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1 Introduction

The formal systems that are nowadays called λ-calculus and combinatory logic were
both invented in the 1920s, and their aim was to describe the most basic properties
of function-abstraction, application and substitution in a very general setting. In
λ-calculus the concept of abstraction was taken as primitive, but in combinatory
logic it was defined in terms of certain primitive operators called basic combinators.

The present article will sketch the history of these two topics through the twen-
tieth century.

We shall assume the reader is familiar with at least one of the many versions
of these systems in the current literature. A few key technical details will be given
as footnotes, however.1 Often “combinatory logic” will be abbreviated to “CL”
and “λ-calculus” to “λ”. We shall distinguish between “pure” versions of λ or
CL (theories of conversion or reduction with nothing more) and “applied” versions
(containing extra concepts such as logical constants, types or numbers).

To understand the early history it is worth remembering that the situation in
logic and the foundations of mathematics was much more fluid in the early 1900s
than it is today; Russell’s paradox was relatively recent, Gödel’s theorems were
not yet known, and a significant strand of work in logic was the building of systems
intended to be consistent foundations for the whole of mathematical analysis. Some
of these were based on a concept of set, others on one of function, and there was
no general consensus as to which basis was better. In this context λ and CL were
originally developed, not as autonomous systems but as parts of more elaborate
foundational systems based on a concept of function.

Today, λ and CL are used extensively in higher-order logic and computing.
Rather like the chassis of a bus, which supports the vehicle but is unseen by its users,
versions of λ or CL underpin several important logical systems and programming
languages. Further, λ and CL gain most of their purpose at second hand from
such systems, just as an isolated chassis has little purpose in itself. Therefore, to
give a balanced picture the present article should really include the whole history
of function-based higher-order logic. However, it would then be too diffuse, so we
shall take a more restricted approach. The reader should always keep the wider
context in mind, however.

Seen in outline, the history of λ and CL splits into three main periods: first,
several years of intensive and very fruitful study in the 1920s and ’30s; next, a mid-
dle period of nearly 30 years of relative quiet; then in the late 1960s an upsurge of
activity stimulated by developments in higher-order function theory, by connections
with programming languages, and by new technical discoveries. The fruits of the
first period included the first-ever proof that predicate logic is undecidable. The
results of the second attracted very little non-specialist interest, but included com-
pleteness, cut-elimination and standardization theorems (for example) that found
many uses later. The achievements of the third, from the 1960s onward, included
constructions and analyses of models, development of polymorphic type systems,
deep analyses of the reduction process, and many others probably well known to
the reader. The high level of activity of this period continues today.

The present article will describe earlier work in chronological order, but will
classify later developments by topic, insofar as overlaps allow. Each later topic will
be discussed in some breadth, to show something of the contexts in which λ and

1A short introduction to λ-calculus is included in [Seldin, 2007] in the present volume. Others
can be found in many textbooks on computer science. There are longer introductions in [Hankin,
1994], [Hindley and Seldin, 1986], [Stenlund, 1972]; also in [Krivine, 1990] (in French and English),
[Takahashi, 1991] (in Japanese), and [Wolfengagen, 2004] (in Russian). A deeper account is in
[Barendregt, 1981]. For combinatory logic there are introductions in [Hindley and Seldin, 1986,
Ch.2], [Stenlund, 1972], and [Barendregt, 1981, Ch.7]; more detailed accounts are in [Curry and
Feys, 1958, Chs.5–9] and [Curry et al., 1972].
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CL are being used. However, due to lack of space and the richness of the field we
shall not be able to be as comprehensive as we would like, and some important sub-
topics will unfortunately have to be omitted; for this we ask the reader’s forgiveness.
Although we shall try to keep a balance, our selection will inevitably reflect our
own experience. For example Curry’s work will be given more space than Church’s
simply because we know it better, not because we think it more important.

A large bibliography will be included for the reader’s convenience in tracing
sources. When detailed evidence of a source is needed, the relevant precise section
or pages will be given. Sometimes the date we shall give for an idea will significantly
precede its date of publication; this will be based on evidence in the source paper
such as the date of the manuscript. By the way, mention of a date and an author for
an idea should not be interpreted as a claim of priority for that author; important
ideas may be invented independently almost simultaneously, and key papers may be
circulated informally for some years before being published, so questions of priority,
although very interesting, are beyond our powers to decide.
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2 Pre-history

Notations for function-abstraction and substitution go back at least as far as 1889.
In Giuseppe Peano’s book on axioms for arithmetic [Peano, 1889, §VI], for any
term α containing a variable x, the function of x determined by α was called α[x],
and for φ = α[x] the equation φx′ = α[x]x′ was given, and its right-hand side was
explicitly stated to mean the result of substituting x′ for x in α. Later, Peano used
other function-abstraction notations instead of α[x]; these included αx and
α|x, in [Peano, 1958, p.277] and [Peano, 1895, Vol.3 §11] respectively.

In 1891 Gottlob Frege discussed the general concept of function and introduced
the notion of a function as a graph (Wertverlauf in [Frege, 1891]). Two years later,
notations for abstraction and application appeared in his [Frege, 1893, Vol.1 §9],
where the graph of a function Φ( ) was denoted by

,
ε Φ(ε), and the result of

applying the function to an argument ∆ was denoted by ∆∩
,
ε Φ(ε). In the same

work Frege also proved the equation a∩
,
ε f(ε) = f(a), [Frege, 1893, Vol.1 p.73,

§54].
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Notations for class-abstraction too appeared at around the same time. The set
of all x satisfying condition α was denoted by [x ε]α in [Peano, 1889, §V], and by
x εα in Peano’s work from 1890 onward, see [Peano, 1958, Vol.2 p.110]. The latter
notation was also used by his colleague Burali-Forti [Burali-Forti, 1894, p.71 §3].
Another class-abstraction notation, ẑ(φ z), appeared in [Russell and Whitehead,
1913, Ch.1, p.25]. The latter two authors also used ϕ x̂ for the unary propositional
function determined by ϕx.

A function-abstraction notation was used by Bertrand Russell in 1903–5 in un-
published notes, see [Klement, 2003].

However, none of these authors gave formal definitions of substitution and con-
version, which are characteristic of CL and λ proper. These did not appear until the
1920s, and, although λ might seem to express the concepts involved more directly
than CL, it was actually CL that was invented first.

3 1920s: Birth of Combinatory Logic

Combinatory logic was invented by Moses Ilyich Schönfinkel. Schönfinkel was born
in 1887 or ‘89 in Dniepropetrovsk in the Ukraine, and studied under the Odessa
mathematician Samuel Shatunovsky – a brilliant pupil, according to [Yanovskaya,
1948, p. 31]. From 1914 to 1924 he belonged to what was probably the top mathe-
matics research group of the time, that led by David Hilbert in Göttingen, Germany.
He introduced combinators to this group in a talk on 7 December 1920, which was
published in [Schönfinkel, 1924].

Schönfinkel’s main aim was to eliminate bound variables, which he saw as merely
auxiliary syntactic concepts, see [Schönfinkel, 1924, end of §1]. To do this, he
introduced five operators Z, T , I, C and S which would nowadays be called basic
combinators B, C, I, K and S respectively.2

Schönfinkel proved that K and S are adequate to define the other three basic
combinators, and stated a form of combinatory completeness result (with a sketch
proof): namely that from K and S, together with a logical operator equivalent to
a universally quantified Sheffer stroke or Nand, one can generate all formulas of
predicate logic without the use of bound variables. But he treated equality and
logical equivalence only informally, as was common practice in mathematics at that
time; he did not introduce formal conversion rules. Nor was an explicit abstraction
algorithm stated in his paper, although from what was written it seems extremely
likely that he knew one.

Along the way, Schönfinkel pointed out that multi-variable applications such
as F (x, y) could be replaced by successive single applications (f(x))(y), where f
was a function whose output-value f(x) was also a function, see [Schönfinkel, 1924,
§2]. This replacement-process is now known in the computer-science community as
“currying”, from its use in the work of Haskell Curry; although Curry many times
attributed it to Schönfinkel, for example in [Curry, 1930, p.512] and [Curry and
Feys, 1958, pp. 8, 11, 30, 106], and it was used even earlier by Frege, [Frege, 1893,
Vol.1 §4].

After his 1924 paper, Schönfinkel published nothing more on combinators. In
fact only one other paper bears his name: [Bernays and Schönfinkel, 1928], on
certain special cases of the Entscheidungsproblem. Both papers were prepared for

2In today’s notation (following [Curry and Feys, 1958, Ch.5]) their axiom-schemes are BXY Z
= X(Y Z), CXY Z = XZY , IX = X, KXY = X, SXY Z = XZ(Y Z), and a combinator is any
applicative combination of basic combinators. A set S of combinators is called combinatorially
complete when, for every sequence x1, ..., xn of variables and every combination X of all or some of
these (possibly with some occurring more than once), there exists a combination A of members of
S such that Ax1...xn = X. An abstraction algorithm is any algorithm for constructing a suitable
A from X. In what follows, the notation “[x1, ..., xn].X” will denote any suitable A.
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publication largely by helpful colleagues: the earlier one by Heinrich Behmann
and the later by Paul Bernays. By 1927, he was said to be mentally ill and in a
sanatorium [Curry, 1927, p.3], [Kline, 1951, p.47]. Alexander Kuzichev in Moscow
relates that Schönfinkel’s later years were spent in Moscow in hardship and poverty,
helped by a few friends, and he died in a hospital there in 1942 following some years
of illness. After his death, wartime conditions forced his neighbours to burn his
manuscripts for heating.3

However, in the meantime the combinator idea had appeared again, though in
a very modified form. In 1925, John von Neumann published his doctoral thesis on
axiomatizing set theory, [Neumann, 1925]. Despite its being a theory of sets, his
formal system was function-based not set-based, and one group of his axioms postu-
lated certain combinator-like operators which gave combinatory completeness for all
expressions built from variables and constants by pairing and function-application,
[Neumann, 1925, p.225].4

(We do not know whether von Neumann’s idea came from Schönfinkel’s. Von
Neumann visited Göttingen well before 1925 and collaborated with the logic group
there, and it is hard to imagine that he did not learn of Schönfinkel’s work there.
But the form in which the concept appeared in [Neumann, 1925] was very modified,
and his [Neumann, 1925] and [Neumann, 1928] did not mention Schönfinkel.)

The von Neumann axioms eventually evolved, with many changes, including
from a function base to a sets-and-classes base, into the nowadays well known
Von-Neumann-Bernays-Gödel system NBG. In that system the analogue of von
Neumann’s combinator axioms was a finite list of class-existence axioms, and the
analogue of his combinatory completeness theorem was a general class-existence
theorem. That system gave a finite axiomatization of set theory, in contrast to the
Zermelo-Fraenkel system known nowadays as ZF. It did not, however, eliminate
bound variables completely from the logic; unlike Schönfinkel, von Neumann did
not have that as an aim.

The next major step in CL was independent of both Schönfinkel and von Neu-
mann: the combinator concept was re-invented in the U.S.A. by Haskell Curry.

Curry was born in 1900. His parents ran a school of public speaking near Boston,
U.S.A. (now called Curry College), and from them he derived an interest in linguis-
tics which coloured much of his later work. He began his student career at Harvard
University intending to work in medicine but quickly changed to mathematics, and
a strong underlying inclination towards foundational questions drew him eventually
to logic.5

In propositional logic the rule of substitution is significantly more complex than
modus ponens and the other deduction-rules, and at the time Curry began his
studies the substitution operation was largely unanalyzed.6 In particular, an explicit

3Little more is known about him. We are indebted mainly to [Thiel, 1995], [Yanovskaya, 1948,
pp.31–34], [Kline, 1951], and correspondence from A. S. Kuzichev, 2005. His date of birth was 4th
Sept. 1889 according to [Thiel, 1995], but 1887 according to Kuzichev.

4The relevant axioms appeared in [Neumann, 1925, §3, axiom-group II], see comments in [Curry
and Feys, 1958, pp.10–11]. We show them here in a notation chosen to emphasize their similarity
to CL. Von Neumann used two atomic predicates, “x is a function” and “x is an argument”
(not mutually exclusive), and two term-building operations: pairing, which we call “〈 , 〉”, and
application “( )”. (For pairing, he postulated two projection-functions; we omit them here.)

(∃ fn I)(∀ args x) (Ix) = x;
(∀ args x)(∃ fn Kx)(∀ args y) (Kxy) = x;
(∃ fn App)(∀ args f, x) f is a fn ⊃ (App 〈f, x〉) = (fx);
(∀ fns f, g)(∃ fns Sf,g , Bf,g)(∀ args x) (Sf,g x) = 〈(fx), (gx)〉 ∧ (Bf,g x) = (f(gx)).

