
1. Introduction ACM Symposium on
Operating Systems Principles

Yorktown Heights, N.Y.: October, 1963

The UNMO Time-Sharing System
Dennis M. Ritchie and Ken Thompson

July, 1974
Volume 17, Number 7

pp. 365-375

U N I P has become one of the most widely
known and imitated operating systems of all
time. Ken Thompson, in working on a pro-
gram for simulating the movements of celes-
tial bodies in the solar system, became dis-
satisjied with the excessively slow rate by
which he developed programs within MUL-
TICS as then constituted. (MUUICS was
the advanced time-sharing system con-
structed jointly by Bell Labs and MIT)
Thompson wrote an operating system for the
PDP-7 minicomputer and worked on his
"space program" there. Dennis Ritchie ,
who wrote the C programming language,
became a collaborator and rewrote
Thompson's operating system in C . Because
the operating system was small enough to fit
in a minicomputer, the C language allowed it
to be transported to a wide variety of other

machines, most notably the PDP-I1 family.
The genius of Ritchie and Thompson is in
their selection of a subset of the most pow-
e@lfunctions of MUUICS (especially pro-
cesses, directory hierarchies, stream-
oriented IIO, file-like devices, and the shell)
together with their own invention of the pipe.
These elements made their operating system
a very powe@l programming environment.
The name, UNIX, was a tra&omtion of
MUUICS, with MUL.TI- becoming UNI-
and -CS becoming -X . These t r a m f o m -
tions connoted the simplijicatiom in their
operating system, its orientation toward
single-user systems, and its ejiciency. This
paper received the ACM award for best
paper in programming languages and sys-
tems in 1974.

-I? J D.

The UNIX Time-
Sharing System
Dennis M. Ritchie and Ken Thompson
Bell Laboratories

UNIX is a general-purpose, multi-user, interactive
operating system for the Digital Equipment Corporation
PDP- I I /~O and 11/45 computers. I t offers a number of
features seldom found even i n larger operating systems,
including: (I) a hierarchical file system incorporating
demountable volumes; (2) compatible file, device. and
inter-process 1/O; (3) the ability to initiate asynchronous
processes; (4) system command language selectable on a
per-user basis; and (5) over LOO subsystems including a
dozen languages. This paper discusses the nature and
implementation o f the file system and of the user
command interface.

Key Words and Phrases: time-sharing, operating
system, file system, command language, PDP-11

CR Categories: 4.30,4.32

Copyright @ 1974, Association for Computing Mach~nery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyr~ght notice
is given and that reference i s made to the publication, to its date
of issue, and to the fact that reprrnting privileges were granted
by permission of the Association for Computing Machinery.

This is a revised venion of a paper presented at the Fourth
ACM Symposium on Operating Systems Principles, IBM Thomas
I. Watson Rerearch Center, Yorktown Heights, New York, October
15-17, 1973. Authors' address: Bell Laboratories, Murray Hill,
NJ 07974.

There have been three versions o f UNIX. The earliest
version (circa 1969-70) ran on the Digital Equipment
Corporation PDP-7 and -9 computers. The second ver.
sion ran on the unprotected P D P . ~ ~ '20 computer. hi^
paper describes only the PDP-l l 40 and .'45 [I] system
since i t is more modern and many of the diferences
between i t and older UNlx systems result from redesign
of features found to be deficient or lacking.

Since PDP-l l UNIX became operational in February
1971, about 40 installations have been put into service;
they are generally smaller than the system described
here. Most of them are engaged in applications such as
the preparation and formatting of patent applications
and other textual material, the collection and processing
o f trouble data from vartous switching machines within
the Bell System, and recording and checking telephone
service orders. Our own installation is used mainly
for research in operating systems, languages, com-
puter networks, and other topics in computer scienc',
and also for document preparation.

Perhaps the most important achievement of L.NIX
is to demonstrate that a powerful operating system
for interactive use need not be expensive either i n
equipment or i n human eRort: u ~ i x can run on hardware
costlng as little as $40,000, and less than two man-
years were spent on the main system software. Yet
UNlX contains a number o f features seldom ofered even
in much larger systems. I t is hoped, however, the users
o f UNIX will find that the most important characteristics
o f the system are its simplicity, elegance, and ease of use.

Besides the system proper, the m i o r programs
available under u ~ i x are: assembler, text editor based
on QED (21, linking loader, symbolic debugger, compiler
for a language resembling BCPL [3] with types and
structures (C), interpreter for a dialect o f BASIC, text
formatting program, Fortran compiler, Snobol inter-
preter, top-down compiler-comp~ler (TMC) 141, bot-
tom-up compiler-compiler (YAK), form letter generator,
macro processor (M6) [S], and permuted index program.

There is also a host of maintenance, utility, recred-
tion, and novelty programs. Al l of these programs were
written locally. I t is worth noting that the system is
totally self-supporting. AII UNIX software is maintained
under UNIX; likewise, UNIX documents are generated
and formatted by the UNIX editqr and text formatting
program.

2. Hardware and Software Environment

The PDP- I I /~S on which our UNIX installation is
implemented is a 16-bit word (8-bit byte) computer with
144K bytes o f core memory; UNIX occupies 42K bytes.
This system, however, includes a very large number of
device drivers and enjoys a generous allotment o f space
for I/o buffers and system tables; a minimal system

Communications
of
the ACM

25th Anniversary Issue January, 1983
Volume 26
Number 1

DL STAFF
The PDF of this article cites the incorrect year for the ACM Symposium on Operating Systems Principles. The correct year is 1973.

capable of running the software mentioned above can
require as little as 50K bytes of core altogether.

The PDP-l l has a 1M byte fixed-head disk, used for
file system storage and swapping, four moving-head
disk drives which each provide 2.5M bytes on removable
disk cartridges, and a single moving-head disk drive
which uses removable 40M byte disk packs. There are
also a high-speed paper tape reader-punch, nine-track
magnetic tape, and DEctape (a variety of magnetic
tape facility in which individual records may be ad-
dressed and rewritten). Besides the console typewriter,
there are 14 variable-speed communications interfaces
attached to 100-series datasets and a 201 dataset in-
terface used primarily for spooling printout to a com-
munal line printer. There are also several one-of-a-kind
devices including a Picturephonea interface, a voice
response unit, a voice synthesizer, a phototypesetter, a
digital switching network, and a satellite P D P - I I ~ ~ O
which generates vectors, curves, and characters on a
Tektronix 61 1 storage-tube display.

The greater part of UNIX software is written in the
above-mentioned C language [6] . Early versions of the
operating system were written in assembly language,
but during the summer of 1973, it was rewritten in C.
The size of the new system is about one third greater
than the old. Since the new system is not only much
easier to understand and to modify but also includes
many functional improvements, including multipro-
gramming and the ability to share reentrant code
among several user programs, we considered this in-
crease in size quite acceptable.

3. The File System

The most important role of U N I ~ is t o provide a
file system. From the point of view of the user, there
are three kinds of files: ord~nary disk files, directories,
and special files.

3.1 Ordinary Filcs
A file contains whatever information the user places

on it, for example symbolic or binary (object) programs.
No particular structuring is cxpected by the system.
Files of text consist simply of a string of characters,
with lines demarcated by the new-line character. Binary
programs are sequcnccs of words as thcy uill appear
in core memory uhen the program starts executing. A
few user programs manipulate files uith more structure:
the assembler gencratea and the loader cxpects an
object file in a particular format. Hone\er , the structure
of files is controlled by the progralns uhich use them,
not by the system.

