
Ticket to Ride Database
Kylie Wasserman

Table of Contents
Table of Contents

Executive Summary

Entity-Relationship Diagram

Tables

Stored Procedures

Views

Triggers

Reports

Security

Implementation Notes

Known Problems

Future Advancements

2

2

3

4

5

18

22

26

29

35

37

37

37

Executive Summary
This document outlines the design of a database to hold all of the information about the

board game Ticket to Ride. The goal of Ticket to Ride is to earn points by completing train

tickets that prompt you to build train routes from one city to another. Players collect cards of

various colors that you then use to claim train routes in North America. The longer the route,

the more points you earn. You can also earn an additional ten points if you have the longest

continuous train in the game. The design of this database is to show the framework for the

data that is involved in a game of Ticket to Ride as well as the ability to look back on previous

games. With this database you are able to provide information about multiple games with

specific players, judges, and point values. The information implemented into this database is

fictional, with some exceptions. All people and their correlating information are fictional. The

objective is to design a database that is fully functional and fully normalized in third normal

form that can help game players store information about previous and current games of

Ticket to Ride that they have played.

3

Entity-Relationship
Diagram

4

Tables
5

People Table

DROP TABLE IF EXISTS People;

CREATE TABLE People (

 PID int not null unique,

 FirstName text not null,

 LastName text,

 DOB date not null,

 Email text,

 primary key(PID)

);

The People table contains all of the people and their common attributes. There are

two subtypes for the People table: players and judges.

Functional Dependencies

PID → FirstName, LastName, DOB, Email

6

Players Table

DROP TABLE IF EXISTS Players;

CREATE TABLE Players (

 PlayerID int not null references People(PID),

 TotalNumWins int,

 TotalNumGamesPlayed int,

 primary key(PlayerID)

);

Functional Dependencies

PlayerID → TotalNumWins, TotalNumGamesPlayed

The Players table contains all of the players and their common attributes. A players

needs to already be a person.

7

Judges Table

DROP TABLE IF EXISTS Judges;

CREATE TABLE Judges (

 JudgeID int not null references People(pid),

 TotalNumGamesJudged int,

 primary key(JudgeID)

);

Functional Dependencies

JudgeID → TotalNumGamesJudged

The Judges table contains all of the judges and their common attributes. A judge

needs to already be a person.

8

Rules Table

DROP TABLE IF EXISTS Rules;

CREATE TABLE Rules (

 RuleID int not null unique,

 CardsPerTurn int not null,

 TicketsInAdvance boolean not null,

CONSTRAINT CheckCards CHECK (CardsPerTurn = 2 or CardsPerTurn = 3),

 primary key(RuleID)

);

Functional Dependencies

RuleID → CardsPerTurn, TicketsInAdvance

The Rules table contains all of the rules that can change depending on the way that

you play them. RuleID 1 is the official rules, and RuleID 2 is the rules that my

family plays by.

Constraints

CheckCards → Checks cards per turn only has an input of 2 or 3

9

Address Table

DROP TABLE IF EXISTS Address;

CREATE TABLE Address (

 AddressID int not null unique,

 Street text not null,

 City text not null,

 State text,

 Country text not null,

 ZIP int,

 primary key(AddressID)

);

Functional Dependencies

AddressID → Street, City, State, Country, ZIP

The Address table contains all of the addresses for where the individual games took

place. Only the AddressID, Street, City, and Country need to be filled as a game

could be held in another country that is not USA.

10

Games Table

DROP TABLE IF EXISTS Games;

CREATE TABLE Games (

 GameID int not null unique,

 DateOfGame date,

 WinnerPlayer int,

 RuleID int,

 AddressID int,

 primary key(GameID)

);

Functional Dependencies

GameID → DateOfGame, WinnerPlayer, RuleID, AddressID

The Games table contains information about the game besides the people apart of

an individual game.

11

GamePlayers Table

DROP TABLE IF EXISTS GamePlayers;

CREATE TABLE GamePlayers (

 GameID int not null references Games(GameID),

 PlayerID1 int not null references Players(PlayerID),

 PlayerID2 int not null references Players(PlayerID),

 PlayerID3 int references Players(PlayerID),

 PlayerID4 int references Players(PlayerID),

 PlayerID5 int references Players(PlayerID),

 JudgeID int not null references Judges(JudgeID),

 primary key(GameID)

);

Functional Dependencies

GameID → PlayerID1, PlayerID2,

 PlayerID3, PlayerID4,

 PlayerID5, JudgeID

The GamePlayers table contains all of the people apart of the game. Since the game is 2-5 players,

only Players 1 and 2 have to be entered in order to make a game. There is only 1 judge per game.