5For information on Curry we are indebted to [Curry and Feys, 1958, §§1S,6S,8S], [Curry, 1980],
and [Seldin, 1980b; Seldin, 1980a], also to discussions with Jonathan Seldin, whose [Seldin, 2007]

gives a fuller account of Curry and Church than the present one. Curry died in 1982.
6The substitution rule in propositional logic states that from a formula Q we may deduce
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statement of the substitution rule was missing from Principia Mathematica [Russell
and Whitehead, 1913], as was admitted later by Russell himself, see [Russell, 1919,
Ch.14, p.151]. Also the corresponding rule for predicate logic was stated incorrectly
in the first edition of a leading textbook [Hilbert and Ackermann, 1928, Ch.3 §5
p.53], see remarks in [Church, 1956, §49 pp. 290–291].

Around 1926–27, Curry began to look for a way to break the substitution process
down into simpler steps, and to do this, he introduced a concept of combinator
essentially the same as Schönfinkel’s. Then in late 1927 he discovered [Schönfinkel,
1924], and a note in his files [Curry, 1927, p.1] admits “This paper anticipates much
of what I have done”. He did not abandon his own work, however, but travelled to
Göttingen and in 1930 completed a doctoral thesis under the guidance of Bernays,
[Curry, 1930]. In it he set out a formal system of combinators with a proof of the
combinatory completeness of {B,C,K,W} [Curry, 1930, p.528 Hauptsatz II].7

Crucial to every such completeness proof is an abstraction algorithm. The one
in Curry’s thesis was not only the first to appear in print, but was also much more
efficient than many that followed it. He saw the problem of producing an A such that
Ax1...xn converted to X, from the point of view of building X from the sequence
x1, . . . , xn. First, A must remove from x1, . . . , xn all variables which do not occur
in X; this can be done using K and B. Then A must repeat variables as often as
they occur in X; this can be done using W and B. Next, A must re-arrange the
variables into the order in which they occur in X; this can be done using C and B.
Finally, A must insert the parentheses that occur in X, and this can be done using
B (together with I or CKK).8

But the details of Curry’s algorithm were rather complex, and it was later re-
placed by ones that were much simpler to describe. These algorithms were multi-
sweep; i.e. they built [x1, . . . , xn].X by building first [xn].X, then [xn−1].[xn].X,
etc., and their key was to build [x].X for all x and X by a direct and very simple
induction on the number of symbols in X.

The first to appear was in [Church, 1935, §3 p.278]. Church used just two basic
combinators I and J, where JUXY Z = UX(UZY ); the latter had been proposed
by Rosser in 1933 [Rosser, 1935, p.128].9

But the simple algorithm based on S and K that is used in textbooks today is
due to Paul Rosenbloom [Rosenbloom, 1950, p.117]. He seems to have been the first
person, at least in print, to have realised that by using S in the induction step for
[x].X the proof of its main property ([x].X)Y = [Y/x]X was made trivial.10 This
algorithm, with some variants, became generally accepted as standard.11

[P1/p1, . . . , Pn/pn]Q, where the latter is obtained from Q by substituting formulas P1, . . . , Pn for
propositional variables p1, . . . , pn which may occur in Q.

7W has the axiom-scheme WXY = XY Y .
8See [Curry, 1930, Part II, §§C–E] for details, or [Curry and Feys, 1958, §6S2] for an outline.
9The basis {I, J} allows [x].X to be built when x occurs in X but not when x is absent. This

corresponds to the λI-calculus, see p.7 below. Church’s algorithm is also in [Church, 1941, p.44].
10No he wasn’t. [Seldin, 2007] points out that Curry realized this neat use of S while reading

[Rosser, 1942], though, due to war work, he did not publish it until [Curry, 1949, p.393]. Thus the
algorithm’s direct inductive form is due to Church and its neat use of S to Curry and Rosenbloom
independently.

11Some [x].X-algorithms were compared in [Curry and Feys, 1958, §§6A2–3]. Curry assumed
the basic combinators were some of B, C, I, K, S, and [x].X was built by induction on X using
some or all of the following clauses (in which U does not contain x, but V may):

(a) [x]. U ≡ KU , (d) [x]. UV ≡ BU([x]. V ),
(b) [x]. x ≡ I, (e) [x]. V U ≡ C([x]. V )U ,
(c) [x]. Ux ≡ U , (f) [x]. X1X2 ≡ S([x]. X1)([x]. X2).

For example, let the basis be {I, K, S}. Then algorithm (fab) builds [x].X by first applying (f)
whenever possible, then (a), then (b) when the other two do not apply. Alternatively, (abcf) first
tries to apply (a), then (b), then (c), and (f) only when the other three do not apply; it usually
produces shorter terms [x].X. The Curry-Rosenbloom algorithm was (fab).

If the basis is {K, S} one can first define I ≡ SKK and then use (fab) or (abcf). If the basis is

5



However, although neater to describe, the direct inductive algorithms were not
so efficient to use: they produced considerably longer outputs than Curry’s first one,
and in the 1970s when the desire arose to use combinators in practical programming
languages, and attention began to focus on efficiency, the algorithms that were
invented then were more like Curry’s original, see for example [Kearns, 1973; Abdali,
1976; Turner, 1979; Piperno, 1989].

Besides the first abstraction algorithm, Curry’s thesis contained the first formal
definition of conversion. Further, this definition included a finite set of axioms from
which he proved the admissibility of rule (ζ):12

(ζ) if Ux = V x and x does not occur in UV , then U = V .

Thus the discovery that (ζ) could be finitely axiomatized was made very soon after
the birth of the theory. The theory of equality was also proved consistent in a
certain sense, see [Curry, 1930, p.528 Hauptsatz I], but without using a concept of
strong reduction or a confluence theorem.

The system in [Curry, 1930] also contained some logical constants. But not all
their usual rules were included, negation was omitted, and logic was not actually
developed beyond the theory of conversion. In fact, unlike von Neumann, Curry
aimed, not at quickly building a system strong enough to deduce a significant part of
mathematics, but at making a thorough study of basic logical notions in as general
a setting as possible.

A consequence of this interest in generality was that for Curry, as for Schön-
finkel, every combinator was allowed to be applied to every other combinator and
even to itself, in a way not commonly accepted for set-theoretic functions. This
freedom was later criticized on semantic grounds by several other leading logicians,
e.g. Willard V. Quine in [Quine, 1936a, p.88]. In fact Curry’s use of combinators
was connected very closely to his philosophy of mathematics: for him, a formal
system was not a description of some pre-existing objects, but simply a structure
built by induction from some primitives using certain rules, and he did not demand
that a semantics for such a system be a total function. In his view a system could
be used fruitfully in applications of mathematics without necessarily every part of
it having a meaning in some set-theory-based semantics, and usefulness was more
important than semantic totality.13

In [Curry, 1964] he pointed out that the combinators constructed by his original
abstraction algorithm were much easier to interpret in a set-theoretic semantics
than those built by simpler algorithms using K and S. (But, as mentioned above,
he himself was perfectly happy to use the simpler algorithms.)

However, semantic questions apart, by the end of the 1920s the combinator
concept had provided two useful formal techniques: a computationally efficient way
of avoiding bound variables, and a finite axiomatization of set theory.

4 1930s: Birth of λ and Youth of CL

4.1 Early λ-calculus

The λ-calculus was invented in about 1928 by Alonzo Church, and was first
published in [Church, 1932]. Church was born in 1903 in Washington D.C. and

{B, C, K, W} one can define S ≡ B(B(BW)C)(BB) and I ≡ CKK or WK, and then use (abcdef).
12See [Curry, 1930, p.832 Satz 4] or [Curry, 1932, p.558 Theorem 5]. Rule (ζ) makes Curry’s

equality equivalent to what is nowadays called βη-equality or extensional equality.
13See [Curry, 1951], [Curry, 1963, Chs. 2–3] or [Seldin, 1980a]. In the 1920s the general concept

of formal system was still in the process of clarification and Curry was one of the pioneers in this.
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studied at Princeton University. He made his career at Princeton until 1967, though
in 1928–29 he visited Göttingen and Amsterdam.14

Around 1928 he began to build a formal system with the aim of providing a
foundation for logic which would be more natural than Russell’s type theory or
Zermelo’s set theory, and would not contain free variables (for reasons he explained
in [Church, 1932, pp. 346–347]). He chose to base it on the concept of function rather
than set, and his primitives included abstraction λx[M ] and application {F}(X),
which we shall call here “λx.M” and “(FX)”.

(By the way, why did Church choose the notation “λ”? In [Church, 1964, §2]
he stated clearly that it came from the notation “x̂” used for class-abstraction
by Whitehead and Russell, by first modifying “x̂” to “∧x” to distinguish function-
abstraction from class-abstraction, and then changing “∧” to “λ” for ease of printing.
This origin was also reported in [Rosser, 1984, p.338]. On the other hand, in his
later years Church told two enquirers that the choice was more accidental: a symbol
was needed and “λ” just happened to be chosen.)

As mentioned earlier, Church was not the first to introduce an explicit notation
for function-abstraction. But he was the first to state explicit formal conversion
rules for the notation, and to analyse their consequences in depth. (He did not read
Frege’s work until 1935, according to a letter cited in [Scott, 1980a, p.260], and we
assume he did not see Peano’s 1889 notation either.)

Church’s system as it appeared in [Church, 1932] was a type-free logic with
unrestricted quantification but without the law of excluded middle. Explicit formal
rules of λ-conversion were included. However, almost immediately after publication
a contradiction was found in it. The system was revised a year later, [Church, 1933],
and in the revised paper Church stated a hope that Gödel’s recent incompleteness
theorems for the system of [Russell and Whitehead, 1913] did not extend to his own
revised system, and that a finitary proof of the consistency of this system might be
found, [Church, 1933, pp. 842–843]. At that time the full power of Gödel’s theorems
was only slowly becoming generally understood.

At the end of his 1933 paper, Church introduced the representation of the pos-
itive integers by the λ-terms now known as the Church numerals [Church, 1933,
§9]:

1 ≡ λxy. xy, Succ ≡ λxyz. y(xyz), n =β λxy. x(· · · (x︸ ︷︷ ︸
n times

y) · · · ).

He defined the set of all positive integers in essentially the same way as the set of all
finite cardinal numbers in [Russell, 1903, §123], except that Russell’s set included
zero. The natural λ-term to represent zero would have been λxy.y, but although
Church included this term in his language, he forbade the reduction (λxy.y)FY .
Y and avoided zero.

(Church’s name is often associated with the λI-calculus, the version of λ-calculus
in which λx.M is only counted as a term when x occurs free in M . But he did not
limit himself so strictly to this version as is often thought. In 1932 and ’33 he
allowed non-λI-terms λx.M to exist but not to be “active”, i.e. he did not allow
a term (λx.M)N to be contracted when x did not occur free in M , see [Church,
1932, pp. 352, 355]. In his 1940 paper on type theory, where consistency would
have been less in doubt, although probably not yet actually proved, he was happy
for non-λI-terms to be active [Church, 1940, pp. 57, 60]. Only in his 1941 book did
he forbid their very existence [Church, 1941, p. 8].)15

14For more on Church’s life, see [Manzano, 1997, §2] and the obituary [Enderton, 1995]. For
more on his work, see [Manzano, 1997], [Anderson, 1998], [Enderton, 1998], [Sieg, 1997], and (on
the impact of λ-calculus) [Barendregt, 1997]. He died in 1995.

15The unrestricted λ-calculus is often called the λK-calculus.
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From 1931 to 1934 in Princeton University, Church received the help of two
outstanding graduate students, Stephen Kleene and Barkley Rosser, and in a re-
markable four years of collaboration this group made a series of major discoveries
about both Church’s 1933 logic and the underlying pure λ-calculus. Unfortunately
for the 1933 logic, one of these discoveries was its inconsistency, as a variant of the
Richard paradox was proved in the system, [Kleene and Rosser, 1935].

In contrast, the pure λ-calculus, which had at first seemed shallow, turned out
to be surprisingly rich. (Well, Kleene was surprised, anyway, [Kleene, 1981, p.54].)
The study of its reduction-theory was begun using the method of residuals, which
was applied to prove the Church-Rosser confluence theorem [Church and Rosser,
1936, p.479], and this ensured the consistency of the pure system. The system’s
relation to combinatory logic was also clarified, and a simple proof of the confluence
of combinatory weak reduction was given; see [Rosser, 1935, esp. pp. 145–146].16

Further, the λ-definable numerical functions were found to form a much more
extensive class than expected, and this class was eventually proved equivalent to
two definitions whose purpose was to formalize the informal concept of effectively
calculable function: the Herbrand-Gödel recursive functions, see [Kleene, 1936] and
[Church, 1936b], and the Turing computable functions, [Turing, 1937a]. In view of
this, Church conjectured that λ-definability exactly captured the informal concept
of effective calculability (Church’s Thesis).17 The high point of this definability
work was Church’s negative solution of Hilbert’s long-standing Entscheidungsprob-
lem for first-order logic: first he proved in [Church, 1936b] that the convertibility
problem for pure λ-calculus was recursively undecidable, then he deduced that no
recursive decision procedure existed for validity in first-order predicate logic, see
[Church, 1936a].