3.2 Directories
Directories provide the mapping between the names

of files and the files themselves, and thus induce a
structure on the file system as a whole. Each user has a

directory of his own files; he may also create subdirec-
tories to contain groups of files conveniently treated
together. A directory behaves exactly like an ordinary
file except that it cannot be written on by unprivileged
programs, so that the system controls the contents
of directories. However, anyone with appropriate per-
mission may read a directory just like any other file.

The system maintains several directories for its own
use. One of these is the root directory. All files in the
system can be found by tracing a path through a chain
of directories until the desired file is reached. The
startingpolnt forsuch searches isoften the root.Another
system directory contains all the programs provided for
general use; that is, all the commands. As will be seen,
however, it is by no means necessary that a program
reside in this directory for it to be executed.

Files are named by sequences of 14 or fewer
characters. When the name of a file is specified to the
system, it may be in the form of a path name, which is a
sequence of directory names separated by slashes "1"
and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The
name /alpho,lbcta/gamma causes the system to search
the root for directory alpha, then to search alpha for
beta, finally to find gamma in beta. Gamma may be an
ordinary file, a directory, or a special file. As a limiting
case, the name "j" refers to the root itself.

A path name not starting with "/" causes the sys-
tem to begin the scarch in the user's current directory.
Thus, the name olpha/beta specifies the file named
beta in subdirectory alpha of the current directory.
The simplest kind of name, for example olphn, refers to
a file which itself is found in the current directory. As
another limiting case, the null file name refers to the
current directory.

The same nondirectory file may appear in several
directories under possibly different names. This feature
is called l inki~~g; a directory entry for a file is sometimes
called a link. U N I X differs from other systems in which
linking is permitted in that all links to a file have equal
status. That is, a file does not exist within a particular
directory; the directory entry for a file consists merely
of its name and a pointer to the information actually
describing the file. Thus a file exists independently of
any directory entry, although in practice a file is made
to disappear along with the last link to it.

Each directory always has at least two entries. The
name "." in each directory refers to the directory itself.
Thus a program may read the current directory under
the name "." without knowing its complete path name.
The name *.. ." by convention refers to the parent of
the directory In which it appears, that is, to the directory
in which it was created.

The directory structure is constrained to have the
form of a rooted tree. Except for the special entries
"." and ". .", each directory must appear as an entry
in exactly one other, which is its parent. The reason
for this is to simplify the writing of programs which

visit subtrees of the directory structure, and more im-
portant, to avoid the separation of portions of the
hierarchy. If arbitrary links to directories were per-
mitted, it would be quite difficult to detect when the
last connection from the root to a directory was severed.

3.3 Special Files
Special files constitute the most unusual feature of

the UNIX file system. Each I/O device supported by
UNIX is associated with at least one such file. Special
files are read and written just like ordinary disk files,
but requests to read or write result in activation of the
associated device. An entry for each special file resides in
directory ,,dev, although a link may be made to one of
these files just like an ordinary file. Thus, for example,
to punch paper tape, one may write on the file !dev/ppt.
Special files exist for each communication line, each
dlsk, each tape drive, and for physical core memory.
Of course, the active disks and the core special file are
protected from indiscriminate access.

There is a threefold advantage in treating I/O devices
this way: file and device I/O are as similar as possible;
file and device names have the same syntax and mean-
ing, so that a program expecting a file name as a param-
eter can be passed a device name; finally, special files
are subject to the same protection mechanism as regular
files.

3.4 Removable File Systems
Although the root of the file system is always s t o ~ e d

on the same device, it is not necessary that the entire
file system hierarchy reside on this device. There is a
mount system request which has two arguments: the
name of an existing ordinary file, and the name of a
direct-access special file whose associated storage vol-
ume (e.g. disk pack) should have the structure of an
independent file system containing its own directory
hierarchy. The effect of mount is to cause references to
the heretofore ordinary file to refer instead to the root
directory of the file system on the removable volume.
In effect, mount replaces a leaf of the hierarchy tree
(the ordinary file) by a whole new subtree (the hierarchy
stored on the removable volume). After the mount,
there is virtually no distinction between files on the
removable volume and those in the permanent file
system. In our installation, for example, the root
directory resides on the fixed-head disk, and the large
disk drive, which contains user's files, is mounted by
the system initialization program; the four smaller disk
drives are available to users for mounting their own
disk packs. A mountable file system is generated by
writing on its corresponding special file. A utility pro-
gram is available to create an empty file system, or one
may simply copy an existing file system.

There is only one exception to the rule of identical
treatment of files on different devices: no link may exist
between one file system hierarchy and another. This
restriction is enforced so as to avoid the elaborate book-

keeping which would otherwise be required to assure
removal of the links when the removable volume is
finally dismounted. In particular, in the root directories
of all file systems, removable or not, the name ".."
refers to the directory itself instead of to its parent.

3.5 Protection
Although the access control scheme in UNlx is quite

simple, it has some unusual features. Each user of the
system is assigned a unique user identification number.
When a file is created, it is marked with the user ID of
its owner. Also given for new files is a set of seven
protection bits. Six of these specrfy independently read,
write, and execute permission for the owner of the
file and for all other users.

If the seventh bit is on, the system will temporarily
change the user identification of the current user t o
that of the creator of the file whenever the file is executed
as a program. This change in user ID is effective only
during the execution of the program which calls for it.
The set-user-ID feature provides for privileged pro-
grams which may use files inaccessible to other users.
For example, a program may keep an accounting file
which should neither be read nor changed except by
the program itself. If the set-user-identification bit is on
for the program, it may access the file although this
access might be forbidden to other programs invoked by
the given program's user. Since the actual user ID of
the invoker of any program is always available, set-
user-ID programs may take any measures desired to
satisfy themselves as to their invoker's credentials. This
mechanism is used to allow users to execute the care-
fully written commands which call privileged system
entries. For example, there is a system entry invokable
only by the "super-user" (below) which creates an
empty directory. As indicated above, directories are
expected to have entries for " ." and ". . ". The com-
mand which creates a directory is owned by the super-
user and has the set-user-ID bit set. After it checks its
invoker's authorization to create the specified directory,
it creates it and makes the entries for "." and ". .".

Since anyone may set the set-user-ID bit on one of
his own files, this mechanism is generally available with-
out administrative intervention. For example, this pro-
tection scheme easily solves the MW accounting prob-
lem posed in (71.

The system recognizes one particular user ID (that of
the "super-user") as exempt from the usual constraints
on file access; thus (for example) programs may be
written to dump and reload the file system without un-
wanted interference from the protection system.