12

DROP TABLE IF EXISTS TrainRoutes;

CREATE TABLE TrainRoutes (

 RouteID int not null unique,

 GameID int not null references Games(GameID),

 PlayerID int not null references Players(PlayerID),

 Color text not null,

 City1 text not null,

 City2 text not null,

 Length int not null,

 Points int not null,

 CONSTRAINT CheckColor Check (Color = 'red' OR Color = 'orange' OR Color = 'yellow' OR Color = 'green' OR Color = 'blue' OR

 Color = 'purple' OR Color = 'black' OR Color = 'white' OR Color = 'grey'),

 CONSTRAINT CheckLength Check (Length = 1 OR Length = 2 OR Length = 3 OR Length = 4 OR Length = 5 OR Length = 6),

 CONSTRAINT CheckPoints Check (Points = 1 OR Points = 2 OR Points = 4 OR Points = 7 OR Points = 10 OR Points = 15),

primary key(RouteID, GameID, PlayerID)

);

TrainRoutes Table

Functional Dependencies

RouteID, GameID, PlayerID → Color, City1, City2, Length, Points

The TrainRoutes table contains information about the individual train routes from city to city per game.

The primary key is the RouteID, GameID, and the PlayerID as multiple games and different players can

use the same train route.

Constraints

CheckColor → Checks color is only one of the game options

CheckLength → Checks length is only one of the game options

CheckPoints → Checks points is only one of the game options
13

TrainTickets Table

DROP TABLE IF EXISTS TrainTickets;

CREATE TABLE TrainTickets (

 TrainID int not null unique,

 GameID int not null references Games(GameID),

 PlayerID int not null references Players(PlayerID),

 TotalPoints int not null,

 City1 text not null,

 City2 text not null,

primary key(TrainID, GameID, PlayerID)

);

Functional Dependencies

TrainID, GameID, PlayerID → TotalPoints, City1, City2

The TrainTickets table contains information about train tickets that players receive

throughout the game. The ticket can be used by different players in each game, but only once.

No two tickets have the same two cities, but many tickets share the same number of points.

14

LongestRoute Table

DROP TABLE IF EXISTS LongestRoute;

CREATE TABLE LongestRoute (

 PlayerID int not null references Players(PlayerID),

 GameID int not null references Games(GameID),

 IsThisLongestRoute boolean not null,

 Points int not null,

primary key(PlayerID, GameID)

);

Functional Dependencies

PlayerID, GameID → IsThisLongestRoute, Points

The LongestRoute table contains whether or not a certain player in a game has the

longest continuous train. If they do, then they are awarded an additional 10 points,

if not they receive 0 points.

15

Board Table

DROP TABLE IF EXISTS Board;

CREATE TABLE Board (

 SegmentID int not null references TrainRoutes(RouteID),

 Used boolean not null,

 Player int,

primary key(SegmentID)

);

Functional Dependencies

SegmentID → Used, Player

The Board table informs you of which player is using certain train routes in a given

game. If no player is using a train route, then the ID of the player is not needed.

16

ScoreBoard Table

DROP TABLE IF EXISTS ScoreBoard;

CREATE TABLE ScoreBoard (

 PlayerID int not null references Players(PlayerID),

 GameID int not null references Games(GameID),

 TotalPoints int not null,

primary key(PlayerID, GameID)

);

Functional Dependencies

PlayerID, GameID → TotalPoints

The ScoreBoard table contains of the scores of all of the players in each game. A

player can play in multiple games.

17

Stored Procedures
18

get_other_city

create or replace function get_other_city(text, REFCURSOR) returns refcursor as

$$

declare

 givencity text := $1;

 resultset REFCURSOR := $2;

begin

 open resultset for

 select city1, city2

 from TrainRoutes

 where city1 = givencity or city2 = givencity;

 return resultset;

end;

$$

language plpgsql;

This will get all of the city route options given one city.