But this result was also proved independently almost immediately afterwards by
Alan Turing in England. In Cambridge in the 1930s the topologist Max Newman
had maintained a side-interest in the foundations, and in early 1935 he taught a
course on this topic which Turing attended. Later that year Turing wrote his now
famous paper on computability, [Turing, 1936]. He then visited Princeton and took
a doctorate under Church (in 1936–38).

Incidentally, in the course of his doctoral work Turing gave the first published
fixed-point combinator, [Turing, 1937b, term Θ]. This was seen as only having minor
interest at that time, but in view of the later importance given to such combinators
(see §8.1.2 below), we digress here to discuss them.

A fixed-point combinator is any closed term Y such that Yx converts to x(Yx).
Turing’s was

(λxy.y(xxy))(λxy.y(xxy)).

The next one to appear was in [Rosenbloom, 1950, pp.130–131, Exs. 3e, 5f]. It was
λx.W(Bx)(W(Bx)), which is convertible to λx. (λy.x(yy))(λy.x(yy)). The latter
has often been called Curry’s Y; in fact Curry gave no explicit fixed-point combi-
nator before [Curry and Feys, 1958, §5G], but the accounts of Russell’s paradox in
[Church, 1932, p.347] and [Curry, 1934a, §5] both mentioned (λy.N(yy))(λy.N(yy)),
where N represented negation, and Curry’s use of the latter term dated back to a

16For an introduction to reduction-theory in general, see [Klop, 1992] or (less general) [Baren-
dregt, 1981, §3.1], or (in λ) [Hindley and Seldin, 1986, §1C & Appendices 1 & 2] or [Barendregt,
1981, Chs. 11–15]. Some notation: a reducibility relation . is confluent, or has the Church-Rosser
property, iff (U . X & U . Y ) =⇒ (∃Z) (X . Z & Y . Z). It is locally confluent iff (U .1 X &
U .1 Y ) =⇒ (∃Z) (X . Z & Y . Z), where “.1” means one-step reducibility. A one-step reduction
is called a contraction. A contraction X .1 Y is made by replacing an occurrence in X of a term
called a redex by another term called its contractum. In λ, a (β-) redex is any term (λx.M)N and
its contractum is [N/x]M . A term containing no redexes is called a normal form; it cannot be
reduced.

17Comments on the history of Church’s Thesis are in: [Kleene, 1981], [Kleene, 1952, §62], [Rosser,
1984], [Davis, 1982], [Gandy, 1988] and [Sieg, 1997].
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letter to Hilbert in 1929.18 Note that although fixed-point combinators are often
used in λ-defining recursion, they are not really necessary for recursion on the nat-
ural numbers; none was used in the λ-representation of the recursive functions in
[Kleene, 1936].

Returning to the Princeton group: their successes in pure λ-calculus were not
really matched on the applied side, but the results were by no means completely
negative. After the discovery of the Kleene-Rosser inconsistency, Church replaced
his 1933 system by a free-variable logic based on the λδ-calculus, which he proved
consistent by extending the Church-Rosser theorem. (In essence δ was a discrim-
inator between normal forms; see [Church, 1935] or [Church, 1941, §20], and the
review [Curry, 1937].) But the new system was too weak for much mathematics
and seems to have played no role in Church’s future work. In fact in the later 1930s
Church retreated from the task of designing a general type-free logic to the much
less ambitious one of re-formulating simple type theory on a λ-calculus base. In this
he succeeded, publishing a smooth and natural system in [Church, 1940] that has
been the foundation for much type-theoretic work since (see §5.1 and §8 below).

4.2 CL in the 1930s

The work of Curry through the 1930s continued his earlier study of the most
basic properties of abstraction, universal quantification and implication in as general
a setting as possible. He analysed the Kleene-Rosser proof of the inconsistency of
Church’s system, and by 1942 he had found in a logical system of his own a very
simple inconsistency now called the Curry paradox [Curry, 1942b]. This showed
combinatory completeness to be incompatible with unrestricted use of certain simple
properties of implication in a very general setting.19

Curry also began to develop a type theory. A note on types dated 1928 occurs in
his files, and he gave a talk on this topic in 1930 and wrote it up in [Curry, 1934a] and
[Curry, 1936].20 He took a different approach from Russell and from the one that
Church later took: he added to his combinator-based logic a functionality constant
F, with the intention that an expression such as Fabf should mean approximately
(∀x)(x ∈ a ⊃ fx ∈ b).21 This approach differed from Church’s in that Curry’s
Fabf did not imply that the domain of f was exactly a, only that it included a. In
Curry’s functionality-theory a term could have an infinite number of types. Indeed
his axioms for F included axioms assigning an infinity of type-expressions to each
atomic combinator B, C, K, W; for example (from [Curry, 1934a, p.586] or [Curry,
1936, p.378])

Ax. (FB): (∀x, y, z)
((

F(Fxy)(F(Fzx)(Fzy))
)

B
)

.

18Stated in [Curry and Feys, 1958, §5S]. By the way, Turing’s fixed-point combinator satisfied
Yx . x(Yx), but Rosenbloom’s and Curry’s only satisfied “=” not “.”. For more on fixed-point
combinators, see [Barendregt, 1981, §§6.1, 6.5], [Hindley and Seldin, 1986, §3B], or [Curry et al.,
1972, §11F7].

19A general form of Curry’s paradox runs thus, cf. [Hindley and Seldin, 1986, pp.268–269].
Suppose a system S of logic has a class P of expressions such that X, Y ∈ P =⇒ (X ⊃ Y ) ∈ P,
and has an axiom-scheme (X ⊃ (X ⊃ Y )) ⊃ (X ⊃ Y ) (for all X, Y ∈ P), and rules (Eq):
X, X =Y ` Y and (MP ): X, X ⊃ Y ` Y .

For every Z ∈ P, let Z′ be λy.((yy) ⊃ ((yy) ⊃ Z)), where y does not occur in Z, and let Z∗ be
Z′Z′. It is easy to prove that Z∗ = Z∗ ⊃ (Z∗ ⊃ Z) = (Z∗ ⊃ (Z∗ ⊃ Z)) ⊃ (Z∗ ⊃ Z).

Suppose Z ∈ P =⇒ Z∗ ∈ P, for all Z. Then every Z in P is provable in S. Because, the
axiom-scheme gives ` (Z∗ ⊃ (Z∗ ⊃ Z)) ⊃ (Z∗ ⊃ Z), so by rule (Eq) twice, ` Z∗ ⊃ (Z∗ ⊃ Z) and
` Z∗; hence by (MP ) twice, ` Z. (Curry’s treatment of the Russell paradox in [Curry, 1934a,
pp.588–589] was interestingly similar to this argument.)

20We are very grateful to J. P. Seldin for showing us Curry’s 1928 note (T 28.12.13.A, reproduced
in [Seldin, 2002]).

21But only approximately; see the discussions of Π and F in [Seldin, 2007].
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Curry’s approach was what we would now call polymorphic. In contrast, in a
Church-style type-theory, for a term fα→β , its domain would be exactly α and
its type would be uniquely α→ β.

Curry’s use of types differed from Russell and Church in another way. Russell
had introduced type-expressions to help him restrict his language to avoid certain
troublesome expressions, and Church later had the same aim. But Curry allowed
into his language all combinators, troublesome or placid, and simply assigned labels
to some of them to tell us how they would behave.

Another early user of a polymorphic approach to types was Quine. In [Quine,
1937, pp. 78–79] he proposed restricting the comprehension axiom-scheme in set
theory to formulae he called stratified, but which we would now call typable, and
on p.79 he made a very clear argument in favour of a polymorphic approach. His
proposed system is nowadays called NF for “New Foundations”. Its history is
beyond our scope, but the equivalence between stratification and typability was
proved in [Newman, 1943, Thm. 4], and a general study of NF is in [Forster, 1995].

The propositions-as-types correspondence was noticed by Curry in the 1930s. In
its simplest form this is an isomorphism between the type-expressions assignable to
combinators and the implicational formulas provable in intuitionistic logic. The first
hint of this, at least for atomic combinators, occurs in a note dated 1930 in Curry’s
files, and appeared in print in his papers [Curry, 1934a] and [Curry, 1934b].22 In
[Curry, 1934a, p.588] and [Curry, 1934b, p.850] he gave his axioms for implication
the names of combinators, for example

Ax. (PB): (∀x, y, z)
(
P(Pxy)(P(Pzx)(Pzy))

)
,

where Pxy was his notation for x ⊃ y. His name “(PB)” was clearly motivated by
the axiom’s similarity to Ax. (FB), although he did not state the P-to-F translation
explicitly in print until later, [Curry, 1942a, p.60, footnote 28]. In [Curry, 1936,
pp.391–394] he proved that if F was defined as

F ≡ [a, b, f ]. (∀x)(ax ⊃ b(fx))

in a system with combinators and suitable rules for ∀, then each F-axiom would be
deducible from the corresponding P-axiom.

For non-atomic combinators the propositions-as-types correspondence was not
mentioned by Curry until many years later; in fact the first discussion that included
composite combinators was in [Curry and Feys, 1958, §9E]. There it was proved
explicitly that when F was replaced by P, the set of all type-expressions assignable
to the combinators became exactly the set of all formulas provable in intuitionistic
implicational logic, provided type-assignment was made in a certain restricted sys-
tem. This system had no ∀, had axiom-schemes instead of the previous F-axioms
for the atomic combinators, and its main rule was:

Rule F: FABF, AX ` B(FX)

(which would become the rule of modus ponens if F was replaced by P and F ,
X, FX were deleted). It had only one other rule, to ensure that interconvertible
terms received the same types, [Curry and Feys, 1958, §9A3, Rule Eq′]; this rule
did not affect the total set of assignable types, and was dropped in later studies of
propositions-as-types. After dropping that rule, it became clear that there was also
a correspondence between type-assignment deductions (or typed terms) and propo-
sitional deductions. This fact, and its analogue for λ, and some possible extensions

22We thank J. P. Seldin for a copy of Curry’s 1930 note (T 30.07.15.B, reproduced in [Seldin,
2002]). The paper [Curry, 1934b] was based on a talk given in 1932.
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of the correspondence, were pointed out by William Howard in a manuscript circu-
lated in 1969 and published in [Howard, 1980]. The correspondence is often called
formulae-as-types, following [Howard, 1980]23, or the Curry-Howard isomorphism.

The propositions-as-types correspondence was also discovered independently by
several other workers in the 1960s; this period will be discussed further in §8.1.4
below.

Partly as a consequence of propositions-as-types, the authors of [Curry and
Feys, 1958] were led to apply Gentzen’s methods to type-theory, an idea which is
standard now but was new then. This gave them the first published proof of the
normalization theorem for typable terms, see §5.4 below.

In the 1930s another logician who made use of combinators was Frederic Fitch
in Yale University. Fitch’s work began with his doctoral thesis [Fitch, 1936], which
described a type-free combinator-based logic that avoided Russell’s paradox by for-
bidding certain cases of abstraction [x1, ..., xn].X where X contained repeated vari-
ables. He then developed over several decades a system C∆, very different from
the one in his thesis but still type-free and combinator-based, with unrestricted
quantification and abstraction; see [Fitch, 1963]. The set of theorems of C∆ was
not recursively enumerable, [Fitch, 1963, p.87], but the system was adequate for
a considerable part of mathematical analysis and had a (non-finitary) consistency
proof. He presented a further modified system in his student-level textbook on CL,
[Fitch, 1974].

Incidentally, combinators are not the only way of eliminating bound variables: an
alternative technique is algebraic logic. Very roughly speaking, while CL algebraizes
abstraction the latter algebraizes quantification. In 1936 Quine sketched how this
could be done in principle by means of an algebra of relations, [Quine, 1936b]. (Such
algebras had been published earlier in [Peirce, 1883] and [Schröder, 1905, Vol.III].)
In 1938 Leopold Löwenheim proposed to Alfred Tarski that all of mathematics
could be expressed in a Peirce-Schröder algebra, see [Löwenheim, 1940], and in
1941 Tarski developed an abstract theory of binary relations, called the theory of
relation algebras, and used it to prove that set theory could be formalized without
variables, see [Tarski, 1941] and [Tarski, 1953]. A detailed formalization of set
theory without variables was carried out in the book [Tarski and Givant, 1987],
completed just before Tarski died in 1983.