3.6 110 Calls
The system calls to do I/O are designed to eliminate

the differences between the various devices and styles of
access. There is no distinction between "random" and
"sequential" I/O, nor is any logical record size imposed
by the system. The size of an ordinary file is determined

'[In li! ray due 5u!8isq>
tom Lq anss! aql sp!o.re slNn JO uoislaa IUJIJ~J 3q~
;r,y u nl syuq ahoq oq~t smn Buomn illenba ESIB~?

aql pv~~dn 01 aq ol swaas wqi!~oSjs I!PJ l([qe~OSB31
~sa[dLulr aql lann puom all1 01 paSluq3 aq pllnoqr 11
1nq 'aly aql ju laumo aql [[!is s! 'asmssy aql 'sly 341
alalap is!u lssn 15~g a11 pun 'I! 01 q~![Leu1 'aqloua 'sly
e alga13 deru Jar" auo am!$ ye~aua5 u! 'JIRJU~ s! a1y e jo
muno aql BUTBJP~J snlnis lvnba a*nq qg e lo! sa!oua
AJOIJJJI~[~~ mu!r 'sa!dnmo ~[y naopdr aqi~q paB~eqs~q
oi s! nqn j0 uo~lranh aql sc alaql 'a[danuxa 103 sua!l
-ez!ueS~o ruaisAr qy nqlo u! punq iau s~l~!ie~[n~~d
ulcl~~l rampul lr!l-i aql JO UOIIOU a111 awl1 ~LLLYF
aqi 1v .ln![~! paz!ueB~o-b[~~au!l aql ueJs iluo paau II
~sucs'iys~~la!q L~olna~!p aqijo luapuadalxu s! mq~!~oSle
s!ql =!nap aqi uo >suds aql imcqra ~aqla%ol pup
llI!o@!p p~ll?3O[ll? 2q 01 2aIJ XOql pue L~ollBmlOJU!
Injarn Su~u!i.~uu~ a"!\ap qxa jo ruo!uod aqi IP~I UO!I
-asyuar aldmpxa ~oj 'toalrdr qy 0 jo dnua~r~ruo, rll
Su!y>aq, loj IU~I!JOSI.E pld~~ PUR a[(lw\s ai!nb E sl!uJad
osl~ 11 '213 S~L IS~J~E 01 papaau uonnmlojo! 12410 pire
'Zu!ssadppP 'uo!l~alo~d aql ur iem aldu~s s u! p2ielal
s! q3qn aueu snona~qmsun 'Ilaqr I? riy a~g ~pt?"
isqi 151'~ aqa rl bqi8uans SI! jo auu a an^! u~~sir sql o~
.qlln Imp 01 .irna pun alqezlJ1 ~llnb p~ao~d mq ma~rir
"13 aql Zuzr!oeZ~u jo poqlaru E!~I '~J!IJIJ~ "1 SIN^
10 2lnlBJJ [BnSnUn UP El 11!1-I 241 JO UOllOU 24 1

saqs!m 11 ri. lletus)Y SI!U~ U! alui) pup pnal
~[~RUOSR~J armb Lnm o,', jo ~wn[o,\ las~S ou 5aOp qJf4M
lo ilac" "par" b! q>!qa ~un3old y -peaylanu ~ualsir
j0 asueplone ~ql mnlj i[u!nu sa!JoJ 11 :acuawm! IOU

s! use5 aql irlq .am!i P IP aliq al5u!i r: nal!>n JO spi.2,
qyrn ur>dold n Jakn s%slus.ips un 5nq cs;Lq ils
JO "!on u! rJly sai!lm iu 5pi.a) qym rus~Zu~d y

In0
pay+ aliq aql pun qnq r olu8 pea at qmlq aql 'luu
)I 'b[Slalpawm! paulnlal 3q ues sliq aqi 'or ji !sls,gnq
s,uld~s.Ss aqi jo auo u! .(~P~J[P E! p~ir3ol r! a14 aql
qsrqm uc qsolq a;?~~nls .<~epua~ss aql nqeqn s~ullu
-Jalap rnalsib aql '~PZJ a! zliq alYu!i P j! 'dlan2h
-uo) JwcI ~alal e I!urn pal;l[dwos ~q ~ou Lam nl
IR~IIJP aql q5noqila 'ascld ay~l o~ql LPW IIP, d,,.,~ aql
wo~j umal aql Iuallllm aq nl s~3olq jc 1511 r "I ~pntu
s! Ldlua us pue '~aynq zql u! pmi:ldal r! aiiq II~I>>JV
aql usql aJ!aap a11 uls~j ~r, pna' aq 11m 11 '10" JI
'Alumam are, uf sap!sa .([lua~~n~ q~01q ls!p pal~a~e
aqi rqlala aar ol rqnq 511 qadsss Ill* rasn

-216q
slluis I? jo UO!SS!~L!SLI~U 88118dj~-)i~~ds SPI?~ SI [la3 JI!.,'~
P as~lddn~ .alg v SSJJJC 01 paqnba~ buu8is~ado n I jo
lsqunu aql illear8 sa>np*> cpqn wslupqaam 5u1~~ynq
p~~~~!Idwoadaqi~~ ~.SUIFIU!PW ual~is aqli~q rtl pa,naI
ao il?w a3~Jrrlorn 5 ~asr air1 r,,.itl I? lal[P Ll~vJnuoJ . , . .
PUP 'J[~B~!RAB SJI! UIPp Sql lli'2pUJ.i V LUOJJ UJlllal JalJe
6pii7!p~t11tu! 's! leql pJl>#nqU" PU" S"OU~~~JU,<S Sq 01

qqw) [Lq ppaseld~l s! laqmnu-! aql 'plmnj s! q-om ej!
'a,ua,.1 I" irado ue Bu!~np pauuex Su!aq r! aupu qled o
allqrn dn su~ni qslqm lwd-(s~rnap '~~qwnu-I) qaua roj
paqx"as s! qqsl n!ql 'a[& [e!>ads palexpu! aql jo ameu
amap aql s! anlcn Su!puods~ilo~ xoqm pun 'rutrow aql
5br!~np pa~j~~aifs aiy .Oeu!p~o aqi jo aueu a3!hap pun laq
-mnu-! oql s! iuamna~a as0q.n alqrrl walaic B ru!elu!su
,u,in~ 'p~~M1ojlll8!ell~ al!nb r! ttf$) [lea walr6s rimow
aql JO uo!l~luam~ldwi sqi 'luauuo~ihua srq1 UI

sae)laiu! ia!m
-adh~ ,rl!m!s lrlanss lo auo lo ~q[o~iuos 1n[n3~1~ud
P 01 ~J~JPIII? an!ip lr!p e 'aldwera ~uj 'n~alas lqmnu
a,!napqnn aql !as!nlp leql uo ojl qi!m [Pap IIKM au!lno~
maisis 4214~ s.~e~!pt1! addl a3!hap aql xaqwnu a!nap
gnr pue adh~ axhap e [an!lssdsal hj!aads sqiq .qql
aiaoii aJ!a.?p pwlalo! uu alni!xnuuz q>!qn raliq jo ~!ed
i. SP pala~d~alu! s! irly aql pun '~~!~sleruwr JJB spmn
sralppn aauap ";mar]re[aql 'p!>adr r! i! 1eq1 saieJ!pu!
.?pow aaoqn sly B oi aprw st ~sanbs, oil ua uaq*
ralg ilnulplo 01 ralddu uo!rnrm!p Su!olaloj aql

sabq (9~3 9~s5'8~0'1 do 'ZIS 9si.8 sn aZle[
rs ~q isu ss[g rnql jla5lc 214 aq~Ytr!lit~!lsuo~ sqxlq jo
,assalppi. 95: JO 7~01q 13a~pu! ua 01 iqod iew SJSSJlppe
>>!zap iqBm aq) JO qma 'rqy ([e!3aclsuou) a8ioi
pau~s arc >azlanmaql sq3olq aqi jo sassalppe aql XFJ