Sample Output:

select get_other_city('Chicago', 'results');

Fetch all from results;

19

get_points

create or replace function get_points(int, REFCURSOR) returns refcursor as

$$

declare

 givenlength int := $1;

 resultset REFCURSOR := $2;

begin

 open resultset for

 select points

 from TrainRoutes

 where length = givenlength;

 return resultset;

end;

$$

language plpgsql;

This will get the amount of points of a train route given the length of the train route.

Sample Output:

select get_points(4, 'results');

Fetch all from results;

20

did_i_win

create or replace function did_i_win(int, int, REFCURSOR) returns refcursor as

$$

declare

 player int := $1;

 game int := $2;

 resultset REFCURSOR := $3;

begin

 open resultset for

 select winnerplayer

 from games

 where winnerplayer = player and gameid = game;

 return resultset;

end;

$$

language plpgsql;

This will return if a player won a certain game given the id of each the player and the game. If

something returns, then that means that the playerid matched the winnerid. If nothing is returned

in the table, then the player that you entered, did not win the game that was entered.

Sample Output:

Player didn’t win the game entered:

select did_i_win(5, 32, 'results');

Fetch all from results;

Player did win the game entered:

select did_i_win(5, 31, 'results');

Fetch all from results;

21

Views
22

TotalGamePlayerPoints

CREATE OR REPLACE VIEW TotalGamePlayerPoints as (

 select tr.gameid as "Game", tr.playerid as "Player", tr.points as "Train Route Points",

 tt.totalpoints as "Train Ticket Points", lr.points as "Longest Route Points"

from trainroutes tr inner join traintickets tt on tr.playerid = tt.playerid

 inner join longestroute lr on tt.playerid = lr.playerid

where tt.gameid = lr.gameid

 and tt.gameid = tr.gameid

);

This view contains all three areas of points of a given player and game.

Sample Output:

select *

from TotalGamePlayerPoints;

23

WinnerPlayers

CREATE OR REPLACE VIEW WinnerPlayers as (

select p.playerid as "Player", p.totalnumwins as "Amount of Wins"

from players p

where p.totalnumwins != 0

);

This view contains all of the Players that have won a game and that amount.

Sample Output:

select *

from WinnerPlayers;

24

JudgePlayer

CREATE OR REPLACE VIEW JudgePlayer as (

select pe.PID

from People pe inner join Players pl on pe.PID = pl.PlayerID

 inner join Judges j on pl.PlayerID = j.JudgeID

);

This view contains all of the people who are both players and judges.

Sample Output:

select *

from JudgePlayer;

25

Triggers
26

ValidatePeople

CREATE OR REPLACE FUNCTION ValidatePeople()

RETURNS TRIGGER AS

$$

BEGIN

 IF NEW.FirstName IS NULL THEN

 RAISE EXCEPTION 'FirstName may not be NULL';

 END IF;

 RETURN NEW;

END

$$

LANGUAGE plpgsql;

CREATE TRIGGER validPeople

BEFORE INSERT OR UPDATE ON People

FOR EACH ROW

EXECUTE PROCEDURE ValidatePeople();

When a new person is entered into the People table, this trigger is called to make sure that a first

name and DOB is inputted.

Sample Output:

INSERT INTO People (PID, FirstName,

 LastName, DOB, Email)

 VALUES(010, NULL, NULL, '2000-01-01',

 'sample@email.com');

27

EnoughPlayers

CREATE OR REPLACE FUNCTION EnoughPlayers()

RETURNS TRIGGER AS

$$

BEGIN

 IF NEW.PlayerID2 IS NULL THEN

 RAISE EXCEPTION 'PlayerID2 may not be NULL, you need to have at least 2 players.';

 END IF;

 RETURN NEW;

END

$$

LANGUAGE plpgsql;

CREATE TRIGGER EnoughPlay

BEFORE INSERT OR UPDATE ON GamePlayers

FOR EACH ROW

EXECUTE PROCEDURE EnoughPlayers();

When a game is added to GamePlayers, this trigger is called to make sure that there is a player

entered in both PlayerID1 and PlayerID2 as a game needs at least 2 players.

Sample Output:

INSERT INTO GamePlayers(GameID, PlayerID1,

 PlayerID2, PlayerID3, PlayerID4, PlayerID5, JudgeID)

 VALUES(002, 001, null, null, null, null, 003);

28

Reports
29

Report 1
This report selects all judges that were born in December of any year.

select p.FirstName, p.LastName

from People p inner join Judges j on p.PID = j.JudgeID

where extract(month from p.DOB)='12';

30

Report 2

select g.GameID as "Game ID"

from Judges j inner join GamePlayers gp on j.JudgeID = gp.JudgeID

 inner join Games g on gp.GameID = g.GameID

where j.JudgeID = 2

 and g.RuleID = 1

 and extract(year from g.DateOfGame)='2016';

This report selects all of the games that Judge 002 judged in 2016 with Rule 1.

