
1

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

The Relational Model

mailto:Alan.Labouseur@Marist.edu

2

The Relational Model

Tables of rows and columns:
Our AD&D-like game

CAP=# select *
CAP-# from Players;
 pid | name | rank
-----+---------+---------
 1 | James | Captain
 2 | Leonard | Admiral
(2 rows)

CAP=# select *
CAP-# from Items;
 iid | name | descr
-----+-------+-------
 A | wand | ...
 B | gem | ...
 C | mace | ...
 D | sword | ...
(4 rows)

CAP=# select *
CAP-# from Inventory;
 pid | iid | dateacquired
-----+-----+-------------
 1 | A | 2020-01-23
 1 | B | 2020-01-23
 2 | B | 2020-01-23
 2 | C | 2020-01-23
(4 rows)

3

The Relational Model

Tables of rows and columns: An e-commerce database (“CAP”)

4

The Relational Model

Tables of rows and columns

 pid | prefix | firstName | lastName | suffix | homeCity | DOB
-----+--------+------------+------------+--------+--------------+------------
 1 | Dr. | Neil | Peart | Ph.D. | Toronto | 1952-09-12
 2 | Ms. | Regina | Schock | | Toronto | 1957-08-31
 3 | Mr. | Bruce | Crump | Jr. | Jacksonville | 1957-07-17
 4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02
 5 | Mr. | Bernard | Purdie | | Teaneck | 1939-06-11
 6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09
 7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04
 8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17
 9 | Mr. | Alan | White | III | Pelton | 1949-06-14

People

5

The Relational Model

Tables of rows and columns

 pid | prefix | firstName | lastName | suffix | homeCity | DOB
-----+--------+------------+------------+--------+--------------+------------
 1 | Dr. | Neil | Peart | Ph.D. | Toronto | 1952-09-12
 2 | Ms. | Regina | Schock | | Toronto | 1957-08-31
 3 | Mr. | Bruce | Crump | Jr. | Jacksonville | 1957-07-17
 4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02
 5 | Mr. | Bernard | Purdie | | Teaneck | 1939-06-11
 6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09
 7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04
 8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17
 9 | Mr. | Alan | White | III | Pelton | 1949-06-14

People

6

The Relational Model

Tables of rows and columns

All entries in a single column are a single attribute and
of a single data type.

 pid | prefix | firstName | lastName | suffix | homeCity | DOB
-----+--------+------------+------------+--------+--------------+------------
 1 | Dr. | Neil | Peart | Ph.D. | Toronto | 1952-09-12
 2 | Ms. | Regina | Schock | | Toronto | 1957-08-31
 3 | Mr. | Bruce | Crump | Jr. | Jacksonville | 1957-07-17
 4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02
 5 | Mr. | Bernard | Purdie | | Teaneck | 1939-06-11
 6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09
 7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04
 8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17
 9 | Mr. | Alan | White | III | Pelton | 1949-06-14

People

Text DateInteger

7

Relational Rules

From Codd Himself.

These rules allow us to achieve excellence in database design
across time and space.

8

Relational Rules

1. The First Normal Form Rule

There can be no multi-valued attributes or values with internal
structure at any intersection of a row and a column in a table.

In older terms: no repeating groups or no repeating fields.

Put another way, all values at the intersection or a row and a column
must be atomic, meaning that they cannot be subdivided.

9

Relational Rules

1. The First Normal Form Rule

There can be no multi-valued attributes or values with internal
structure at any intersection of a row and a column in a table.

In older terms: no repeating groups or no repeating fields.

Put another way, all values at the intersection or a row and a column
must be atomic, meaning that they cannot be subdivided.

pid name profession skills
--- ------ ----------------------------- -------------------------------
007 Sean spy pronounces "S" like "Sh", charm
008 Roger secret agent (on who's side?) humour, stealth
009 Pierce stiff-assed Brit wit, hair

People

10

Relational Rules

1. The First Normal Form Rule

There can be no multi-valued attributes or values with internal
structure at any intersection of a row and a column in a table.

In older terms: no repeating groups or no repeating fields.

Put another way, all values at the intersection or a row and a column
must be atomic, meaning that they cannot be subdivided.

pid name profession skills
--- ------ ----------------------------- -------------------------------
007 Sean spy pronounces "S" like "Sh", charm
008 Roger secret agent (on who's side?) humour, stealth
009 Pierce stiff-assed Brit wit, hair

People

This is a violation
of the 1NF rule.

11

Relational Rules

1. The First Normal Form Rule

There can be no multi-valued attributes or values with internal
structure at any intersection of a row and a column in a table.