slql ul !sq~olq ,an;ij lo tq;?!" ole! sly z[y ([o!~adruou)
/,,IUP v raksalppP >>!hap ~ql!a loj 21% qJea jo spou-r
241 u! mrds r! 2uql nhrp aql un spoadzp 431q"
1!u#!1 r ot dn 0 mog parsalpps .(I~E,I~O~ sx~olq slq
-ZIZ jo ~~qunu n olul paprnlp c! rnalrir zlg E LI!FIUOJ
IIJ~M MV~ alqaAuua1 lo pa~y Ile uo aseds aqL

panmllvap r! apou-! aq~ pue paaj
ale JIY 341 LI~ ~q~o1q q'!p iue :O oi sdolp luno>~?u!l
J~I jl .blua i~o$aa~~p sql Bu~rs~a pin iqua d~olm~!p FI!
iq p~y!~adr ~puu~! aql ju iuno3-qu![aql %u!iuama~sap
dq mop s! qy n (Bu01a13p) Pu~nnwax apou-! aql jo play
itlno, qtul 2111 In!luawa#~u! pur 'b,lua aly [eu!8!lo aql
tuolj laqwnu-l sq~ Bu~Ados 'amnu mau aql qllm i~~ua
iml~d18p i! D~lilsal~ Ea]u?u! aly Su!s!xa ue oi
qu!l i? Bu!yn~ .Jsqmnu ~pou-! all1 pun sly Jql JO >me"
at(, su!i~uin~ qJ!qn apaw st i~ma L~opal!p e pue I!
'oj pP"rr>ol[P SI ?PO"-I uc '~xF>J> ?! alg nau n uaq,a

.dig all1 IldJ>e "1 i~P.lb232U UUlleWlOJ
u! aql or palela, h[!sP1 aq Arm alg sql a!ln JO pna,
01 ~lv.? ~umha$qnr e Pul~np pr!lddnr ~ul'l!map aly aqi
rnql .wuaiJ 10 ~mdo aql iq p~ulnls~ ~old!nssp aly
241 iq p9xapuc alqel w2lsir i! o! par015 xi: ~a~u!ud
a1p.n peal put! Isqmnu~! 'a,!iap sl! 'uado rl aly P ~JUO
caiiolsalip pawnu dli~aldrni in ill~~ldxa aqi lul~~~~eas
6q laqlunu~! m olui sin aqi .Sq u~h!8 aWPU qlvd aql
u~nl ol $1 1la.1 ~u>lrdr .>,o~.(J 10 i,~dr? UE JU a~od~r~d ~ql

,. ~lPruS..l0,,1~18[._ Sl3ly2~11?412~h aUllC31PU! Ilq V 6
Jig 1~13"d~ I' 5! ?lg dC11 .laUldl(% BU!IBJ!PUI I!q V '8
6~015~p F SI SIY aqi 1sqlsq.n Bul~ss~pul 119 v L

-dlolm~~p k? o! ut:ddile i! sam!l jo
uqmnu aqi 's! Irql 'a[y aqlol syull jo ~sqmnu 541 -9

uo!~i!~y!poa~ lsel jo am!L '5

-az!q sil P
'%ualtxo>

aly J~I lo! SJSSJI~~B adz1 10 %sip j~a!sbqd aq.1 I
-suq uo!loaauld SI['i

'1Jumo "1 1

'smollo) se sly
aql jo uo!ld!~osap aql su!s~noa (.~po,oui n,aly agl) punuj
.(qalaqi i~rua aql 'sap!sal .bol~si!p aql q31qm uo >>!nap
at(] jo llcd uhoux i? ur paloln [,r!/-r agl) 21401 lualPs
e olu! xapu! ue se pasn s! lqwnu-! sir 'passaa3~ S!
"[g all1 uaqfi -a[y aql JO (~aqumu XWPU! IOJ) IJ~W~U'

aql palre, laZalu! ua s! Inu!od s!q~ .jlasi! sly aql oi
~alu!od B puu afg paln!Jolsn aql inj aucu n i[uo su!~)
uog I~ua .ilol32J!P e 'aoqe i,t! U! pauo!luam sy

,sly e alalap 'aly Bu~ls!ya ue oi xu![s aqem
'i~alna~!p I? ;rlcam 'a[g e jo mum0 aql lo apolu uo!~
~arold aql oZueq= 'qy e JO swels aql la8 'afy e asap
:aldwmra passnmp aq IOU I[!% q~zqm u~alsde
aly aqi q~!m pue o;~ ql!m op ol Zu!&eq sa!llua maahs
,a"oillppB le~aoac ale aiaqL 'spj O/I la10 1'9%

'UO!i"JO/ U!
pJUlnl>l s! psnou sen ~alulod aql q~lqm ol a[y aql Jn
lu!uu!Oaq aql mol) lasju lanlos aql .palou5! am s[le3
lax (slai>~m~di] pus adnl ladad -%a) ras!*ap am03
JO~ -anlis5au aq iem iaqT0 uo Su!puadap -sly
aql jo pua aqr malj lo '~aurod 341 jo uo~~lsod luauns
zql r~mo~j 'dl4 aql JO Bu!uu!5y aql wu~j sa~dq ,asy;l
uo!i~sod e 01 panolu s! daj$qi!m palermssn ~>iu!od ay I.

(iaryo 'aseq 'da1y)qaX = uo!reJo[

-sly aqi ti! uo!ieml
~ie!ldoldd~ aql 01 ~alulod sil~ 10 p8al aqr 3now 01
ilcrranau i[uo r! I! 'oil (ssame llal!p) wlop~el Op 01

.papa>" se u*\ol% s! qq aql 's[g sql jo pus aql
punirq $a11 2114 1181 ;1q1 j[paSuwq3 E! alg 3'1) jo 1'cd
uqlo ou !iuno, aqi PUB ~atu!od 33!1\ aqljo UO!IISO~ aql
iq prldrul aroql (luo I~JB aly n uo uall!lm saliu

.pxn aqnap aql uo spuadap qqqm aau~nbas adp~s3
ue lo asn iq ~alzimad4 e um~j 2Ig~jO~pLla un alu~zua8
on alq!rrod E! 11 'aly aql jo am lualln~ aql 01 [snb~
rJmoJaq ~~lu!od peal aqi uaqm slnsso s!ill salg ?r!p JO~
.a[y aqi JO pua aql saieo!pu! I! 'omz 01 [snba u ql!n
su~nr~i lle3 paal n usq~ '~nduc jo -?~q auo unq1 rloat
u~nla~ nnau $al!hap ay!l~~a!~aadil 'osls 'aly aql jo
pua aql qxal ol palllmsue~l ale raliq iualJlyn5 61uo
'pua aql ptroiaq Bu!pea~ asnl!? p1nu.n rlai3eleqo irnoJ
lu!peal leql aly ~ql jo pus sql leJu or rl ~31Ulod pF31
oql j, ~,m~o. ueqi %dl aq ~uua ~noyl!n Leu n 'Ja,tanuq
'poai s u! lsaly [~!3xls uo mn~p~w leardqd jo pua
lo uoma o,'r al!l SUO!I#~UOJ ~suo!lda~xa iapun lda~xa
riirioJ se amss aql s! u 'ase~ a!.r.s aql ul pnllusue~l
L~lenlsn sa~iq jo laqwno aql s! ~i znle,~ paulnla. aql
,a@y 6q pay!mds d8lle alLq 241 pue dq$iq pay~~sdr
~[g aq] uaamlrq paii!wrusl) am raliq iutrol 01