31

Report 3
This report selects the first and last name of all of the players who have played a

game in MA. These players are then sorted by last name in order A-Z.

32

select pe.firstname, pe.lastname

from people pe

where pe.pid in (select pl.playerid

 from players pl

 where pl.playerid in (select gp.playerid1

 from gameplayers gp

 where gp.gameid in (select g.gameid

 from games g

 where g.addressid in (select a.addressid

 from address a

 where a.state = 'MA')))

 or pl.playerid in (select gp.playerid2

 from gameplayers gp

where gp.gameid in (select g.gameid

 from games g

 where g.addressid in (select a.addressid

from address a

 where a.state = 'MA')))

 or pl.playerid in (select gp.playerid3

 from gameplayers gp

 where gp.gameid in (select g.gameid

 from games g

 where g.addressid in (select a.addressid

 from address a

where a.state = 'MA')))

or pl.playerid in (select gp.playerid4

from gameplayers gp

where gp.gameid in (select g.gameid

 from games g

 where g.addressid in (select a.addressid

from address a

where a.state = 'MA')))

or pl.playerid in (select gp.playerid5

from gameplayers gp

where gp.gameid in (select g.gameid

 from games g

 where g.addressid in (select a.addressid

 from address a

where a.state = 'MA'))))

order by lastname ASC;

1
3

2

33

34

Security
35

User Roles: Admin, GameMaster, GameInfoFinder

CREATE ROLE ADMIN;

GRANT ALL ON ALL TABLES IN SCHEMA PUBLIC TO ADMIN;

CREATE ROLE GameMaster;

REVOKE ALL ON ALL TABLES IN SCHEMA PUBLIC

FROM GameMaster;

GRANT SELECT ON ALL TABLES IN SCHEMA

PUBLIC TO GameMaster;

GRANT INSERT ON People, Players, Judges, Address,

Games, GamePlayers, TrainRoutes, TrainTickets,

LongestRoute, Board, ScoreBoard

TO GameMaster;

GRANT UPDATE ON People, Players, Judges, Address,

Games, GamePlayers, TrainRoutes, TrainTickets,

LongestRoute, Board, ScoreBoard

TO GameMaster;

CREATE ROLE GameInfoFinder;

REVOKE ALL ON ALL TABLES IN SCHEMA PUBLIC

FROM GameInfoFinder;

GRANT SELECT ON Rules, Games, TrainRoutes,

TrainTickets, LongestRoute

TO GameInfoFinder;

GRANT INSERT ON Rules, Games, TrainRoutes,

TrainTickets, LongestRoute

TO GameInfoFinder;

GRANT UPDATE ON Rules, Games, TrainRoutes,

TrainTickets, LongestRoute

TO GameInfoFinder;

Admin: Database Administrator has full control of the DB

GameMaster: People in charge of entering information about the people involved in the individual games

GameInfoFinder: People in charge of altering rules and information about the game Ticket To Ride

36

Implementation Notes/Known Problems/Future Advancements
● Implementation Notes

○ With a larger data sample (all games from 1-99, all train route options, and all train ticket options) you

would be able to make many more interesting queries.

○ I have added GameID and PlayerID to tables TrainRoutes and TrainTickets for ease of searching as every

game has a different player using a route from TrainRoutes and ticket from TrainTickets.

○ There are more rules then just cards per turn and tickets in advance, but these are the two rules that change

for my family when we play the game.

● Known Problems

○ Since the total points for each train tickets, train routes, and longest route are not an FK or a PK, I am

unable to add them to another table by referencing them, instead I have to do this through creating a view.

● Future Advancements

○ Implement checks on cities to make sure it is a valid city that is on the gameboard

(ie Trenton would not be allowed, but Atlanta would be)

○ Implement a way to make sure that if a game is larger than two players, that a player is inputted for

PlayerID3 before a player is inputted for PlayerID4

○ Implement a table and procedures for making moves in a game so that the database includes more details

about current games, and not past games

○ Add a ranking of players so that the database caters to a tournament style play

37