However, for a formalization of first-order logic in general, Tarski’s theory was
inadequate, and to remedy this he and his co-workers developed the theory of cylin-
dric algebras from the late 1940s onward. A similar algebraic treatment of bound
variables was also given by the polyadic algebras of Paul Halmos in 1956, see [Hal-
mos, 1962]. Other significant contributions to the algebraic approach were made
by [Bernays, 1958], and [Craig, 1974]. William Craig had previously contributed to
CL, see [Curry and Feys, 1958, §§5H, 7E].

For more on the history of algebraic logic, see the introductions to [Tarski and
Givant, 1987] and [Givant and Andréka, 2002]. A good comparison of algebraic logic
with type-free CL is in [Quine, 1972]. From the viewpoint of a semantics based on
a standard set theory such as ZF or NBG, an advantage of algebraic logic is that
it retains the restrictions of first-order logic, and therefore its semantic simplicity;
as noted earlier, unrestricted type-free combinators are much harder to interpret in
standard set theories.

A different algebraic approach was taken by the mathematician Karl Menger.
23Although this name was later criticised by Howard himself who said “a type should be regarded

as an abstract object whereas a formula is the name of a type”, [Howard, 1980, p.479].
By the way, in [Frege, 1879, §13] the axioms for implication were the principal types of K, S

and C. These might be seen, via propositions-as-types, as a partial anticipation of the concept of
combinator basis, at least for the typable terms. But this is probably far-fetched; in particular,
[Frege, 1879] had no explicit concept of completeness.
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Menger’s method involved an algebraization of a limited form of function-composit-
ion, and was expounded by him in a series of papers from the 1940s to the ’60s, for
example [Menger, 1944] and [Menger, 1964]. But his system is more restricted than
Tarski’s, and less mathematics has been developed in it; see the review [Lercher,
1966].

5 1940s and 1950s: Consolidation

For many years after the mid-1930s, neither λ nor CL attracted much interest
among logicians in general. Both systems would later play a natural role in studies
of higher-order logic, but the formal metatheory of that topic had hardly begun to
be developed at that early period. The λ-formalism had been designed to describe
substitution and application in detail and seemed off-puttingly heavy for other pur-
poses. It had given the first proof of the unsolvability of the Entscheidungsproblem,
but Turing’s proof via his machine model of computation was much more trans-
parent, and even Kleene preferred other systems for his subsequent development of
computability theory.

However, on the expository side, an advance in opening up λ to non-specialists
was made by Church with his readable introductory textbook [Church, 1941]. And
Paul Rosenbloom included a section on CL in his general logic textbook [Rosen-
bloom, 1950, Ch.III, §4]. Advances were made in both subjects on the technical side
too, and these helped to lay a foundation for the expansion that came later. They
can be split roughly into four main themes: simple type theory, abstract reduction
theory, reductions in CL and λ, and illative systems.

5.1 Simple type theory

Church’s simple type theory was a function-based system, stemming from ideas
of Frank Ramsey and Leon Chwistek in the 1920s, for simplifying the type theory
of [Russell and Whitehead, 1913].24 Church lectured on his system in Princeton
in 1937–38 before publishing it in [Church, 1940], and his lectures were attended
by Turing, who later made some technical contributions. These included the first
proof of the system’s weak normalization theorem, although this lay unpublished
for nearly 40 years, see [Turing, 1980] and §8.2 below.

Church’s system was analysed and extended in a series of Princeton Ph.D. theses
from the 1940s onward, of which perhaps the best known are Leon Henkin’s in 1947,
published in [Henkin, 1950], and Peter Andrews’, published in [Andrews, 1965].
Henkin gave two definitions of model of typed λ (standard and general models),25

and proved the completeness of simple type theory with respect to general models.
Andrews extended Church’s system to make a smooth theory of tranfinite types.

Church’s own interests underwent some evolution after his 1941 textbook ap-
peared. Much of his time and energy was spent on the business of the Association
for Symbolic Logic, of which he had been a co-founder in 1936 and in which he was
still a driving force, and on editing the Journal of Symbolic Logic, especially its very
comprehensive Reviews and Bibliography sections. On the research side he became
interested in intensional logic and the logic of relevant implication. For the former
he made axiomatizations in [Church, 1951a] and [Church, 1973], both based on
modifications of his type theory. For relevant implication he gave a formulation, in
[Church, 1951b], which was essentially equivalent, under the propositions-as-types
correspondence, to the simple type theory of pure λI-terms.

24See [Gandy, 1977] for a sketch of the origins of Church’s system (and of Turing’s contributions).
25See §8.1.2 below for the difference between these; details are in [Henkin, 1950, pp.83–85].
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5.2 Abstract reduction theory

Probably the first publication on abstract reduction-theory was a paper by the
mathematician Axel Thue on rewriting finite trees [Thue, 1910].26 Thue’s paper
even included a lemma that local confluence implies confluence if every contraction
strictly decreases a finite measure [Thue, 1910, §4 Satz 3], very like Newman’s lemma
of 30 years later that local confluence implies confluence if all reduction paths are
finite [Newman, 1942, Thm. 3].

But the main inspiration for abstract work in this field was [Newman, 1942]. In
the 1920s, Newman proved a crucial confluence conjecture in combinatorial topol-
ogy, and a decade later his interest in logic (and probably his link with Turing) led
him to study the confluence theorem for λ and the method of residuals that Church
and Rosser had used in its proof [Church and Rosser, 1936].27 The first part of
[Newman, 1942] was a study of confluence in a very general setting; in the second,
Newman gave a set of abstract axioms about the concept of residual, from which he
deduced confluence. Unfortunately, due to an error involving variables, his axioms
failed to cover λ as a special case. This was first corrected about 20 years later by
David Schroer in his Ph.D. thesis [Schroer, 1965].

Newman’s analysis led in the 1970s to general methods for proving confluence
and other key theorems, such as standardization, for systems of λ augmented by
extra operators, for example a primitive recursion operator. (A summary of these
results is in [Hindley, 1978b, pp.269–270].) Two influential abstract studies of con-
fluence were [Rosen, 1973] and [Huet, 1980].

In the 1980s the abstract theory of reductions was re-organised completely and
developed by Jan-Willem Klop, beginning with his penetrating thesis [Klop, 1980],
and from this work the important abstract theories of combinatory reduction sys-
tems and term rewriting systems evolved. These are being actively pursued today,
but go far beyond the boundaries of λ and CL and are the subjects of good surveys
in [Klop, 1992] and [Klop et al., 1993] and a comprehensive textbook [Terese, 2003],
so we shall not give details of them here.

5.3 Reductions in CL and λ

Besides abstract reduction theory, there was also progress in analysing the two
most important concrete reductions, weak reduction in CL and β-reduction in λ.
As mentioned earlier, Church and Rosser had begun the study of these in the paper
containing their confluence proof, [Church and Rosser, 1936].

After 1950 their programme was continued by Curry. His research had been
suspended completely during the Second World War, like that of many other aca-
demics, and did not recover momentum until quite late in the 1940s. Then for
about 20 years he put his main effort into compiling two large monographs con-
taining much new work, [Curry and Feys, 1958] and [Curry et al., 1972]. Part of
this effort consisted of a detailed study of λβ-reduction, including the first proof
of its standardization theorem, [Curry and Feys, 1958, §4E1]. He also made the
first study of λβη-reduction, including its confluence and η-postponement theo-
rems, [Curry and Feys, 1958, §4D]. (But his proof of the latter contained a gap,

26See [Steinby and Thomas, 2000], which contains an English summary of [Thue, 1910].
27If a term X contains redex-occurrences R1, ..., Rn, and X .1 Y by contracting R1, certain

parts of Y can be considered to be descendants of R2, ..., Rn in a sense; they are called residuals
of R2, ..., Rn; for details in λ, see [Curry and Feys, 1958, §§4B1–2] or [Hindley and Seldin, 1986,
Def. A1.3], or [Church and Rosser, 1936, pp.473–475]. If we reduce Y by contracting one of
these residuals, and then a residual of these residuals, etc., the reduction X .1 Y . ... is called a
development of R1, ..., Rn. If it is finite and its last term contains no residuals of R1, ..., Rn, it is
called complete.
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which was noticed and remedied fifteen years later by Robert Nederpelt, [Nederpelt,
1973, Thm. 7.28].)

In 1965 the thesis of Schroer gave the first statement and proof of the finiteness-
of-developments theorem for λβ, [Schroer, 1965, Part I, Thm. 6.20]. But Schroer’s
work was never published and this theorem was not re-discovered until about 8
years later, see §7.2 below.

Weak reduction in CL is much simpler than β-reduction in λ, and was given a
straightforward systematic analysis in [Curry et al., 1972, §11B].

Curry also defined a strong reduction for CL analogous to λβη-reduction, [Curry
and Feys, 1958, §6F].28 His purpose was to make later discussions of logic applicable
equally to languages based on CL and on λ. Strong reduction indeed allowed this
to be done to a significant extent, but its metatheory turned out to be complicated,
and although simplifications were made by Roger Hindley and Bruce Lercher in
the 1960s which produced some improvement, it eventually seemed that wherever
strong reduction could be used, it would probably be easier to use λ instead of CL.
Strong reduction was therefore more or less abandoned after 1972. However, in the
1980s a β-strong reduction was defined and studied by Mohamed Mezghiche, see
[Mezghiche, 1984], and the idea of working with a combinatory reduction which
is preserved by abstraction but avoids the complexity of bound variables is still
tantalisingly attractive.

5.4 Illative systems

Turning from pure to applied CL and λ: although type-theory made important
advances in the 1950s, some logicians felt that type-restrictions were stronger than
necessary, and that type-free higher-order logic was still worth further study. Most
systems of such logic contain analogues of combinators in some form, but here we
shall only mention those in which CL or λ were more prominent.

Curry’s work on applied systems (which he called illative, from the Latin “illa-
tum” for “inferred”) was published in the books [Curry and Feys, 1958] and [Curry
et al., 1972]. He never gave up his interest in type-free logic, although one of his
main themes of study at this time was the relation between types and terms.

In his 1958 book with Robert Feys, perhaps the authors’ most important contri-
bution in the illative sections was to introduce Gentzen’s techniques into type theory.
As we mentioned in §4.2, this approach was not as obvious in 1958 as it is now.
Feys had written on combinatory logic and on Natural Deduction in [Feys, 1946a;
Feys, 1946b], and Curry had emphasized the importance of Gentzen’s methods in
a series of lectures on first-order logic at the University of Notre Dame in 1948.
In [Curry and Feys, 1958, §9F] they presented a sequent-based system of type-
assignment and a proof of a cut-elimination theorem for this system, from which
they deduced the weak normalization theorem for simple type theory [Curry and
Feys, 1958, §9F6, Cor. 9F9.2]; this was the first published proof of this theorem.
(Other proofs will be discussed in §8.2.) Further type-theoretic properties described
in that book included the propositions-as-types correspondence in [Curry and Feys,
1958, §9E], see §4.2 above and §8.1.4 below, and the link with grammatical cate-
gories in [Curry and Feys, 1958, §8S2], see §8.1.1 below.

In [Curry et al., 1972], Curry’s main aim was to make a thorough analysis of
basic logical concepts in the settings of λ and CL, with as few restrictions as possible
and an emphasis on constructive methods.29 The book contained a detailed com-
parison of logical systems based on three different concepts: (i) F, the functionality

28In CL, βη-strong reduction >−βη is defined by adding to the rules defining weak reduction the
extra rule (ξ): if X >−βηY and x is any variable, then [x]abcf .X >−βη [x]abcf .Y , where [x]abcf

is evaluated by abstraction-algorithm (abcf), see §3 above.
29For further comments on Curry’s programme see [Seldin, 1980a, pp.22–27].
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constant described in §4.2 above, (ii) Ξ, where ΞAB was approximately equivalent
to (∀x)(Ax ⊃ Bx), and (iii) ∀ and ⊃. The formulation of these systems benefitted
greatly from results and simplifications introduced by Jonathan Seldin in his thesis
[Seldin, 1968], but many variants of each system were discussed and the resulting
treatment was rather complex.

A proposal for a generalized functionality concept G was made by Curry in
[Curry and Feys, 1958, Appendix A] and [Curry et al., 1972, §§15A1, 15A8].
In terms of ∀ and ⊃, GABF was intended to mean approximately (∀x)(Ax ⊃
(Bx)(Fx) ).30 This proposal was developed into a fully-fledged higher-order type-
theory by Seldin in 1975, see [Seldin, 1979] or [Hindley and Seldin, 1986, 1st edn.,
Ch. 17]. Seldin later became interested in Thierry Coquand’s calculus of construc-
tions, which was stronger, see [Seldin, 1997], and thus his work on Curry-style
illative systems gradually merged with the work of others on higher-order systems.
These will be discussed in §8.3 below.

