, x> <add> <id,y>
- Typical tokens: id int while print if
- Eliminates white space

- Report meaningful errors and warnings
- Produce a token stream

- Focus on words/lexemes/tokens

Semantic
Analysis

29

High Level View: Parse

Source Code

l

Lex

Parse

T

Token N b
Stream arse

¥

Errors and
Warnings

T

oy

C Symbol Table]

- Recognize context-free syntax
- Recognize variables and type

- Report meaningful errors and warnings
- Produce a parse tree (aka: Concrete Syntax Tree)

- Focus on syntax

CST

Semantic
Analysis

30

High Level View: Semantic Analysis

Source Code

S

Errors and

Token
Lex Stream
Semantic Analysis

Warnings \

Parse

¥ Symbol Table] v——/

- Produce a intermediate representation in the form of
an Abstract Syntax Tree (AST)

- Check type
» Check scope

- Report meaningful errors and warnings

-+ Focus on meaning

Semantic
Analysis

AST (IR)

31

High Level View: Back End

Back End

l

Machine Language

32

High Level View: Back End

Code Generation
- Translates IR into Machine Language
for the target platform
- Chose instructions for each IR operation
- Allocate registers
- Ensure conformance with target system

AST (IR)

\

Code
Generation

l

Machine Language

33

High Level View

&b
h o4

Source Code Errors and

-

Token
Lex Stream Parse

v—/ Analysis
\@()

Semantic

AST (IR)

Project 4

Code
Generation

l

Machine Language

34

High Level View: Back End

Source Code

Errors and

Token

Lex Parse

Stream

There’s more to the back end of a compiler:
- Lots of AST optimizations

Analysis
¥C Symbol Table]v__/

- Instruction Selection Gobaicst

- Lots of instruction optimizations | e

- Register Allocation Dead stoe sminatin
Sadly, we don’t have time to v it
implement these along with From Cooper & Torczon

everything else in a single semester.
But here’s a peek...

Semantic

AST (IR)

\4

Code
Generation

l

Machine Language

35

High Level View: Back End

Source Code Errors and

g Token p CST Semantic
X Stream arse Analysis
m &[Symbol Table]v__/
. .)
II‘IISU‘}JCU.OI‘I Instruc.tlon | A.ST | B AST (IR)
Optimizations Selection Optimizations
\4
Register S Code
Allocation Generation

l

Machine Language

36

I wonder. ..

Source Code

l

Front End

How abstract should we get here?

Back End

l

Machine Language

37

I wonder. ..

back
end

——= \Windows / Intel

back
end

—= Mac / M1

FORTRAN___| front
code end
C++ - front
code = | end
Java - front
code | end

TypeScript __ _| front
code end

back
end

—= Linux / zOS

Can we build n x m compilers with n + m components?

I wonder. ..

back
end

——= \Windows / Intel

back
end

—= Mac / M2

FORTRAN___| front
code end
C++ - front
code = | end
Java - front
code | end

TypeScript __ _| front
code end

back
end

—= Linux / zOS

Can we build n x m compilers with n + m components?
With the right Intermediate Representation, yes.

39

Example

while (y < z) {
int x = a + b;
y += x;

This is based on an example from the great Alex Aiken.

40

Example

while (y < z) {
int x = a + b;
y += X;

}

While [while] found at (©6:1)
LParen [(] found at (6:9) Tokens
Id [yv] found at (6:10)

BoolOp [<] found at (6:12)

Id [z] found at (6:15) Parsing
RParen [)] found at (6:106)

LBrace [{] found at (6:18) g :
TypeDef [int] found at (7:4) Semantic Analysis

Id [x] found at (7:10)

Id [x] found at (8:0) :
Assign [=] found at (8:8) IR Generation

Id [a] found at (8:10)

IntOp [+] found at (8:12) 5. -

Id [b] found at (8:14) 'R Optlmlzatl0n
Semicolon found at (8:15)

Id [v] found at (9:6) Code Generation
Assign [=] found at (9:8)

Id [yv] found at (9:10)

IntOp [+] found at (9:12) Opt|m|zat|0n

Id [x] found at (9:14)

Semicolon found at (9:15)

RBrace [}] found at (10:3)

Lexical Analysis complete with 0 WARNING(S) and O ERROR(S)

Lex: Did we get the words right?

This is based on an example from the great Alex Aiken.

41

Example

while (y < z) {
int x = a + b;
y += Xx;

< WhileStatement >

///”7;;;7/\\\\\\‘\\\\

[while] < BooleanExpression > < Block >
//%\ /’\
[(1 < Expression > < BoolOp > < Expression > N1 [{1 < StatementList > [}
<ld> [<1] <Id> < Statement > < StatementList >
| | | T
[yl [z] < VarDecl > < Statement > < StatementList >
N | |
< Type > <Id> < AssignmentStatement > < Statement >
| %\
[int . ;
T [x] <Id> [=] < Expression > < AssignmentStatement >
[x] < IntegerExpression > <Id> [=1 < Expression >
| |
< id > < IntOp > < Expression > [yl < IntegerExpression >
ta [+] <Id> < id > < IntOp > < Expression >
|
[b] kvl [+ <id>

[x]

Parse: Did we get the sentences right?

