
1

Dunn Hotel
Database Design

Proposal

Taylor Dunn

Table of Contents

2

Executive Summary………………………3

ER Diagram…………………………………...4

Table Statements…………………... 6-23

View Statements…………………...25-30

Stored Procedures………………….32-33

Reports …………………………………..34-35

Triggers……………………………………36-37

Security………………………………………….38

Problems/Enhancements…………….39

3

This database has been created for the Dunn
Hotel, a hotel that is run by Taylor Dunn and her
minions. It has been created to keep track of all
records needed to ensure the success of the hotel.

The information that follows is an intensive review
of the database itself, and aspects of it’s uses.
There are numerous parts of this review including
the ER Diagram, create statements for tables, and
the sample data that was inserted into the table.
Next are the results of queries, views, stored
procedures, reports, and triggers. These were all
created and then tested.

The purpose of this database is to condense all of
the information that the hotel needs to function
into one central, and organized collection of tables.

Executive Summary

ER Diagram:

4

5

Tables

Attractions: This table contains different attractions
in the area of Liverpool, Texas, including the hotel
that this database focuses on.

Functional Dependencies: attraction_id → attraction_name, attraction_description

6

7

Transactions: This table holds all of the information regarding the
transactions that go through this hotel day in and day out.

Functional Dependencies: transaction_id → employee_id, payment_id,
reservation_id, customer_id, hotel_id

Hotels: This table contains the specific information about one of
the hotel attractions in the area.

Functional Dependencies: hotel_id → street_address, city, state, zipcode,
hotel_name, owner_firstname, owner_lastname, attraction_id

8

Miscellaneous_Charges: This table contains the miscellaneous
charges options that can be added to a transaction. These charges
are broken down into three options, but more could be added as
neccessary.

Functional Dependencies: miscellaneous_charges_id → name, chargesUSD,
description

9

Miscellaneous_Charges_Add: This table displays which
transactions have miscellaneous charges in their orders.

Functional Dependencies : none

10

Payment: This table shows how a customer paid for their
reservation, and is linked to the transaction table through the
payment_id column.

11

Functional Dependencies: payment_id → payment_type_id

Payment_Type: This table holds the different payment methods that
this hotel accepts.

Functional Dependencies: payment_type_id → payment_name

12

People: This table holds all of the people that interact with the hotel
and it’s database.

Functional Dependencies: pid → first_name, last_name, street_address, state,
zipcode, birthday, contact_number, email_address

People Sample Data
on next slide

13

People Sample Data:

14

Employees and Customer: Both people, these tables connect to the
people table and include extra information.

Functional Dependencies: employee_id → pid,
job_id, hire_date, hourly_wageusd

pid → customer_id

15

Timesheet: This table includes all of the employees and their hours.

Functional Dependencies : employee_id → date, time_in, time_out

total _hours → time_in, time_out

16

Job_Type: This table holds information about different jobs that the
employees hold.

Functional Dependencies: job_id → job_name, job_description

17

Memberships: This table contains membership information for
customers who are considered members.

Functional Dependencies: membership_id → pid, customer_id, username,
password, date_of_membership

18

Reservations: This table contains all information about the
reservations a customer submits or a front desk worker processes.

Functional Dependencies: reservation_id → check_in, check_out, no_of_guests,
room_id, customer_id, transaction_id

Reservation sample data on next slide

19

20

Reservations Sample Data:

Rooms: This table holds all the information about different rooms
in the hotel.

Functional Dependencies: room_id → roomtype_id, room_number, floor_num,
status_id

21

Room_Type: This table holds all of the room types and their other
attributes.

Functional Dependencies: roomtype_id → room_name, max_guest, smoking,
description, room_price_usd

22

Room_Status: This table displays whether the room is booked,
vacant or being cleaned.

Functional Dependencies: status_id → status_name, status_description

23

24

Views, Triggers, Stored
Procedures, Reports

Views: Total Cost
 This query will find the total price a customer must pay for their
visit, based upon reservation id. This is a quick and easy way for
the total cost of a customer’s visit to be calculated and eventually
processed through payment methods.

25

Views: Total Pay
 This view will show how much an employee will make for working
a certain number of hours. This is helpful for the manager or owner
to calculate how much money they will have to pay their employees
for working their hours that week.

26

Views: Quick View Of Room Information
This view will give the employee working at the front desk a quick
dashboard of the important information they need to know if a
customer wants to book a room.

27

Views: Customer Information
This view shows customers that have made reservations, and their
important information.

28

Views: Non-Smoking Rooms

This view simply shows the rooms that are non-smoking, and
also available to be booked at the time of the query.

29

Views: Gold Members
This view simply shows members that have been with the hotel for
over a year. This accomplishment warrants special treatment from
the hotel, whether that be some sort of discount or promo.

30

Views: Room Status
This view tells you the status of the rooms in hotel. This is helpful for
those employees who are booking the reservations.

31

Stored Procedure: findCustomer

32

This procedure allows the hotel
front desk workers, as well as a
manager to look up customer or
employee personal information
with the sole knowledge of the
person’s first name, last name or
both first and last name.

Stored Procedure: findReservation

33

This procedure is a quick and
easy way for a front desk
employee to look up the details
of a reservation utilizing only
the reservation id.

Reports:

Total number of reservations after 2015 (look for trends, see what
to do to improve the number of reservations overtime):

Total number of employees that have worked over 8 hours (could
be adapted to show overtime pay information):

34

35

Reports:

This report groups together how many reservations are being
booked in each room type. This could show the owners of the hotel
which rooms are in the highest demand, and could lead to changes
within the hotels infrastructure, such as adding more of a certain
room type to the hotel itself.

36

Trigger: maxOccupants
The hotel does not allow more than 6 occupants to a room in one reservation.
Any time that this is entered into the database it is deleted immediately.

The following reservation was attempted to be added. The result is the dataset without rv11.

37

Trigger: getAge
The hotel does not want any employees or customers working or booking
reservations under the age of 18 for liability reasons. Customers and
employees are deleted from the database if this is the case.

P12 Noah
Fay not
added

Security:

Admin: This is either the owner of the business,
or a person who would need access to everything
within the database.

Hotel Manager: The Hotel Manager has much
access to the database, as they need to be able to
add all types of data into the database.

Front Desk: The Front Desk needs to be able to
access the reservations and customer database,
and book the reservations.

Housekeepers: These employees have the least
amount of access to the database. They just need
to know which rooms need to be cleaned.

38

Known Problems/Future Enhancements:

39

❏ The sample data for the purposes of this project are limited.
Much more data is needed in each of the tables for a thorough
understanding of the scope of this database. Since I used a lot
of tables, there was a plethora of information that needed to be
added to make the database sufficient.

❏ I redid my entire ER diagram after I realized that I had repeats
of different keys within tables that did not even connect.

❏ I had a lot of trouble joining tables because many tables have to
dig deeper to get certain information (for example, the first and
last name) since only one table holds that information.

❏ I had some issues with the foreign keys and primary keys with
some of my tables. The tables have to be inserted in the order I
submitted in my .sql code.

❏ The miscellaneous_charges_add table does not really have a
primary key, but I did not know how else to work this.

❏ While naming the different IDs, I realized that I was running out
of ideas for different number patterns for IDs. If I were to redo
this, I would make sure that none of the IDs were without a
letter in front. To redo that now would be extremely time
consuming and I have internetworking. RIP.