Returning to the 1950s: at that time the main contributor to the system-building
approach to type-free higher-order logic was Fitch. As described in §4.2, his work
on this continued into the 1970s. Some of his technical ideas were appreciated and
used by other workers, for example Corrado Böhm, see §6.3, and Solomon Feferman,
see [Feferman, 1984, p.106]. But his formal systems themselves seem to have been
little used.

The system-building tradition was continued by others, however. In 1974 in his
thesis for Doctorat d‘ Etat, André Chauvin produced a thoughtful and interesting
analysis of type-free higher-order logic and the role of combinators, and described a
formal system based on the notion of partial operation or function. Unfortunately
only a little of this thesis was published, [Chauvin, 1979].

The concept of partial function was also behind several substantial papers by
Feferman from 1975 through the 1980s, in which he examined the possibilities for
type-free systems, particularly as foundations for constructive mathematics and for
category theory, and proposed several actual systems in which “partial” combinators
played a role, see for example [Feferman, 1975a; Feferman, 1975b; Feferman, 1977;
Feferman, 1984] and [Aczel and Feferman, 1980].

An analysis of the foundations based closely on λ was made by Peter Aczel in
an influential paper [Aczel, 1980].

From 1967 onward, work on type-free illative systems was undertaken by Martin
Bunder. He made a careful study of the inconsistencies that had arisen in past
systems, and proposed several new systems that avoided these, including some
in which all of ZF set theory can be deduced; see, for example, [Bunder, 1983a]
and [Bunder, 1983c], depending on [Bunder, 1983b]. A good short overview is in
[Barendregt et al., 1993].

With Wil Dekkers and Herman Geuvers, Bunder and Barendregt published use-
ful comparisons between their type-free illative systems and other higher-order for-
mal systems such as Pure Type Systems: [Dekkers et al., 1998] and [Bunder et al.,
2003].

In 1990, Randall Holmes formulated systems of λ and CL in which abstraction
was restricted by stratification rules inspired by the stratification concept in Quine’s
“New Foundations” system [Quine, 1937]: see [Holmes, 1991], or [Holmes, 1995] for
a short overview.

In Moscow, independently of all the above, a series of type-free combinator-
based systems was proposed by Alexander Kuzichev from the 1970s onward; see,
for example, [Kuzichev, 1980; Kuzichev, 1983; Kuzichev, 1999] and the references
therein.

30In a G-based system the type of the output-value of a function may depend on the value of
its argument. Type systems with this property are called dependent. Other systems of dependent
types are mentioned in §8.3.
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6 Programming languages

Returning to the 1960s: at about this time, λ and CL began to attract the interest
of a new group outside the community of logicians, namely computer scientists
involved in the theory and practice of programming languages. Perhaps the first
published suggestion that CL or λ be used directly as a programming language came
from the logician Fitch in 1957, although for only a restricted class of problems: in
his paper [Fitch, 1958] he showed how sequential logic-circuits could be represented
in CL.31 But the main characters concerned were computer scientists: we shall look
at three of these.

6.1 John McCarthy and LISP

From 1956 to ’60, John McCarthy in the U.S.A. developed the computer language
LISP, which was a list-processing language with a function-abstraction facility. Mc-
Carthy’s goal was to apply LISP eventually to problems in non-numerical computa-
tion, especially in the newborn field of artificial intelligence, and to encourage the
style of program-organization that is nowadays called functional programming .32

LISP was not directly based on λ-calculus, although it owed something to λ
(and its abstraction notation was even called “LAMBDA”). LISP’s substitution
procedure was not defined exactly the same as in λ, in particular identifiers were
handled according to so-called “dynamic binding” rules. This choice simplified
LISP’s implementation by means of interpreters, but it greatly complicated the use
of bound variables by the programmer.33

McCarthy’s emphasis on a functional approach to programming also had in-
fluence on the theoretical side, where his contributions included two important
papers on a mathematical basis for the theory of computation, [McCarthy, 1963b;
McCarthy, 1963a]. There we find a systematic use of conditional expressions within
a functional formalism for recursively defining functions over symbolic expressions
like the S-expressions of LISP, together with a thorough study of their formal prop-
erties. Equalities among recursive functions expressed in that formalism were proved
by means of recursion induction, to be mentioned again in §8.1.2 in connection with
its generalization as fixed-point induction by Scott [Scott, 1969e]. Along with re-
cursive definitions of functions, [McCarthy, 1963a, §2.6] also discussed recursive
definitions of sets, like the definition of the set of S-expressions itself as a solution
of the equation S ∼= A+ (S × S).

6.2 Peter Landin

In the early 1960s in England, Peter Landin proposed the use of λ-terms to code
constructs of the programming language Algol 60, see [Landin, 1965].34 While for
LISP a precise correspondence with λ was hindered by the use of dynamic binding,
for Algol its block structure perfectly matched the way names were handled in λ. In
fact, Landin’s work made it possible to look at λ itself as a programming language,
and one especially suited for theoretical purposes. Taking this standpoint, and in
parallel with his translation of Algol, Landin described in 1963 an abstract machine

31We have recently learned that actually Fitch was not the first; Curry suggested using combi-
nators in programming, in a talk in 1952, [Curry, 1954]; see [Seldin, 2007].

32This name dates back at least to a 1963 tutorial on LISP by P. M. Woodward [Fox, 1966,
p.41].

33See [Moses, 1970] for comments. For the ideas behind LISP see [McCarthy, 1960], [McCarthy,
1963a]; for its history to 1996 see [McCarthy, 1981], [Steele and Gabriel, 1996]. One notable
descendant of LISP with the variable-binding problem fixed is Scheme, see [Dybyg, 1996], dating
from about 1975.

34More precisely, λ-terms extended with some primitive operations for dealing with jumps.
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for reducing λ-terms considered as programs, the SECD-machine of [Landin, 1964,
pp. 316–318] and [Landin, 1966a]. This consisted of a transition system whose states
were made of four components:

• a stack S for storing intermediate results of evaluation,

• an environment E, that associates values to free identifiers,

• a control C consisting of a list of expressions that drives the evaluation process,

• a dump D that records a complete state of the machine, of the form
(S′, E′, C ′, D′).

The transition rules of the machine implemented the order of evaluation now
known as call by value, so their results did not agree exactly with those of leftmost-
first reduction of λ-terms. While the design of the SECD-machine was influenced
by similar earlier devices for the interpretation of programming languages, notably
the LISP interpreter devised in [Gilmore, 1963],35 it was however the first to be
presented in a formal way, and may fairly be said to have opened the way to the
study of the formal operational semantics of λ-calculus considered as a program-
ming language, that would find a systematic exposition a decade later starting with
[Plotkin, 1975].

6.3 Corrado Böhm: λ-calculus as a programming language

In the above developments λ and CL began to contribute ideas to the theory
of programming languages, and their influence is still active; but in the opposite
direction, programming experience had only a limited impact on the “pure” theory
of λ and CL at that time. The exception was the work of Corrado Böhm from the
early 1960s onward.36

Böhm gained his Ph.D. in 1951 at the ETH in Zurich, with a thesis which in-
cluded the first-ever description of a complete compiler in its own language, [Böhm,
1954]. While working on his thesis he came in contact with Bernays, who introduced
him to the classical formalisms for computable functions. These included Turing
machines and Post and Thue systems, but the variety of these models of compu-
tation led Böhm in the following years to search for an inclusive formalism. This
aim was the origin of his interest in λ-calculus, with which he became acquainted
around 1954 from Church’s textbook [Church, 1941], but whose importance he re-
alized only at the end of the 1950s after noticing that functional abstraction was
used in LISP. A colleague, Wolf Gross, drew his attention to [Curry and Feys, 1958]
and to the third chapter of [Rosenbloom, 1950], and in the years 1960-61 Böhm
and Gross together began to study combinators, λ-calculus and recursive function
theory. By 1964 they had realized that λ-terms and combinators could be used
directly as the basis of “a very flexible description language for machines, programs
and algorithms”, [Böhm and Gross, 1966, p.36]. This was the starting point of the
CUCH language (a system using both CUrry’s combinators and CHurch’s λ-terms),
which was developed independently of the ideas that were emerging at about the
same time from the work of Strachey and Landin, but was influenced partly by
the use of λ-abstraction notation in [McCarthy, 1963a, §3] (and by the use of β-
reduction in Paul Gilmore’s interpreter [Gilmore, 1963, §3]), and especially by the
use of combinators to describe sequential circuits in [Fitch, 1958]. The latter gave
in fact one of the first applications of CUCH (described in [Böhm and Giovannucci,

35See [Landin, 1966a, §20] for a discussion of related work. A textbook treatment of the SECD-
machine is contained in [Burge, 1978].

36Our reconstruction of Böhm’s work has been helped by the scientific biography in [Dezani et
al., 1993, pp. 1–8], and a personal communication by Böhm, April 11th, 2001.
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1964] together with the representation of analogue circuits), as well as the encoding
of the operations of Iverson’s programming language APL in unpublished work of
Marisa Venturini Zilli in 1962-64.37

An abstract CUCH-machine was described in [Böhm and Dezani, 1972], and had
an actual implementation in the 1990s, in unpublished work by Stefano Guerrini.
The CUCH machine is of interest for the history of abstract interpreters for the
λ-calculus, for it used a leftmost-first reduction strategy instead of the call-by-value
order realized by the more widely known SECD-machine of Landin.

But the main influence of Böhm and his students on λ and CL was through
discoveries about the pure systems. The presentation of CUCH in [Böhm, 1966]
and [Böhm and Gross, 1966] set up a uniform language for formulating technical
problems about the syntax of untyped λ and CL, and the solution of such problems
dominated much of Böhm’s later research activity. We shall discuss these in §7.1.

7 Syntactical developments

The revival of interest in λ and CL that began in the 1960s brought with it some
new advances in the study of their syntax.

Work by proof-theorists on Gödel’s Dialectica paper [Gödel, 1958], stimulated
particularly by Georg Kreisel in Stanford University, led to normalization proofs for
various typed extensions of λ and CL from 1963 onward. These will be discussed
in §8.2 below.

In 1963 Dana Scott gave lectures on λ to an autumn seminar on foundations at
Stanford [Scott, 1963]. These were partly motivated by “a certain lack of satisfac-
tion with systems for functions suggested in papers of John McCarthy”, with the
hope “that the underlying philosophy will . . . lead to the development of a general
programming language for use on computers” [Scott, 1963, p. 1.2]. Scott’s syntacti-
cal innovations included a new representation of the natural numbers for which the
predecessor combinator was much simpler than those known for Church’s numer-
als,38 and the following neat and general new undecidability theorem for λ: if two
non-empty sets of terms are closed under expansion (i.e. reversed reduction), then
the pair cannot be recursively separated, i.e. there is no total recursive function
which outputs 1 on the members of one set and 0 on the other; see [Scott, 1963,
§9] or [Barendregt, 1981, §6.6] or [Curry et al., 1972, §13B2]. Incidentally, Curry
independently proved a similar undecidability theorem, though his was slightly less
general than Scott’s and was made a few years later (but before seeing Scott’s
theorem), see [Curry, 1969b, p.10] or [Curry et al., 1972, p.251, footnote 7].

Scott’s next major contribution to the theory of λ was on the semantic side in
1969 and radically changed both the subject itself and its more general context, the
study of higher-order functions; see §9.1 below.

In 1971 appeared the influential thesis of Henk Barendregt, [Barendregt, 1971].
Part of its motivation was semantical, so we shall discuss it in §9.2 p.46, but its
results and methods were syntactical and stimulated much work on syntactical
properties of pure λ in the 1970s. Some of this work will be described in §7.2, and
many of its pre-1981 results were incorporated into the monograph [Barendregt,
1981], which became the standard reference for the core properties of λ.

37Almost 20 years later, [Böhm, 1982] described a combinatory representation of Backus’ systems
of functional programming, [Backus, 1978], that are in many respects similar to APL.

38Scott’s numerals were 0 ≡ K, succ ≡ λuxy. yu, see [Scott, 1963, §3] or [Curry et al., 1972,
pp. 260–261]. For them, pred ≡ λx. x0I. Some predecessors known for the Church numerals are
given in [Curry et al., 1972, pp. 218, 226]. Other numeral systems have been proposed and used,
for example in [Barendregt, 1976, §4.1], in [Wadsworth, 1980], and by Böhm, see below. Numeral
systems in general have been discussed, with examples, in [Curry et al., 1972, §§13A1, 13C1] and
[Barendregt, 1981, §§6.4, 6.8].
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7.1 Contributions from the programming side

In Italy, the work of Böhm on the λ-based language CUCH led him to ask a
series of technical questions about the syntax of λ which came to have an important
influence on the development of the subject, both through the questions themselves
and through the later activities of the students he attracted to his work. The first of
these questions, at the end of a talk given in 1964 [Böhm, 1966, p.194], was whether
it was possible to discriminate between any two distinct closed normal forms F,G
by constructing a λ-term ∆F,G such that

∆F,GF =βη λxy.x, ∆F,GG =βη λxy.y.