(luno~ 'Jaynq 'daly)al!~m = u
liunos 'laynq 'daly)pea~ = u

:paw q LEU s[lea Su!mo[loj aqi '"ado E! alg s 3x10
.saliq tr iq sanuenpn

~alrr!od aql 'ua~llln 10 peal ale raliq u 11 .uali!lw
10 pear aq ol ariq lrau aqi salel!pu! qqm 'malsbs
arll .(q p>Ulelil!EW 'lalu!nd e rt alarll alg "ado q3ea
lad .a~.Kq 8U!mOllOj >sly aql 01 slajal ill!s!idm! llns
01, 1x3" -1q1 'fpna~ LO) uw!,n a~tq ~ss[aql rem aly
oqi u! a~nq ~e[nmiled e j! leql sueam s!ql .[enurnbas
am Bu!l!~n pun BUI~P~ 'noliq palc>lpo! se-lda~xg

'saly "ado s,daqlo ~JBJ
Burlalap lo '.(~olmlp alum aql u! saly aulloa~~ 'aly
arum oql uu Su!l!lm Ee ra!l!n!l5e lua!uanuo3u! qsns u!
6,snoaun11nrna a8du3 slxn om1 uaqm mqsir aly aq) ju
i~uals!ruo3 je3!5o[aql u!elu!vu "1 SqJoyalu! leulalu!
~uapylns seq maabs aqi lnql p!ns aq plnoqs 11

paupa Su!aq aly aql jo idos
z saxem qsrqm ~ol!pa ue 411~ "19 u Bu!;!pa aln slam q~oq
'aldmeua lq 'uaqm oo!snjuoo luana~d louue3 'Su!peal
sr ~asn J~~IOUB q3!qn ,114 e uo SUII!JM UIOJJ paluan
ad s! ,zla auu dqalaqm 'anu2r I(IP.U!~IO aqi U! s)(301
asnexq iua!J![(nsu! ale iaql 'sxsa3o~d luapu~dapu! iq
pau!su!rer rasrq ~ii?l) ~[g-dlauis 'Piel ql!m paaql IOU
am ah asnexq bessasauun s~e Lag1 'aly amps art1
10 wann uz2mlaq aJuaJaj>alu! titara~d 01 'loau#uul!nua
,no u! 'lua!qns ~ou i~essaJau laql!~~ ale sq901 1eq1
~rcn aql 2901 acun IOU op r;lll[nq!p 'a~w,e~d u!
'ilsnoauei[nu!s 11 uo ar!lm slasn om1 uaqm palqmnlns
amoarq oi aly R jo s~ualuo~ 241 lo, alqlsrod s! I!
qsnoqllv 'Bu!i!la du lu!p~a 141 "ado alg s aneq .<RU
oqm uasn jo laqmnu aql uo uoris!~lra~ .(un amql r! lou
'mardr aly aql o! EYJU~ alqls!,, ~a~n ou ale anqL

~oldt~~rap aly 0 sulmal 'irado aarl 'pug
Su!l!ln ioj aly nau aqi suado usle OlOJ1J '1E!Y5 S50p
I! J! qi5ual our a1 I! saesunll 10 'isrxa IOU smp ii J! aly
uan!Z aql salean qn!q.n [lea uai~bs aroa.rJ e r! alaqi '~uo
plo ua llllMJl ilalaldwo~ lo alg m~u e ales12 o~
I! alqndlseua arin\l?qlo ro 'ai!~m 'pua~ ul rile^ iuanbsr
-qnr ul a[g aql ?j!IUap! 01 psrn ~aB>iur ~(sms c r! 11
-,aid~~sq s(f u pallua s! dd/g anlun paulnlal aqL

.L[rnosue~lnm!s UJIIIIM puo peal
s! 1cc11 ,,'palepdn. lo 'iratl!ln 'peal aq 01 s! aly aql
laqlaqmsale3!pu! luaunl~eB@~ql .uan!l sq ism atuw
qled iza111q~o ov -llg 291 JO awnu ail1 salnxpu! awqy

(8x11 'bueu) u~do = daly
:Ile3 lu!mollq aql .iq pauado q lrnu

li '6pea~)e wxa ol pJmnsre sly e alllm lo peal ol
.a~uanbas Su!({e, aqr u! paiuasa~da~ luu s! 4!aqd

-mlr ~oj 4J14M 'ulnlal ~oua ue u~ llnrJl dllc!lualod
Leu uralrin aql ui Ilea q3e3 'Zu!wwc~So~d aZsn4ue[
au!qsnm jo sautxJldwos aql olul lu!llJI)aoyl!n
s~a~ame~ed pal!nbal aql ale3!pu! ll!m q?qm alenauo[
rnoluiuaue ul? ul mol~q paz!lemmnr am qlla3 meq aql
jo amor 'Y~N" u! 01, jo rle!iuassa aql alwl5n[[! OJ.

'21q!s$od lo Llerra~au sl aly i? Jo az!E aql jo
uo!~eu!wla~apa~d nu !i! uo uall!lm aliq I>aq%!q ~ql 69

4.1 Efficiency of the File System
To provide an indication of the overall efficiency of

UNIX and of the file system in particular, timings were
made of the assembly of a 7621-line program. The
assembly was run alone on the mach~ne; the total
clock time was 35.9 sec, for a rate of 212 lines per sec.
The time was divided as follows: 63.5 percent assembler
execution time, 16.5 percent system overhead, 20.0
percent disk wait time. We will not attempt any interpre-
tation of these figures nor any comparison with other
systems, but merely note that we are generally satisfied
with the overall performance of the system.

5. Processes and Images

An irnuge is a computer execution environment. It
includes a core image, general register values, status of
open files, current directory, and the like. An image is
the current state of a pseudo computer.

A process is the execution of an image. While the
processor is executing on behalf of a process, the image
must reside in core; during the execution of other pro-
cesses it remains in core unless the appearance of an
active, higher-priority process forces it to be swapped
out to the fixed-head disk.

The user-core part of an image is divided into three
logical segments. The program text segment begins at
location 0 in the virtual address space. During execution,
this segment is write-protected and a single copy of it
is shared among all processes executing the same pro-
gram. At the first 8K byte boundary above the program
text segment in the virtual address space begins a non-
shared, writable data segment, the size of which may be
extended by a system call. Starting at the highest address
in the virtual address space is a stack segment, which
automatically grows downward as the hardware's stack
pointer fluctuates.

5.1 Processes
Except while UNIX is bootstrapping itself into opera-

tion, a new process can come into existence only by
use of the fork system call:

processid = fork(1abel)

When fork is executed by a process, it splits into two
independently executing processes. The two processes
have independent copies of the original core image, and
share any open files. The new processes differ only in
that one is considered the parent process: in the parent,
control returns directly from the fork, while in the
child, control is passed to location label. The processid
returned by the fork call is the identification of the
other process.

Because the return points in the parent and child
process are not the same, each image existing after a
fork may determine whether it is the parent or child
process.