In older terms: no repeating groups or no repeating fields.

Put another way, all values at the intersection or a row and a column
must be atomic, meaning that they cannot be subdivided.

A slight restructuring of table removes the 1NF violation (but this is
still bad design).

pid name profession skill1 skill2
--- ------ ----------------------------- ------------------------ ------
007 Sean spy pronounces "S" like "Sh" charm
008 Roger secret agent (on who's side?) humour stealth
009 Pierce stiff-assed Brit wit hair

People

12

Relational Rules

2. The Access Rows by Content Only Rule

We can only ask for (“query”) data by what’s there,
never by where it is.

13

Relational Rules

2. The Access Rows by Content Only Rule

We can only ask for (“query”) data by what’s there,
never by where it is.

We can ask, “What is the name of pid 007?”
We cannot ask, “What is the name in the first row?”

Tables are sets. The elements of a set have no intrinsic order.
{a, b, c} = {b, a, c} = {c, a, b}

pid name profession skill1 skill2
--- ------ ----------------------------- ------------------------ ------
007 Sean spy pronounces "S" like "Sh" charm
008 Roger secret agent (on who's side?) humour stealth
009 Pierce stiff-assed Brit wit hair

People

14

Relational Rules

2. The Access Rows by Content Only Rule

We can only ask for (“query”) data by what’s there,
never by where it is.

We can ask, “What is the name of pid 007?”
We cannot ask, “What is the name in the first row?”

Tables are sets. The elements of a set have no intrinsic order.
{a, b, c} = {b, a, c} = {c, a, b}

pid name profession skill1 skill2
--- ------ ----------------------------- ------------------------ ------
007 Sean spy pronounces "S" like "Sh" charm
008 Roger secret agent (on who's side?) humour stealth
009 Pierce stiff-assed Brit wit hair

People

15

Relational Rules

3. The All Rows Must Be Unique Rule

Since tables are sets of rows and
columns, and because the elements
of a set have no intrinsic order, the
only way we can insure our ability to
get at every row in a table is for
every row to be unique.

Were that not the case, some
rows in the table would be
indistinguishable. (Like crossing
the streams, that would be bad.)

16

Relational Rules

3. The All Rows Must Be Unique Rule

pid name profession skill1 skill2
--- ------ ----------------------------- ------------------------ ------
007 Sean spy pronounces "S" like "Sh" charm
008 Roger secret agent (on who's side?) humour stealth
009 Pierce stiff-assed Brit wit hair
007 Sean spy pronounces "S" like "Sh" charm

People

pid name profession skill1 skill2
--- ------ ----------------------------- ------------------------ ------
007 Sean spy pronounces "S" like "Sh" charm
008 Roger secret agent (on who's side?) humour stealth
009 Pierce stiff-assed Brit wit hair

People

17

Does this database obey the rules?

Relational Rules

18

Relational Rules

Expanded Summary
• All entries in a table must be single-valued.
• Each column must have a distinct name.
• All values in a column are values of the same attribute.
• The order of columns is immaterial.
• Every row is distinct (unique).
• The order of rows is immaterial.

19

Keys

Super Key any field (column) or set of fields that
 uniquely identify every row in a table

Candidate Key a minimal super key

Primary Key the chosen candidate key

Foreign Key a value in one table that must match the
 primary key of another table

20

Keys

Super Key any field or set of fields that uniquely identify
 every row in a table

21

Keys

Candidate Key a minimal super key

22

Keys

Primary Key the chosen candidate key

??

23

Keys

Primary Key the chosen candidate key

24

Keys

Foreign Key a value in one table that must match the
 primary key of another table

25

Keys and Referential Integrity

The enforcement of the Primary Key (PK) — Foreign Key (FK)
relationship is perhaps the most important aspect of Relational
Databases. This property is called referential integrity. It insures
consistency and accuracy, and thus leads to data quality. Data cannot
become information without it.

Because of the importance of keys, it’s critical that we — as database
designers and data architects — never let end users control the
content of key fields. For that reason, artificial keys are often a
smart choice.

An artificial key is one that we make up. CWID is an example.