4]

CST

42

Example

const int a

const int b

while (y < z) {
int x = a +
y += X;

f Z } Assume these declarations so we can derive types.

b;

WhileStatement LeX|caI Ana|YSIS

/\ Parsing

Less than Block

y z VarDecl AssignmentStatement AssignmentStatement IR Generation
/\ /\ /\ IR Optimization
int X X Addition y Addition)
/\ Code Generation
a b vy X Optimization

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

43

Example

const int a

const int b

while (y < z) {
int x = a +
y += X;

f Z } Assume these declarations so we can derive types.

b;

Lexical Analysis

WhileStatement

Parsing

IR Generation

Less than

/’4\

VarDecl AssignmentStatement AssignmentStatement

/\ /\ IR Optimization

X Addition y Addition

Code Generation

a Optimization

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

44

Example

const int a

const int b

while (y < z) {
int x = a +
y += X;

f Z } Assume these declarations so we can derive types.

b;

WhileStatement LeXICaI Ana|YSIS

void

/\ Parsing

Less th Block

y z VangcI AssignmentStatement AssignmentStatement IR Generation
VoI
/\ /\ /\ IR Optimization
int X X Addition y Addition)
void int /\ /\ Code Generation
a b vy X Optimization
int int

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

45

Example

const int a

_ 3 } Assume these declarations so we can derive types.
const int b 4

o X

while (y < z) {
int x = + b;
y += X;

A Lexical Analysis

void

/\ Parsing

Less th Block

y Z VarDecI AssignmentStatement AssignmentStatement IR Generatlon
void
/\ /\ /\ IR Optimization
int X Addition Addition)
void _ int ;t\ /\ Code Generation
vy X Optimization
int int

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

46

Example

const int a

_ 3 } Assume these declarations so we can derive types.
const int b 4

o X

while (y < z) {
int x = + b;
y += X;

A Lexical Analysis

void

/\ Parsing

Less th Block

y Z VarDecI ASS|gnmentStatement AssignmentStatement IR Generatlon
void
/\ /\ /\ IR Optimization
int X Addition y Addition)
void _ int ;t\ /\ Code Generation
vy X Optimization
int int

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

47

Example

const int a

const int b

while (y < z) {
int x = a +
y += X;

f Z } Assume these declarations so we can derive types.

b;

A Lexical Analysis

void

/\ Parsing

Less th Block

y z VarDecl AssignmentStatement AssignmentStatement IR Generation
void in
/\ /\ /\ IR Optimization
int X X Addition y Addition)
void int “int int /\ Code Generation
Yes! a b vy X Optimization
int int

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

48

Example

const int a

const int b

while (y < z) {
int x = a +
y += X;

f Z } Assume these declarations so we can derive types.

b;

WhileStatement LeXICaI Ana|YSIS

void

/\ Parsing

Less th Block

y z VarDecl AssignmentStatement AssignmentStatement IR Generation
void in
/\ /\ /\ IR Optimization
What if... bool x X Addition y Addition
void bool “int int Code Generation
No! a b v X Optimization
int int

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

49

Example

&b
h o4

const int a

const int b

while (y < z) {
int x = a +
y += X;

f Z } Assume these declarations so we can derive types.

b;

WhileStatement LGXICB' Ana|YSIS

void

/\ Parsing

Less th Block

y z VarDecl AssignmentStatement AssignmentStatement IR Generation
void in
/\ /\ /\ IR Optimization
int X X Addition y Addition)
void int “int int /\ Code Generation
a b vy X Optimization
int

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

50

Example

Fey
h 24

const int a

const int b

while (y < z) {
int x = a +
y += X;

f Z } Assume these declarations so we can derive types.

b;

A Lexical Analysis

void

/\ Parsing

Less th Block

y z VarDecl AssignmentStatement AssignmentStatement IR Generation
int int void in in
/\ (/\ /\ IR Optimization
int X X Addition Ly Addition
void int nt int int int Code Generation
a b vy X Optimization
int int int int

SA: Did we get the meaning (scope and type) right?

This is based on an example from the great Alex Aiken.

51

Example

const int a

const int b
while (y < z) {
a +

i 2 } Assume these declarations.

int x = b
y += x;

}

Loop: X — a + b Lexical Analysis
4 ~ & % ¥ Parsing
tl =y < z | |
if tl goto Loop Semantic Analysis

IR Optimization

Code Generation

Optimization

IR: Instead of using the AST as our IR we could use other code.

This is based on an example from the great Alex Aiken.

52

Example

const int a

const int b
while (y < z) {
a +

f Z } Assume these declarations.

int x = b;
y += X;
}
x = a + b
Loop: vy = X + vy
tl =y < z

if tl1 goto Loop

IR: A “hoisting” optimization

This is based on an example from the great Alex Aiken.