A few years later the answer “yes” was proved for βη-normal forms by Böhm himself,
[Böhm, 1968]; this result is now known as Böhm’s theorem.39 Böhm’s proof of his
theorem was analysed by Reiji Nakajima and by Barendregt independently, see
[Nakajima, 1975] and [Barendregt, 1977, §6], and from these analyses came the now
well-known concept of Böhm tree, as well as the use of this concept in the study
of models of λ (see §9.2 below).40 In [Barendregt, 1981, Ch. 10] there is a careful
account of the ideas behind the proof (including the name Böhming out for the
technique of extracting subtrees of a Böhm tree by means of contexts).

Another conjecture of Böhm’s, made in [Böhm, 1968, p.4], was what is now called
the Range theorem: the range of a combinator F is the set of all βη-convertibility
classes of closed λ-terms of the form FM , and the theorem states that this set is
either infinite or a singleton. This theorem was proved within a year by Myhill and
Barendregt independently. A constructive version of the theorem, prompted by a
remark of Dirk van Dalen, together with some historical remarks on the various
proofs, is in [Barendregt, 1993].

Böhm’s aim of using CUCH as a real programming language led him to study
various ways of coding data structures as λ-terms. He coded natural numbers
as the Church numerals [Böhm, 1966, Appendix II], although he also considered
alternative representations, for example

n ≡ λx.〈x, . . . , x︸ ︷︷ ︸
n times

〉

as described in [Böhm, 1966, Appendix VI]. Vectors 〈X1, . . . , Xn〉 were represented
as terms of the form λx.xX1 . . . Xn with projections Un

i defined by λx1 . . . xn.xi,
[Böhm, 1966, Appendix IV]. Böhm saw both data and programs as higher-order
functions that should be represented by terms in normal form (or by strongly nor-
malizing terms). This led him to the problem of structuring the set of all normal
forms algebraically, which became especially important in his work. He wished to
find an algebraic structure of normal forms suitable for representing data struc-
tures as initial algebras, and over which iterative, primitive recursive and even total
recursive functions could be represented by terms in normal form. He explored
this representation from 1983 onwards, and reported the results in a long series of
works: [Böhm and Berarducci, 1985], [Böhm, 1986; Böhm, 1988b; Böhm, 1988a;
Böhm, 1989]. The first of these, with Alessandro Berarducci in Rome, investigated
the representation of data structures in second order λ-calculus and, as we shall
discuss in §8.3, was very influential in investigations of polymorphic λ-calculi.

The quest for algebraic structure in combinatory logic led also to the study of
the monoid structure of combinators (modulo η-conversion), extending an early idea

39A well organised proof of Böhm’s theorem is in [Krivine, 1990, pp. 68–74]. A fuller proof which
has been mechanised in the language CAML is in [Huet, 1993]; it deals with problems about bound
variables which are usually ignored but become serious when infinite trees are involved.

40Although for terms in normal form the Böhm tree concept had already appeared in [Böhm
and Dezani, 1974].
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of Church [Church, 1937], and even to combinatory groups through the study of
invertible terms. In 1976 his co-worker and former student Mariangiola Dezani41 in
Turin made a characterization of the invertible normalizable terms of λβη-calculus,
[Dezani, 1976], and her result was extended to all terms by Klop and Jan Bergstra,
[Bergstra and Klop, 1980]. With Francoise Ermine, Dezani then gave a description
of maximal monoids of normal forms, using an early version of intersection types,
[Dezani and Ermine, 1982]. Monoids of combinators were studied further in [Böhm
and Dezani, 1989]. (A detailed account of the results in this area until 1980 is in
[Barendregt, 1981, Ch. 21].)

Taking a similar algebraic approach, around 1977 Böhm proposed a simple rein-
terpretation of combinatory logic by regarding combinators as generalized numerals
[Böhm, 1979; Böhm, 1980]; this was suggested by the fact that exponentiation
mn of Church numerals m,n is just nm. He regarded combinators as a structure
with sum, product and exponentiation with the usual arithmetical axioms, plus a
non-arithmetical constant for pairing.

James H. Morris at the Massachusetts Institute of Technology was another in-
fluential contributor who, like Böhm, was motivated by an interest in programming
languages; his thesis [Morris, 1968] acknowledged an intellectual debt to Landin,
although most of the results in it concerned the syntax of untyped and simply typed
λ-calculus.

That thesis contained the first formulation of “pure” simply typed λ in isolation
without the extra logical axioms and rules that the systems of Church and Curry
had contained. Morris’ formulation was what is nowadays called “Curry-style”;
types were assigned to untyped pure λ-terms. In [Morris, 1968, p.107] he proved
weak normalization by a method essentially the same as in Turing’s unpublished
note, see §8.2 below, and in [Morris, 1968, pp.100–105] he described and verified a
test for typability, see §8.5 below.

Morris’ thesis also contained perhaps the first application of Böhm’s Theorem,
in a result which, although syntactical, later played a significant role in the model
theory of λ. Morris suggested looking at a λ-term M as a partial function consisting
of those pairs 〈〈M1, . . . ,Mn〉, N〉 such that reduction starting at MM1 . . .Mn halts
with the normal form N . The problem with this idea was that βη-conversion does
not coincide with equality of partial functions, so Morris introduced the following
preorder on terms [Morris, 1968, p.50]:

Given λ-terms M,N : M extends N if, for all contexts C[ ], if C[M ]
has a normal form then C[N ] has the same normal form.

The equivalence relation on terms generated by the extension preorder came later to
be called contextual equivalence. Morris proved it to be, essentially, the largest con-
gruence on (pure) λ-terms that non-trivially extends βη-convertibility, by applying
the newly-published Böhm Theorem [Morris, 1968, p.53, Cor. 5].

A point worth noting in Morris’ definition of the extension preorder was the use
of contexts: these became an ubiquitous tool for the definition of equivalences on
both untyped and typed terms (see §9.2 and §10 later). Morris also proved that the
fixed-point combinator Y commonly attributed to Curry yields the least fixed point
under the extension preorder [Morris, 1968, Ch. III, §C, Cor. 7(a)], by a complicated
analysis of reductions. This result is used to justify, by way of example, a form of
McCarthy’s principle of Recursion Induction.

Near the end of his thesis, Morris argued for the usefulness of allowing circular
type-expressions in simply typed λ-calculus, like the solution of the type equation
α = α → β, remarking that “we have only a limited intuition about what kind of
an object a circular type expression might denote (possibly, a set of functions, some

41Married name Mariangiola Dezani Ciancaglini.
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of which have themselves as arguments and values)”, [Morris, 1968, p.123]. The
answer to this puzzle was to be found less than one year later by Dana Scott with
his set-theoretic model for the λ-calculus, see §9.1 below.

7.2 Theory of reductions

Ever since the original proof of the confluence of λβ-reduction in [Church and
Rosser, 1936], a general feeling had persisted in the logic community that a shorter
proof ought to exist. The work on abstract confluence proofs described in §5.2
did not help, as it was aimed mainly at generality, not at a short proof for λβ in
particular.

For CL, in contrast, the first confluence proof was accepted as reasonably simple;
its key idea was to count the simultaneous contraction of a set of non-overlapping
redexes as a single unit step, and confluence of sequences of these unit steps was
easy to prove, [Rosser, 1935, p.144, Thm. T12].

Then in 1965 William Tait presented a short confluence proof for CL to a sem-
inar on λ organized by Scott and McCarthy at Stanford. Its key was a very neat
definition of a unit-step reduction by induction on term-structure. Tait’s units were
later seen to be essentially the same as Rosser’s, but his inductive definition was
much more direct. Further, it could be adapted to λβ. (This possibility was noted
at the seminar in 1965, see [Tait, 2003, p.755 footnote]). Tait did not publish his
method directly, but in the autumn of 1968 he showed his CL proof to Per Martin-
Löf, who then adapted it to λβ in the course of his work on type theory and included
the λβ proof in his manuscript [Martin-Löf, 1971b, pp.8–11, §2.5].

Martin-Löf’s λβ-adaptation of Tait’s proof was quickly appreciated by other
workers in the subject, and appeared in [Barendregt, 1971, Appendix II], [Stenlund,
1972, Ch. 2] and [Hindley et al., 1972, Appendix 1], as well as in a report by Martin-
Löf himself, [Martin-Löf, 1972b, §2.4.3].42

In λ, each unit step defined by Tait’s structural-induction method turned out to
be a minimal-first development of a set of redexes (not necessarily disjoint). Curry
had introduced such developments in [Curry and Feys, 1958, p.126], but had used
them only indirectly; Hindley had used them extensively in his thesis, [Hindley,
1969a, p.547,“MCD”], but only in a very abstract setting. They are now usually
called parallel reductions, following Masako Takahashi. In [Takahashi, 1989] the
Tait-Martin-Löf proof was further refined, and the method of dividing reductions
into these unit steps was also applied to simplify proofs of other main theorems on
reductions in λ.

Tait’s structural-induction method is now the standard way to prove confluence
in λ and CL. However, some other proofs give extra insights into reductions that
this method does not, see for example the analysis in [Barendregt, 1981, Chs. 3,
11–12].

Besides confluence, major themes in the study of λβ-reductions have been given
by theorems on finiteness of developments, standardisation and the equivalence of
complete developments, all depending either directly or indirectly on the concept of
residual . The first two of these theorems were proved for λI-terms in [Church and
Rosser, 1936, Lemma 1], and the second was proved for CL in [Rosser, 1935, p.142,
Thm. T9]; but their analogues for the full λK-calculus are more subtle and did not
come until much later.

The finiteness-of-developments theorem for λK was first proved by Schroer in his
unpublished thesis [Schroer, 1965, Part I, Thm. 6.20]. It was re-proved later using
different methods: by Martin Hyland in 1973 [Hyland, 1975, Thm. 3.6], by Hindley

42The earlier manuscript [Martin-Löf, 1971b] was not published, as the system described in it
was inconsistent from the standpoint of the propositions-as-types correspondence, see §8.1.4 below;
but its confluence proof for λβ was not faulty.
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in 1976 [Hindley, 1978a, Thm. 1], and by Barendregt, Bergstra, Klop and Volken in
1976 [Barendregt et al., 1976, pp.14–17]. The latter proof used a particularly neat
labelling technique and a strong normalization theorem for labelled reductions, see
[Barendregt, 1981, §11.2].

Labelling techniques to follow components of terms down through reductions
were first used in [Hyland, 1976, §2] and [Wadsworth, 1978, §4], in proofs of the
limit theorem for approximants, see §9.2 below. In [Wadsworth, 1976, p.508] the
idea was attributed by Wadsworth to a 1972 communication from Hyland. It was
extended by Jean-Jacques Lévy in 1974 [Lévy, 1976, pp. 106–114] and in [Lévy,
1978, Ch. II], and applied to prove the completeness of “inside-out” reductions and
the other main theorems on reductions. A good general account of labelling is in
[Barendregt, 1981, Ch. 14].

The standardization theorem for λK first appeared in [Curry and Feys, 1958,
§4E1], though with a proof that depended on the finiteness of leftmost-first devel-
opments. In 1975 Curry’s proof was much simplified by Gerd Mitschke, [Mitschke,
1979]. A consequence of standardization is the cofinality of leftmost reductions, i.e.
that the leftmost reduction of a term is finite if and only if the term has a normal
form. In the early 1970s Barendregt pointed out that the reductions most often
used in practice were quasi-leftmost, not leftmost, and proved the corresponding
cofinality theorem for these reductions too [Barendregt, 1981, Thm. 13.2.6].43 In
his 1976 report with Bergstra, Klop and Volken the more general concept of reduc-
tion strategy was introduced and studied, see [Barendregt et al., 1976, pp.33–43] or
[Barendregt, 1981, Ch. 13].

The basic equivalence theorem for complete developments in λK was first stated
and proved in [Curry and Feys, 1958, pp.113–130]. In 1978 it was improved by Lévy
to a stronger equivalence, see [Lévy, 1978, pp. 37, 65] or [Barendregt, 1981, §§12.2.1,
12.2.5]. Lévy’s equivalence theorem led to a new view of β-reductions, embodied in
the thesis [Klop, 1980]. The transformations involved in proofs of confluence and
standardization were seen as conversions of reduction diagrams, and the reasonably
tidy underlying structure that had been sought for the theory of β-reduction for
the previous forty years was at last achieved. (An account is in [Barendregt, 1981,
Chs. 11–14].)