5.2 Pipes
Processes may communicate with related processes

using the same system read and ~vrire calls that are
used for file system I!O. The call

returns a file descriptor/ilep and creates an interprocess
channel called a pipe. This channel, l ~ k e other open
files, is passed from parent to ch~ ld process in the image
by thefork call. A read using a pipe file descriptor waits
until another process writes using the file descriptor for
the same pipe. At this point, data are passed between
the images of the two processes. Neither process need
know that a pipe, rather than an ordinary file, is in-
volved.

Although interprocess communication via pipes is
a quite valuable tool (see $6 .2) , it is not a completely
general mechanism since the pipe must be set up by a
common ancestor of the processes involved.

5.3 Execution of Programs
Another major system primitive is invoked by

which requests the system to read in and execute the
program named by file, passing it string arguments
arg,, arg,, ..., arg,. Ordinarily, urg, should be the same
string as file, so that the program may determine the
name by which it was invoked. All the code and data
in the process using execute is replaced from thefirle, but
open files, current directory, and interprocess relation-
ships are unaltered. Only if the call fails, for example
because file could not be found or because its execute-
permission bit was not set, does a return take place from
the execute primitive; it resembles a "jump" machine
instruction rather than a subroutine call.

5.4 Process Synchronization
Another process control system call

processid = wait()

causes its caller to suspend execution until one of its
children has completed execution. Then wait returns
the processid of the terminated process. An error return
is taken if the calling process has no descendants.
Certain status from the child process is also available.
Wait may also present status from a grandchild or
more distant ancestor; see 55.5.

5.5 Termination
Lastly,

exit (status)

terminates a process, destroys its image, closes its open
files, and generally obliterates it. When the parent is
notified through the wait primitive, the indicated status
is available to the parent; if the parent has already
terminated, the status is available to the grandparent,

and so on. Processes may also terminate as a result of
various illegal actions or user-generated signals (57
below).

6. The Shell

For most users, communication with U N l X is carried
on with the aid of a program called the Shell. The Shell
is a command line interpreter: it reads lines typed by
the user and interprets them as requests to execute
other programs. In simplest form, a command line
consists of the command name followed by arguments
to the command, all separated by spaces:
command arg, arg, . . . arg.

The Shell splits up the command name and the argu-
ments into separate strings. Then a file with name
command is sought; commalid may be a path name in-
cluding the "/" character to specify any file in the sys-
tem. If command is found, it is brought into core and
executed. The arguments collected by the Shell are
accessible to the command. When the command is
finished, the Shell resumes its own execution, and in-
dicates its readiness to accept another command by
typing a prompt character.

If file command cannot be found, the Shell prefixes
the string /bin/ to command and attempts again to
find the file. Directory /bin contains all the command.^
intended to be generally used.

6.1 Standard I/O
The discussion of I/O in $3 above seems to imply

that every file used by a program must be opened or
created by the program in order to get a file descriptor
for the file. Programs executed by the Shell, however,
start off with two open files which have file descriptors
0 and 1. As such a program begins execution, file I is
open for writing, and is best understood as the standard
output file. Except under circumstances indicated be-
low, this file is the user's typewriter. Thus programs
which wish to write informative or diagnostic informa-
tion ordinarily use file descriptor l . Conversely, file 0
starts off open for reading, and programs which wish
to read messages typed by the user usually read this file.

The Shell isable to change the standard assignments
of these file descriptors from the user's typewriter
printer and keyboard. If one of the arguments to a
command is prefixed by ")", file descriptor I will, for
the duration of the command, refer to the file named
after the ")". For example,
Is
ordinarily lists, on the typewriter, the names of the files
in the current directory. The command

creates a file called there and places the listing there.
Thus the argument ")therem means, "place output on

there." On the other hand,

ordinarily enters the editor, which takes requests from
the user via his typewriter. The command

ed (script

interprets rcripr as a file of editor commands; thus
"(script" means, "take input from scr~pr."

Although the file name following "(" or ")" appears
to be an argument to the command, in fact it is in-
terpreted completely by the Shell and is not passed to
the command at all. Thus no special coding to handle
I/O redirection is needed within each command; the
command need merely use the standard file descriptors
0 and 1 where appropriate.

6.2 Filters
An extension of the standard I, 0 notion is used to

direct output from one command to the input of another.
A sequence of commands separated by vertical bars
causes the Shell to execute all the commands simul-
taneously and to arrange that the standard output of
each command be delivered to the standard input of
the next command in the sequence. Thus in the com-
mand line

Is lists the names of the files in the current directory; its
output is passed to pr, which paginates its input with
dated headings. The argument "-2" means double
column. Likewise the output from pr is input to opr.
This command spools its input onto a file for off-line
printing.

This process could have been carried out more
clumsily by

1s)templ
pr - 2 (temp1)temp2
opr (temp2

followed by removal of the temporary files. In the
absence of the ability to redirect output and input, a
still clumsier method would have been to require the Is
command to accept user requests to paginate its out-
put, to print in multi-column format, and to arrange
that its output be delivered off-line. Actually it would
be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as 1.r to provide
such a wide variety of output options.

A program such a s p r which copies its standard input
to its standard output (with processing) is called a
filter. Some filters which we have found useful per-
form character transliteration, sorting of the input, and
encryption and decryption.

6.3 Command Separators: Multitasking
Another feature provided by the Shell is relatively

straightforward. Commands need not be on different

lines; instead they may be separated by semicolons.

Is; ed

will first list the contents of the current directory, then
enter the editor.

A related feature is more interesting. I f a command
is followed by ""t", the Shell will not watt for the
command to finish before prompting again; instead, i t
is ready immediately to accept a new command. For
example,

as source)output C
causes sorrrcc to be assembled, with diagnostic output
going to ourprrt; no matter how long the assembly
takes, the Shell returns immediately. When the Shell
does not wait for the completion of a command, the
identification of the process running that command is
printed. This identification may be used to wait for
the completion of the command or to terminate it.
The "&" may be used several times in a line:

as source)output B Is)files &
does both the assembly and the listing in the back-
ground. I n the examples above using "&", an output
file other than the typewriter was provided; i f this had
not been done, the outputs of the various commands
would have been intermingled.

The Shell also allows parentheses in the above
operations. For example
(date; Is))x B
prints the current date and time followed by a list of
the current directory onto the file A . The Shell also
returns immediately for another request.

6.4 The Shell as a Command: Command files
The Shell is itself a command, and may be called

recursively. Suppose file tryout contains the lines
as source
mv a .out testprog
testprog
The mv command causes the file a.oirt to be renamed
testprog. a.out is the (binary) output of the assembler,
ready to be executed. Thus i f the three ltnes above were
typed on the console, source would be assembled, the
resulting program named testprog, and testprog ex-
ecuted. When the lines are in tryout, the command
sh (tryout
would cause the Shell sh to execute the commands
sequentially.

The Shell has further capabilities, including the
ability to substitute parameters and to construct argu-
ment lists from a specified subset of the file names in a
directory. I t is also possible to execute commands
conditionally on character string comparisons or on
existence of given files and to perform transfers o f
control within filed command sequences.