53

Example

const int a
const int b

LY

while (y < z) {
int x = + b;
y += Xx;
}
% = a—+1 7
Loop: vy = X + vy
tl =y < z

if tl1 goto Loop

IR: A “constant folding” optimization

Z‘ } Assume these declarations.

This is based on an example from the great Alex Aiken.

54

Example

while (y < z) {
int x = a + b;

y += x;
}
sw $1, 0x7 Lexical Analysis
Loop: add $4, $1, S$4 Parsing

slt $6, $1, S5

beg $6, loop Semantic Analysis

IR Generation

IR Optimization

Optimization

Code Gen: This is MIPS. We'll use being 6502a op codes as our ML.
(Maybe RISC-V too.)

This is based on an example from the great Alex Aiken.

)

Example

while (y < z) {
int x = a + b;
y += Xx;

sw $1, 0x7
Loop: add $4, $1, $4
blE 51, $5; loeop

ML Optimization: replace set and branch with branch less than.

This is based on an example from the great Alex Aiken.

56

Example

while (y < z) {
int x = a +
y += Xx;

Code Gen: 6502a op

b

.
4

//X4=7v
ADGE. . DA #$07
8D 4E 00 STA $004E

o7

Our Goal

Source Code

N

Your Compiler

A

Machine Language

58

I wonder. ..

-
>

Could we get an Al to write this for us?

Write a program using typescript to simulate a compiler. This program should include 4 4
primary methods: lex, parse, analyze, generateCode. This program should accept a string of

This output! from ChatGPT3 on e ot et L o e o o
January 13, 2023 is not bad.

It’s not exactly what we're
going to do in this class, but it’s
a good template and — best of
all — a clean and well-
structured design.

Here is an example program in TypeScript that simulates a compiler for Python code to G &

6502a assembly language:

) Copy code

There are thousands of lines of
detail to be written, but thisis a
decent start.

Note that the actual implementation of the lex, parse, analyze, and generateCode methods
will depend on the specific requirements of the compiler and the 6502a assembly language.

1 . . This is just a skeleton program to show the overall structure of the compiler.
This was generated by a recent (now graduated) Compilers student.

I wonder. ..

Could we get an Al to write this for us?

@ Here is an example implementation of the ~1ex™ method for the provided Python code:

Ej Copy code

lex(code: string): any {
st tokens = [];
let currentToken = H
for (let 1 = 9; i < code.length; i++) {
1st char = code[i];
if (char === || char === || char === || char ===) {
if (currentToken.length > @) {
tokens.push(currentToken);
currentToken = H
}
if (char l==) {
tokens.push(char);
}
} else {

currentToken += char;

}

if (currentToken.length > @) {

tokens.push(currentToken);

}

eturn tokens;

These lex and codeGen tunctions are

-~
e

Here is an example of the " generatecode™ method for converting the intermediate

representation (IR) of the Python code to 6502a assembly language:

Cj Copy code

generateCode(ir: any): string {
let assemblyCode = H
(let 1 = 9; i < ir.length; i++) {
if (ir[i].op === "print") {

assemblyCode += "LDA + ir[i].value +

assemblyCode += "JSR $FFD2\n";

1 assemblyCode;

This example assumes that the IR is an array of objects, where each object has an ~op™ field

that specifies the operation to be performed, and a ~value" field that provides the value for

the operation.

The function iterates over the IR, and for each print operation it generates the assembly

code to load the value into the accumulator and call the JSR instruction to print it.
The assembly code generated by this example will look like this:

(| Copy code

neither complete nor accurate for our purposes,
but they are both a “good start” towards that end.

60

I wonder. ..

Should we use an Al to help us write this?

Let’s talk about it.

Midjourney

> ChatGPT AI composing a C++ compiler
software development retro-futuristic
colorful bright space

61

I wonder. ..

Should we use an Al to help us write this?

Let’s talk about it.
You don’t have to. Obviously.

Midjourney

> ChatGPT AI composing a C++ compiler
software development retro-futuristic
colorful bright space

62

I wonder. ..

Should we use an Al to help us write this?

Let’s talk about it.
You don’t have to. Obviously.
But if you do, here are some minimum requirements:
- As ever, any code that’s not 100% yours and yours alone must be

marked as such and documented with sources.
» Whether you get help from ChatGPT3 online or Wilhelm in Marion Hall, you
have to acknowledge it and cite it or it is unquestionably plagiarism.
» Copying and pasting from the Hall of Fame or GitHub or some other online
source is unquestionably plagiarism unless you cite it, so this is consistent.

- I'm interested in learning about how well (or not) Al-assisted

software development worked for you.

» If you make use of an Al in this project, you must document your experience
with it for each project: what worked and what didn’t, challenges, unexpected
occurrences, etc. Include a reflection on the experience as well. You will soon
be a professional in this field and I want to know your opinions on this.