For λβη, confluence and the postponement of η-steps were known since Curry’s
work in the 1950s, as was mentioned in §5.3, but no standardization theorem had
been proved analogous to that for β, nor had any cofinality theorem been proved for
leftmost reductions, despite attempts. The first successful proofs of these theorems
were made in [Klop, 1980, Ch. IV].

Returning to λβ: problems involved in making reduction more efficient began to
attract attention in the 1970s, stimulated by programming needs. One such problem
was that of finding a reduction of a term to its normal form that was optimal in
some reasonable sense. For CL this problem was studied in 1972 by John Staples,
though his work was not published until 9 years later, [Staples, 1981]. In 1974 for a
system of recursive programs, Jean Vuillemin formulated a “delay rule” for reducing
first-order terms with function symbols defined by a recursive program, [Vuillemin,
1974a, §3]. This rule in Vuillemin’s system could be proved optimal and easily
implementable, but the problem of optimality turned out to be more difficult in the
case of λ-calculus. However, Lévy extended Vuillemin’s idea to λ in his thesis [Lévy,
1978], by an in-depth analysis of the lattice of β-reductions starting at a term, and
by exploiting his labelling technique to define certain families of redexes that can
be shared through reductions.44 Lévy also proved the completeness of inside-out β-

43A reduction is quasi-leftmost iff, for every non-leftmost step, some later step is leftmost.
44A suitable data structure for implementing the sharing required for optimal reductions was

described in 1990, independently in [Lamping, 1990] and [Kathail, 1990]. Then in [Gonthier et al.,
1992] and [Asperti, 1995] the technique was related to Girard’s geometry of interaction [Girard,
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reductions (almost the opposite of leftmost reductions), which had been conjectured
in [Welch, 1975], see [Lévy, 1976].

Substitution was another topic which aroused interest from a computing point
of view. Its correct definition had been settled years ago, but its efficient imple-
mentation now became an important problem; for example in LISP in the 1950s
some of the details had been over-simplified and had had to be corrected, see §6.1
above. With the implementation problem in mind, in 1978 Gyorgy Révész proposed
an interesting new alternative to β-reduction. It generated the usual equivalence
relation =β , was confluent, had the same normal forms as the usual β-reduction,
and broke substitutions into smaller steps; see [Révész, 1978] or [Révész, 1985].

Another approach to the problem of implementing substitution efficiently was to
extend the λ-language by introducing an explicit substitution operator with suitable
reduction rules. This idea, which had occurred independently to Mitschke and Barry
Rosen for use in confluence proofs for λβ-reduction ([Mitschke, 1973, pp. 150–151],
[Rosen, 1973, §9]), led in the 1990s to several formal systems which are still being
developed; a few examples of papers on these are [Komori, 1990], [Abadi et al.,
1991], [Kamareddine and Nederpelt, 1993], [Curien et al., 1996], [Benaissa et al.,
1996], [Kamareddine and Rios, 1997], [Bloo and Geuvers, 1999], and [Kamareddine
and Rios, 2000].

A special case of substitution was the problem of changing bound variables
efficiently. In 1972 de Bruijn described a formalism which avoided this problem
completely, by numbering all λs in a term and replacing bound variables by number-
indices to show which λ bound them, [Bruijn, 1972]. De Bruijn’s formalism was
used in the compiler of the programming language ML in the 1980s, and has been
used in many explicit substitution systems.

8 Types

8.1 The general development of type theories

In the type theory of Russell and Whitehead’s Principia Mathematica and its
simplifications by Chwistek and Ramsey [Russell and Whitehead, 1913; Chwistek,
1922; Ramsey, 1926], there was little agreement as to what kind of entities types
should be. Already in [Russell, 1903, §497] we find at least two ways in which types
can be intended:

(1) Types as ranges of significance of propositional functions: given a proposi-
tional function ϕ(x), there is a class of objects, the type of x, such that ϕ has
a value whenever it is applied to a member of this type.

(2) Types as sets: individuals form the lowest type of objects, then there are sets
of individuals, sets of sets of individuals and so on, ad infinitum.

The first interpretation of types is related to the theory of grammatical categories.
The view of types as sets underlies, of course, the early developments in set theory,
cf. [Quine, 1963, Ch. XI], but most notably from a λ-viewpoint it underlies the
definition of the hierarchy of simple types in [Church, 1940] and much of the research
on set-theoretical models of type theories.

The later grafting of the type-theoretic tradition onto λ and CL, and the math-
ematical study of the models of the resulting theories, contributed to the discovery
of new ways in which types could be interpreted. A new unifying paradigm that
became (and still is) very influential in research in type theory was introduced
by Lawvere in 1969 and Lambek in the 1970s [Lawvere, 1969a; Lawvere, 1969b;
Lambek, 1974; Lambek, 1980b; Lambek, 1980a]:

1989a].
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(3) Types as objects in a category, especially a cartesian closed category , whose
definition provides a general framework for a formulation of the set-theoretic-
al bijection between functions of several arguments and unary functions with
functions as values.

In addition, research in proof-theory and the semantics of intuitionistic mathematics
showed that it was in many cases fruitful to view

(4) Types as propositions: in either λ or CL, terms of a given type play the role
of codes for proofs of (the proposition coded by) that type.

We shall now follow the historical development of each of these threads in turn.45

8.1.1 Types as grammatical categories
The theory of categorial grammars began in about 1900 with the attempt of

Edmund Husserl to develop a theory of pure, a priori laws that underlie the com-
position of meanings, [Husserl, 1922, Fourth Investigation]. Through the teaching
of Kazimierz Twardowski, Husserl’s ideas influenced the Lwów school of logicians,
and in particular the design of the logical systems of Leśniewski [Leśniewski, 1929],
where they replaced the logical types of Russell. Ajdukiewicz was the first to give
a self-contained formalization of a system of categorical grammar, [Ajdukiewicz,
1935]. There, it is assumed that to each word of a language can be assigned one
or more indices, that are symbolic representations of the grammatical categories
to which the word belongs. Starting from indices n for noun phrases and s for
propositions, one can obtain infinitely many new indices α/β for phrases that yield
a phrase of index α whenever prefixed to a phrase of index β. The concatenation
of two words with respective indices α and β has index αβ, and one is allowed
to replace each subsequence of the form (α/β)β by α. This basic system can be
extended by forming the index α\β for phrases that yield a phrase of index β when-
ever suffixed to a phrase of index α, with a rule that allows a subsequence of the
form α(α\β) to be replaced by β, [Bar-Hillel, 1953; Bar-Hillel, 1959; Lambek, 1958;
Lambek, 1961]. Writing x→ y to mean that every expression of category x has also
category y, one can prove theorems like, for example, that xy → z implies y → x\z.
Lambek introduced a Gentzen-like calculus for deriving theorems of this form, and
proved its decidability through a cut-elimination theorem, [Lambek, 1958].

Curry, because of his interest in the formal study of natural languages, knew
about the theory of categorial grammar,46 and noticed that his theory of function-
ality (see §4.2) had a grammatical interpretation in which types could be regarded
as grammatical categories. This was in harmony with his early ideas on the theory
of functionality, which was intended to be a tool for drawing categorial distinctions
between the terms of systems of illative combinatory logic, with the idea that “a
theory of types is essentially a device for saying that certain combinations are not
propositions”, see [Curry, 1980, §9]. The grammatical interpretation of functionality
was described in [Curry, 1961];47 it regarded the combination Fαβ as the category of
those functors that take an argument of category α and give a result of category β, in
the context of a formal system whose only operation is application. (For example, if
nouns and noun-phrases have category N , then adjectives have category FNN , ad-
verbs (as modifiers of adjectives) have category F(FNN)(FNN), and the suffix “-ly”
(which changes adjectives to adverbs) has category F(FNN)(F(FNN)(FNN)).)

The possibility of describing grammatical categories by means of types has also
played a role in formalizing the syntax of logical theories within typed λ-calculi. This

45We shall not try to survey all of type-theory, but only the parts that are most relevant to λ
and CL. In particular, we shall not discuss the type-concept implicit in ZF set theory.

46In particular, about [Ajdukiewicz, 1935], see the remark in [Curry and Feys, 1958, §8S1].
47Based on [Curry, 1948], summarized briefly in [Curry and Feys, 1958, §8S2, pp.274–275].
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has happened, for example, with the theory of expressions that underlies Martin-
Löf’s intuitionistic theory of types (described for the first time by Martin-Löf in his
lecture at the Brouwer Centenary in 1981; see [Nordström et al., 1990, p.13]) and
the more recent Edinburgh Logical Framework [Harper et al., 1993]. In a broader
perspective, the same connection has been exploited in mathematical linguistics in
the area known as Montague grammar , [Montague, 1974].

8.1.2 Types as sets
There was a clear set-theoretic intuition behind the hierarchy of simple types

in [Church, 1940]: Church used a type-expression βα to denote a set of functions
from the set (denoted by) α to the set (denoted by) β. This intuition can readily
be extended to yield a notion of model for the simply typed λ-calculus as a set-
theoretic structure D consisting of a family of sets {Dα}α∈T, where T is the set of
all type-expressions of the system, such that Dβα is the set of all functions from Dα

to Dβ , with a family of application-functions ·α,β : (Dβα×Dα)→ Dβ , for α, β ∈ T,
that correspond to the application of a function of type βα to an argument of type
α with result of type β. This notion is essentially that of standard model introduced
by Leon Henkin in [Henkin, 1950, pp.83–85], who also considered general models
where Dβα is only assumed to be some class of functions from Dα to Dβ .48

The interpretation of types as sets led to developments that became important
also for later extensions of this rather limited framework. One of these was the
notion of logical relation between models D and E, defined as a family of relations
Rα ⊆ Dα × Eα indexed over types, such that49

Rα→β(f, g) ⇐⇒
(

(∀x ∈ Dα, y ∈ Eα) Rα(x, y) ⇒ Rβ(f ·α,β x, g ·α,β y)
)
.

An early instance of the use of logical relations was the proof of completeness
of typed βη-conversion with respect to any standard model (over an infinite set
of individuals) of simply typed λ-calculus, given by Harvey Friedman in 1970 and
published in [Friedman, 1975]. This result exploited the properties of partial homo-
morphisms of models, where a partial homomorphism from D to E is defined as a
family of partial surjections fα : Dα ⇀ Eα from D to E for each type α, with the
property that fβ(x ·α,β y) ' fα→β(x) ·α,β f

α(y). The graph of a partial homomor-
phism is then a logical relation from D to E.

Later research showed that logical relations afford a convenient framework for
formulating and proving the main properties of simply typed λ-calculi. On the
syntactic side, the various forms of the notion of “computability” used in Tait-style
normalization proofs can be described as logical relations, as well as some other
properties of reduction like confluence and η-postponement, [Statman, 1985]. On
the semantic side, the extensional collapse of an applicative structure uses logical
partial equivalence relations (a result from 1971 of Jeff Zucker, reported in [Troel-
stra, 1973, §2.4.5]; see also [Statman, 1983]). Special classes of logical relations were
used in the characterization of definability in D∞ models of the type-free λ-calculus
and in standard models of the simply-typed λ-calculus by [Plotkin, 1973] (where the
name ‘logical relation’, attributed to Mike Gordon, seems to have first appeared).
See also [Plotkin, 1980].

The research on higher-order notions of computability in the 1950s produced a
host of type structures or even models for simply typed λ in which function types are
interpreted by some set of computable function(al)s.50 Especially important from
our standpoint is the search for a suitable notion of partial computable functional,

48Church’s system had an extensionality axiom; for systems without this, the definition of model
would be more complicated than in [Henkin, 1950]; see, for example, [Barendregt, 1981, 2nd edn.,
Ch.5] or [Hindley and Seldin, 1986, §11A].

49From now on we write the nowadays-common notation α → β instead of Church’s βα.
50For a thorough historical account of this field, highlighting its many intersections with our
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leading to the partial monotone functionals studied in Richard Platek’s Stanford
PhD thesis [Platek, 1966] (see [Longley, 2001, §4.1.1] and [Moldestad, 1977]).