6.5 Implementation of the Shell
The outline of the operation of the Shell can now

be understood. Most of the time, the Shell is waiting
for the user to type a comniand. When the new-line
character ending the line is typed, the Shell's read
call returns. The Shell analyzes the command line,
putting the arguments in a form appropriate for e.~cnrtt..
Then f i~rk is called. The child process, whose code of
course is still that of the Shell, attempts to perform an
extjcure with the appropriate arguments. I f successful.
this ui l l bring in and start execution of the program
whose name was given. Meanwhile, the other process
resulting from the fbrk, which is the parent process,
~rairs for the child process to die. When this happens,
the Shell knows the command is finished, so i t types
its prompt and reads the typewriter to obtain another
command.

Given this framework, the implemenlation of back-
ground processes is trivial; whenever a command line
contains " B " , the Shell merely refrains from waiting
for the process which it created toexecute the command.

Happily, all of this mechanism meshes very nicely
with the notion of standard input and output files.
When a process is created by the fork primitive, i t
inherits not only the core image of its parent but also
all the files currently open in its parent, including those
with file descriptors 0 and I . The Shell, of course, uses
these files to read command lines and to write its
prompts and diagnostics, and in the ordinary case its
children-the command programs-inherit them auto-
matically. When an argument with "(" or ")" is given
however, the offspring process, just before i t performs
esccurc, makes the standard I o file descriptor 0 or I
respectively refer to the named file. This is easy because,
by agreement, the smallest unused file descriptor is
assigned when a new file is opened (or crcurcd); i t is
only necessary to close file 0 (or I) and open the named
file. Because the process in which the command pro-
gram runs simply terminates when i t is through, the
association between a file specified after "(" or ")"
and file descriptor 0 or I is ended automatically when
the process dies. Therefore the Shell need not know the
actual names of the files which are its own standard
input and output since i t need never reopen them.

Filters are straightforward extensions of standard
r/o redirection with pipes used instead of files.

I n ordinary circumstances, the main loop of the
Shell never terminates. (The main loop includes that
branch of the return fromfork belonging to the parent
process; that is, the branch which does a aoit, then
reads another command line.) The one thing which
causes the Shell to terminate is discovering an end-of-file
condition on its input file. Thus, when the Shell is
executed as a command with a given input file, as in

sh (comfile

the commands in comfile will be executed until the
end of comJile is reached; then the instance of the

Shell invoked by sh will terminate. Since this Shell
process is the child of another instance of the Shell,
the wait executed in the latter wtll return, and another
command may be processed.

6.6 Initialization
The instances of the Shell to which users type com-

mands are themselves children of another process.
The last step in the initialization of u ~ t x is the creation
of a single process and the invocation (via e\-eclrre)
of a program called inir. The role of ilrir is to create one
process for each typewriter channel which may be dialed
up by a user. The various subinstances of in;! open the
appropriate typewriters for input and output. Since
when i~ l i r was invoked there were no files open, in each
process the typewriter keyboard will receive file de-
scriptor 0 and the printer file descriptor 1. Each process
types out a message requesting that the user log in and
waits, reading the typewriter, for a reply. A t the outset.
no one is logged in, so each process simply hangs.
Finally someone types his name or other identification.
The appropriate instance of inir wakes up, receives the
log-in line, and reads a password file. I f the user name
is found, and i f he is able to supply the correct pass-
word, init changes to the user's deftault current directory.
sets the process's user ID to that of the person logging
in, and performs an execure of the Shell. A t this point
the Shell is ready to receive commands and the logging-in
protocol is complete.

Meanwhile, the mainstream path of iriir (the parent
of all the subinstances of itself which will later become
Shells) does a wait. I f one of the child processes term-
inates, either because a Shell found an end of file or
because a user typed an incorrect name or password,
this path of init simply recreates the defunct process,
which in turn reopens the appropriate input and output
files and types another login message. Thus a user'may
log out simply by typing the end-of-file sequence in
place of a command to the Shell.

6.7 Other Programs as Shell
The Shell as described above is designed to allow

users full access to the facilities of the system since i t
will invoke the execution of any program with appro-
priate protection mode. Sometimes, however, a dif-
ferent interface to the system is desirable, and this
feature is easily arranged.

Recall that after a user has successfully logged in by
supplying his name and password, init ordinarily invokes
the Shell to interpret command lines. The user's entry
in the password file may contain the name of a program
to be invoked after login instead of the Shell- This
program is free to interpret the user's messages i n any
way i t wishes.

For example, the password file entries for users of a
secretarial editing system specify that the editor ed is
to be used instead of the Shell. Thus when editing
system users log'in, they are inside the editor and can

begin work immediately; also, they can be prevented
from invoking u ~ i s progranis not tntended for their
use. In practice, i t has proved desirable to allow a
temporary escape from the editor to execute the format-
ting program and other util~ties.

Several of the gamcs (c.g, chess, blackjack. 3D tic-
lac-toe) ava~lable on UNIY illustrate a nruch more severely
restricted environment. For each of these an entry
exists in the password file specifying that the appro-
priate game-playing program is to be invoked instead
of the Shell. People who log in as a player of one of the
games find themselves limited to the game and unable
to investigate the presumably more interesting offerings
of u ~ l s as a whole.

7. Traps

The PDP-I l hardware detects a number of program
faults, such as references to nonexistent memory,
unimplemented instructions, and odd addresses used
where an even address is required. Such faults cause the
processor to trap to a system routine. When an illegal
action IS caught, unless other arrangements have been
made, the system terminates the process and writes
the user's image on file cow in the current directory. A
debugger can be used to determine the state of the
program at the time of the fault.

Programs which are looping, which produce un-
wanted output, or about which the user has second
thoughts may be halted by the use of the infc,rrrrpl
signal, whtch is generated hy typing the "delete"
character. Unless special action has been taken, this
signal simply causes the program to cease execution
without producing a core image file.

There is also a qirit signal which is used to force a
core image to be produced. Thus programs which loop
unexpectedly may be halted and the core image ex-
amined without prearrangement.

The hardware-generated faults and the interrupt and
quit signals can, by request, be either ignored or caught
by the process. For example, the Shell ignores quits to
prevent a quit from logging the user out. The editor
catches interrupts and returns to its command level.
This is useful for stopping long printouts without losing
work in progress (the editor manipulates a copy of
the file i t is editing). I n systems without floating point
hardware, unimplemented instruktions are caught, and
floating point instructions are interpreted.

8. Perspective

Perhaps paradoxically, the success of uNlx is largely
due to the fact that i t was not designed to meet any
predefined objectives. The first version was written
when one of us (Thompson), dissatisfied with the
available computer facilities, discovered a little-used

PDP-7 and set out to cmate a more hospitable environ-
ment. This essentially personal effort was sufficiently
successful t o gain the interest of the remaining author
and others, and later t o justify the acquisition of the
P D P - I I / ~ ~ , s ~ e c i f i c a l l ~ to suppor: a text editing and
formatting system. When in turn the 11/20 was out-
grown, UNlX had proved useful enough to persuade
management to invest in the ~ ~ ~ - 1 1 / 4 5 . Our goals
throughout the effort, when articulated a t all, have
always ~ ~ ~ ~ c e r n e d themselves with building a comfort-
able relationship with the machine and with exploring
ideas and inventions in operating systems. We have
not been fmed with the need to satisfy someone else's
requirements, and for this freedom we are grateful.

Three considerations which influenced the design
of UNlX are visible in retrospect.