26

SQL

SELECT
FROM
WHERE

 pid | prefix | firstName | lastName | suffix | homeCity | DOB
-----+--------+------------+------------+--------+--------------+------------
 1 | Dr. | Neil | Peart | Ph.D. | Toronto | 1952-09-12
 2 | Ms. | Regina | Schock | | Toronto | 1957-08-31
 3 | Mr. | Bruce | Crump | Jr. | Jacksonville | 1957-07-17
 4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02
 5 | Mr. | Bernard | Purdie | | Teaneck | 1939-06-11
 6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09
 7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04
 8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17
 9 | Mr. | Alan | White | III | Pelton | 1949-06-14

People

27

SQL

SELECT some columns
FROM
WHERE

 pid | prefix | firstName | lastName | suffix | homeCity | DOB
-----+--------+------------+------------+--------+--------------+------------
 1 | Dr. | Neil | Peart | Ph.D. | Toronto | 1952-09-12
 2 | Ms. | Regina | Schock | | Toronto | 1957-08-31
 3 | Mr. | Bruce | Crump | Jr. | Jacksonville | 1957-07-17
 4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02
 5 | Mr. | Bernard | Purdie | | Teaneck | 1939-06-11
 6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09
 7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04
 8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17
 9 | Mr. | Alan | White | III | Pelton | 1949-06-14

People

28

SQL

SELECT some columns
FROM some table
WHERE

 pid | prefix | firstName | lastName | suffix | homeCity | DOB
-----+--------+------------+------------+--------+--------------+------------
 1 | Dr. | Neil | Peart | Ph.D. | Toronto | 1952-09-12
 2 | Ms. | Regina | Schock | | Toronto | 1957-08-31
 3 | Mr. | Bruce | Crump | Jr. | Jacksonville | 1957-07-17
 4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02
 5 | Mr. | Bernard | Purdie | | Teaneck | 1939-06-11
 6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09
 7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04
 8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17
 9 | Mr. | Alan | White | III | Pelton | 1949-06-14

People

29

SQL

SELECT some columns
FROM some table
WHERE some condition holds true

 pid | prefix | firstName | lastName | suffix | homeCity | DOB
-----+--------+------------+------------+--------+--------------+------------
 1 | Dr. | Neil | Peart | Ph.D. | Toronto | 1952-09-12
 2 | Ms. | Regina | Schock | | Toronto | 1957-08-31
 3 | Mr. | Bruce | Crump | Jr. | Jacksonville | 1957-07-17
 4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02
 5 | Mr. | Bernard | Purdie | | Teaneck | 1939-06-11
 6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09
 7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04
 8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17
 9 | Mr. | Alan | White | III | Pelton | 1949-06-14

People

30

SQL

SELECT firstName
FROM People
WHERE homeCity = ‘Toronto’

 pid | prefix | firstName | lastName | suffix | homeCity | DOB
-----+--------+------------+------------+--------+--------------+------------
 1 | Dr. | Neil | Peart | Ph.D. | Toronto | 1952-09-12
 2 | Ms. | Regina | Schock | | Toronto | 1957-08-31
 3 | Mr. | Bruce | Crump | Jr. | Jacksonville | 1957-07-17
 4 | Mr. | Todd | Sucherman | | Chicago | 1969-05-02
 5 | Mr. | Bernard | Purdie | | Teaneck | 1939-06-11
 6 | Ms. | Demetra | Plakas | Esq. | Santa Monica | 1960-11-09
 7 | Ms. | Terri Lyne | Carrington | | Boston | 1965-08-04
 8 | Dr. | Bill | Bruford | Ph.D. | Kent | 1949-05-17
 9 | Mr. | Alan | White | III | Pelton | 1949-06-14

People

31

SQL

create table Players (
 pid int not null,
 name text,
 rank text,
 primary key (pid)
);

insert into Players(pid, name, rank)
values (1, 'James', 'Captain'),
 (2, 'Leonard', 'Admiral');

select *
from Players;

create table Items (
 iid char(1) not null,
 name text,
 descr text,
 primary key (iid)
);

insert into Items (iid, name, descr)
values ('A', 'wand', '...'),
 ('B', 'gem', '...'),
 ('C', 'mace', '...'),
 ('D', 'sword', '...');

select *
from Items;

create table Inventory (
 pid int not null references Players(pid),
 iid char(1) not null references Items(iid),
 dateAcquired date,
 primary key(pid, iid)
);

insert into Inventory (pid, iid, dateAcquired)
values (1, 'A', '2020-01-23'),
 (1, 'B', '2020-01-23'),
 (2, 'B', '2020-01-23'),
 (2, 'C', '2020-01-23');

select *
from Inventory;

-- Players and their Items
select Players.name, Items.name
from Players inner join Inventory on Players.pid = Inventory.pid
 inner join Items on Inventory.iid = Items.iid;

-- Unused Items
select *
from Items
where iid not in (select iid
 from Inventory);

-- Item use count v1
select iid, count(iid)
from Inventory
group by iid
order by count(iid) DESC;

SQL Script for AD&D database:
Players, Items, and Inventory tables,
and a few queries