First, since we are programmers, we naturally
designed the system to make it easy to write, test, and
run programs. The most important expression of our
desire for Prograrhming convenience was that the
system was arranged for interactive use, even though
the original version only supported one user. We be-
believe that a properly-designed interactive system is
much more productive and satisfying to use than a
"bdtch" system. Moreover such a system is rather
easily adaptable to noninteractive use, while the con-
verse is not true.

Second, there have always been fairly severe size
constraints on the system and its software. Given the
partially antagonistic desires for reasonable efficiency
and expressive power, the size constraint has encouraged
not only economy but a certain elegance of design.
This may be a thinly disguised version of the "salva-
tion through suffering1$ philosophy, but in our case it
worked.

Third, nearly from the start, the system was able to,
and did, maintain itself. This fact is more important
than it might seem. If designers of a system are forced
t o use that System, they quickly become aware of its
functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Since
all source programs were always available and easily
modified on-line, we were willing to revise and rewrite
the system and its software when new ideas were
invented, discovered, o r suggested by others.

The aspects of NIX discussed in this paper exhibit
clearly a t least the first two of these design considera-
tions. The interface t o the file system, for example, is
extremely convenient from a programming standpoint.
The lowest possible interface level is designed to
eliminate distinctions between the various devices and
files and between direct and sequential access. No
large "access methodr* routines are required to insulate
the programmer from the system calls; in fact, all
user programs either call the system directly o r use a
small library program, only tens of instructions long,
which buffers a number of characters and reads o r
writes them all a t once.

Another important aspect of programming con-
venience is that there are n o "control blocks" with a
complicated structure partially maintained by and de-
pended on by the file system o r other system calls.
Generally speaking, the contents of a program's address
space are the property of the program, and we have
tried to avoid placing restrictions on the data structures
within that address space.

Given the requirement that all programs should be
usable with any file o r device as input or output, it is
also desirable from a space-efficiency standpoint t o push
device-dependent considerations into the operating sys-
tem itself. The only alternatives seem to be to load
routines for dealing with each device with all programs,
which is expensive in space, o r t o depend on some means
of dynamically linking to the routine appropriate t o
each device when it is actually needed, which is expen-
sive either in overhead o r in hardware.

Likewise, the process control scheme and command
interface have proved both convenient and efficient.
Since the Shell operates as an ordinary, swappable user
program, it consumes n o wired-down space in the
system proper, and it may be made as powerful as
desired at little cost. In particular, given the framework
in which the Shell executes as a process which spawns
other processes to perform commands, the notions of
I/O redirection, background processes, command files,
and user-selectable~system interfaces all become essen-
tially trivial t o implement.

8.1 Influences
The success of UNIX lies not so much in new inven-

tions but rather in the full exploitation of a carefully
selected set of fertile ideas, and especially in showing
that they can. be keys to the implementation of a small
yet powerful operating system.

The fork operation, essentially as we implemented it,
was present in the Berkeley time-sharing system (81. On
a number of points we were influenced by Multics, which
suggested the particular form of the I/O system calls
191 and both the name of the Shell and its general func-
tions. The notion that the Shell should create a process
for each command was also suggested t o US by the
early design of Multics, although in that system it was
later dropped for efficiency reasons. A similar scheme
is used by TENEX [lo].

9. Statistics

The following statistics from UNlX are presented to
show the scale of the system and t o show how a system
of this scale is used. Those of our users not involved in
document preparation tend to use the system for pro-
gram development, especially language work. There are
few important "applications" programs.

9.1 Overall

72 user population
14 maximum simultaneous users
300 directories
4400 files
34000 512-byte secondary storage blocks used

9.2 Per day (24-hour day, 7-day week basis)
There is a "background" process that runs a t the

lowest possible priority; it is used to soak u p any idle
CPU time. I t has been used to produce a million-digit
approximation to the constant e - 2, and is now
generating composite pseudoprimes (base 2).
1800 commands
4.3 CPU hours (aside from background)
70 connect hours
30 different users
75 logins

9.3 Command CPU Usage (cut off at 1 %)

C compiler
users' programs
editor .
Shell (used as a com-
mand, including com-
mand times)
chess
list directory
document forrnatter
backup dumper
assembler

Fortran compiler
remove file
tape archive
file system consistency
check
library maintainer
concatenate/print files
paginate and print file
print disk usage
copy file

9.4 Command Accesses (cut off at 1 %)

editor
list directory
remove file
C compiler
concatenate/print file
users' programs
list people logged on
system
rename/move file
file status
library maintainer
document formatter
execute another com-
mand conditionally

debugger
Shell (used as a command)
print disk availability
list processes executing
assembler
print arguments
copy file
paginate and print file
print current date/time
file system consistency
check
tape archive

9.5 Reliability
Our statistics o n reliability are much more subjective

than the others. The following results are true to the
best of our combined recollections. The time span is
over one year with a very early vintage 11/45.

There has been one loss of a file system (one disk
out of five) caused by software inability t o cope with
a hardware problem causing repeated power fail traps.
Files on that disk were backed up three days.

A "crash" is a n unscheduled system reboot o r
halt. There is about one crash every other day; about
two-thirds of them are caused by hardware-related dif-

ficulties such as power dips and inexplicable processor
interrupts t o random locations. The remainder are
software failures. The longest uninterrupted u p time
was about two weeks. Service calls average one every
three weeks, but are heavily clustered. Total up time
has been about 98 percent of our 24-hour, 365-day
schedule.

Acknowledgments. We are grateful t o R.H. Canaday,
L.L. Cherry, and L.E. McMahon for their contribu-
tions to UNIX. We are particularly appreciative of the
inventiveness, thoughtful criticism, and constant sup-
port of R. Morris, M.D. Mcllroy, and J.F. Ossanna.

References
1. Digital Equipment Corporation. PDP-I 1/40 Processor
Handbook, 1972, and PDP-l 1/45 Processor Handbook, 1971.
2. Deutsch, L.P., and Lampson, B.W. An online editor. Conri~i.
ACM 10, 12 (Dec. 1967), 793-799,803.
3. Richards, M. BCPL: A tool for compiler writing and system
programming. Proc. AFIPS 1969 SJCC, Vol. 34, AFIPS Press,
Montvale, N.J., pp. 557-566.
4. McClure, R.M. TMG-A syntax directed compiler. Proc.
ACM 20th Nat. Conf., ACM, 1965, New York, pp. 262-274.
5. Hall, A.D. The M6 macroprocessor. Computing Science Tech.
Rep.#2, Bell Telephone Laboratories 1969.
6. Ritchie, D.M. C reference rhanuk. Unpublished memorandum,
Bell Teleuhone Laboratories. 1973. - - - . - - -- - .
7. Aleph-null. Computer Recreations. Sqfiwure Prcccricr uid
E.rpririrce I , 2 (Apr.-June 1971), 201-204.
8. Deutsch, L.P., and Lampson, B.W. SDS 930 time-sharing
system preliminary reference manual. Doc. 30.10.10, Project GENIE,
U of California at Berkeley, Apr. 1965.
9. Feiertag, R.J., and Organick, E.I. The Multics input-output
system. Proc. Third Symp. on Oper. Syst. Princ., Oct. 18-20, 1971,
ACM, New York, pp. 35-41.
10. Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson,
R.S. TENEX, a paged time sharing system tbr the PDP-10. Conmi.
ACM IS , 3 (Mar. 1972), 135-143.