The idea of an ordering on functionals, stressed by Platek, together with the
mathematical theory of computation of McCarthy [McCarthy, 1963a], are at the
basis of the theory of computable functions of higher type described in a privately
circulated typescript written in October 1969 by Dana Scott [Scott, 1969e] (see
also [Scott, 1969d]). Scott proposed there a typed alternative to the (type-free)
programming languages introduced in [Böhm, 1966; Böhm and Gross, 1966] and
[Landin, 1966b], which amounted to a simply typed λ-calculus with ground types ι
for integers and o for truth values, and containing a functional Y : (τ → τ)→ τ , for
all types τ , for forming (least) fixed-points of functions of type τ → τ (suggested
by Platek’s thesis), and McCarthy’s conditional operator. In addition, there were
constants Ωι and Ωo denoting the “undefined” integer and truth value, respectively,
so that partial numerical functions could be described as continuous total functions
that may take value Ωι at some argument. The intended model for this system was
based on the interpretation of types as domains, i.e. partially ordered sets D with
a least element ⊥D and least upper bounds of increasing chains. Functions over
domains were required to be continuous: these are the functions that preserve least
upper bounds of chains. The judgements of the system exploited the semantical
ordering between values: notably, there was a rule of induction of the form:

Φ ` g(Ω) ≤ h(Ω) Φ, g(x) ≤ h(x) ` g(f(x)) ≤ h(f(x))
Φ ` g(Y(f)) ≤ h(Y(f))

.

This rule was considered by Scott to be the main advantage of the system (Scott
[Scott, 1969e, §3]), as compared e.g. to the principle of recursion induction arising
from the work of McCarthy [McCarthy, 1963a, §8].

The resulting system was the basis of the LCF project (LCF stands for “Logic
for Computable Functions”, the name given to Scott’s system by Robin Milner)
developed from 1972 onward by a group at Stanford University led by Milner.
The functional programming language ML in [Gordon et al., 1979] was originally
developed in order to check proofs in a version of LCF, see [Gordon, 2000]. Further-
more, the typed λ-calculus that constitutes its logic-free part became the language
PCF (“Programming language for Computable Functions”, [Plotkin, 1977]), that is
widely used as the prototype functional programming language for many theoretical
purposes, in particular the study of the important property of full abstraction (see
later, §10).

8.1.3 Types as objects
The connection between type theory and category theory that underlies a large

amount of current research shows up along the lines set by the works of Joachim
Lambek and F. William Lawvere.

The latter realized in the early 1960s that certain basic mathematical transfor-
mations of a general nature in what he later called categorical dynamics [Lawvere,
1979] were in fact also basic structural ingredients of several other categories of
foundational interest. In fact, these transformations were those used later to define
the notion of cartesian closed category [Eilenberg and Kelly, 1966].

Though Lambek did not stress the category theoretic content of his results
on the syntactic calculus in [Lambek, 1958; Lambek, 1961], we mention his ideas
here because they represent an alternative route to the applications of cartesian
closed categories to λ-calculus via deductive systems and a related notion of func-
tional completeness, inspired by the abstraction algorithms of combinatory logic

present subject, we refer the reader to [Longley, 2001]. Longley (ibid., §3.3.1) also points out
[Kreisel, 1959] as the source of many ideas that have played a key role in the later development of
λ.
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(§3 above). Furthermore, he later explicitly described formally the connection
of the syntactic calculus with closed categories [Lambek, 1968; Lambek, 1988;
Lambek, 1995], providing, with hindsight, the unifying framework for his work
and that of Lawvere.

Lambek used the system of categorial grammar described in §8.1.1 as a formal
tool in the construction of canonical mappings between functors of bimodules over
associative rings.51 There, the following correspondence between the constructors
of syntactic types and operation on bimodules was exploited:

AB =def A⊗S B

C/B =def HomT (B,C)
A\C =def HomR(A,C)

for an R-S-bimodule A, an S-T -bimodule B and an R-T -bimodule C. There is an
evident closed category structure in this example, in the form of what was called a
residuated category in [Lambek, 1968]. In fact, already in his first published paper
on the syntactic calculus, [Lambek, 1958, §10], Lambek noted the formal similar-
ity between the operation of (right and left) division in the calculus of syntactic
types and residuation in lattice theory, the operation normally used to interpret
implication in algebraic logic.

The notion of cartesian closed category emerged gradually, basically through
the work of Lawvere who in 1959 became aware of the central role of exponential
objects BA, characterized by the isomorphisms C ×A → B ∼= C → BA.52 An
early example of this transformation came from the description of the motion of a
material body seen as a mapping T ×M → E that gives the position of each of its
particles at each time instant, or equivalently, as its trajectory T → EM through
time, or as the path M → ET followed by each of its particles, [Lawvere, 1976,
p.123].

There are other instances of exponentiation that played an important role in the
development of the notion of cartesian closed category. The introductory chapter
of Lawvere’s PhD thesis [Lawvere, 1963] contains the description of the category
of categories, where the exponential of two objects (namely, categories) A and B is
the category of all functors from A to B.53 Later, in the years 1963–64, Lawvere
investigated an elementary54 axiom system for the category of sets in order to
develop a basic framework for analysis, [Lawvere, 1964]: the exponential BA of two
objects A and B is here the set of all functions with domain A and codomain B. The
relation of exponentiation to λ-abstraction is mentioned for the first time in this
work, but no formal detail is given. During his stay in Berkeley in 1961–62, Lawvere
had noted that Heyting algebras are cartesian closed categories: more generally, a
preordered set with finite products has a monoidal structure which is closed if and
only if the preorder is residuated, that is, iff it also satisfies the equivalence:

p ∧ q ≤ r if and only if p ≤ q ⇒ r,

51This application seems to have been one main mathematical motivation for the development of
the syntactic calculus. It originated from work carried out by Lambek jointly with G. D. Findlay
in 1955, described in the manuscript [Lambek and Findlay, 1955] (unpublished, but summarized in
[Lambek, 1961, Appendix II]). According to [Lambek, 1988, p.297], the relation of this formalism
to natural language was already clear to him at an early stage, but it was only later that, through
a bibliographic search, he discovered the paper [Bar-Hillel, 1953] on categorial grammars.

52Intuitively, these may be thought of as the tranformation of a two-argument mapping
f : C ×A → B into the one-argument mapping f̂ : C → BA which outputs a function as value.
See §3, currying.

53This was later published as [Lawvere, 1966].
54In this context, “elementary” refers to the fact that the axioms are sentences of a multi-sorted

first-order language—for example, with one sort for maps and another for objects.
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where ⇒ is the residuation operation. (This example appears in [Eilenberg and
Kelly, 1966, Chapter IV, §4]). This is one of the possible ways of arriving at what
was later called the “propositions as types” correspondence (§8.1.4).

A general notion of category C with exponentiation, that took the name of
cartesian closed category after discussions with Eilenberg and Kelly [Eilenberg and
Kelly, 1966, Chapter IV, §2], was described by Lawvere by the following adjoint
situations [Lawvere, 1969a]:

– a terminal object, given by a functor 1 : 1→ C right adjoint to the unique
functor from C to the category 1 with one object;

– a bifunctor × : C× C→ C (cartesian product) right adjoint to the diagonal
functor ∆ : C→ C× C that transforms an object C of C into the object 〈C,C〉
of C× C; and finally

– a right adjoint (·)A : C→ C to the functor A× (·) : C→ C, for each object A
of C. The counit of each adjunction A× (·) a (·)A is a family of morphisms
indexed by objects B of C, εB : BA ×A→ B, called evaluation.

The explicit connection between cartesian closed categories and type theory was
highlighted in Lawvere’s unpublished manuscript “Category-valued higher-order
logic”, distributed in 1967 to the Los Angeles Set Theory Symposium, whose con-
tents were later published as [Lawvere, 1969a; Lawvere, 1969b; Lawvere, 1970a].
The central categorical notion in these papers is that of a hyperdoctrine, and was
intended to capture some of the examples that would later lead to the notion of
elementary topos [Lawvere, 1970b]. A hyperdoctrine is defined by a cartesian closed
category T of types, whose morphisms are regarded as terms. For each type X in
T, there is a cartesian closed category P (X) of attributes of type X, whose mor-
phisms are called deductions over X. The terminal object of P (X) is regarded as
the identically true attribute of type X, whereas cartesian product and exponenti-
ation represent conjunction and implication of attributes, respectively, evaluation
being modus ponens. For every term f : X → Y in T, there are adjoint situations∑

f

a f · ( ) a
∏
f

that correspond to existential quantification, substitution along f , and universal
quantification, respectively.

Examples of hyperdoctrines include, of course, the syntactical hyperdoctrine
whose types are the type symbols of a formal type theory and whose attributes of
type X are the formulas whose free variables have types corresponding to X. More
interesting from the present point of view (see also later, §8.1.4), is an example
suggested by the work of H. Läuchli [Läuchli, 1970], in which a complete semantics
for intuitionistic predicate calculus is described in terms of a set-theoretic notion
of construction inspired by Kleene’s notion of realizability and the theories of con-
structions of Goodman, Kreisel, Troelstra and Scott.55 In this example T is the
category Set of sets, and for any set X seen as a type, the category of attributes
of type X is Set/X, so that each attribute ϕ of type X may be regarded as an
X-indexed family of sets, whose x-th coordinate is written as x · ϕ. A noteworthy

55[Läuchli, 1970] appeared in the proceedings of a conference held at Buffalo in 1968, but an
earlier manuscript was circulated already in the Spring of 1967 and was discussed by Lawvere and
Dana Scott in San Francisco in the same year. See also [Lawvere, 1996], from which it appears
that his manuscript “Category-valued higher-order logic” was discussed also at the symposium on
Automatic Demonstration, where the two fundamental papers on the interpretation of proofs as
typed λ-terms, [Scott, 1970a] and [Bruijn, 1970], were presented. We shall discuss later, in §8.1.4,
the relation between the works of Lawvere and Scott.
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feature of this hyperdoctrine is the interpretation of the logical connectives in the
category of attributes of type X, for example [Lawvere, 1970a]:

– ϕ ⊃ ψ is a family of sets whose x-th coordinate is (x · ψ)(x·ϕ). Unfolding the
definitions, this means that a proof over X of ϕ ⊃ ψ is a function which, for
every x ∈ X, assigns a proof of x · ψ to a proof of x · ϕ;

– y ·
∑

f (ϕ) =
∑

f(x)=y x · ϕ. This means that a proof over Y of
∑

f (ϕ) is a
function assigning to every y ∈ Y an ordered pair 〈x, d〉 where f(x) = y and
d is a proof of x · ϕ.

In the meantime, in a series of papers on “deductive systems and categories”,
Lambek was exploiting the description of categories by means of equational theories
over what he called deductive systems [Lambek, 1968; Lambek, 1969; Lambek, 1972].
These are essentially (oriented multi)graphs with an edge 1A : A→ A for every node
A and an edge g ◦ f : A→ C for every pair of edges f : A→ B and g : B → C. In
the case of cartesian closed categories, the right kind of deductive system has the
following additional structure [Lambek, 1974; Lambek, 1980a]:

– a node T with an edge 0A : A→ T for each node A;

– a node A×B for every pair of nodes A,B, with edges πA,B : A×B → A and
π′A,B : A×B → B and 〈f, g〉 : C → A×B for every pair of edges f : C → A
and g : C → B;

– a node BA for every pair of nodes A,B, and edges εB,A : BA ×A→ B and
ĥ : C → BA for every edge h : C ×A→ B.

Observe that a deductive system as described here is neutral as to the interpre-
tation of its nodes and edges as formulas and proofs of the positive intuitionistic
propositional calculus or as objects and morphisms of a cartesian closed category,
respectively. Therefore, equations between edges of a deductive system can be in-
terpreted either as describing a notion of equivalence of proofs for intuitionistic
sequents56 or as the equational presentation of a cartesian closed category.

The equational presentation of cartesian closed categories allowed Lambek to
give a smooth proof of their functional completeness [Lambek, 1972; Lambek, 1974],
thus making fully explicit the connection with typed λ-calculus already hinted at by
Lawvere. If D is a deductive system, then an assumption of a formula A may be re-
garded as an indeterminate, i.e. as a new edge x : T → A. The edges ϕ(x) : B → C
of a deductive system D[x] obtained by adding to D the indeterminate x can be
interpreted either as proofs of an intuitionistic sequent B → C depending on the
assumption x, or as polynomials in a cartesian closed category. The following prop-
erty, proved in [Lambek, 1974, Th. 3.6], subsumes therefore both the deduction
theorem of the positive intuitionistic propositional calculus and the functional com-
pleteness of a simply typed λ-calculus with finite products (and surjective pairing):

With every ϕ(x) :B→C in D[x : T→A] there is associated in D an f :
A×B → C such that

f ◦ 〈x ◦ 0B , 1B〉 =x ϕ(x) : B → C,

where =x is the extension of the equivalence of edges of D to D[x].
56The theme of equivalence of proofs is a recurring one in Lambek’s works: it was already a

motivation for his study of the syntactic calculus, leading to a technique for proving coherence
theorems in category theory [Kelly and Mac Lane, 1972] based on [Lambek, 1968], and also opened
the way for the categorical analysis of proofs pursued in [Szabo, 1974; Szabo, 1978] and [Mann,
1975].
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Functional abstraction λx :A .ϕ(x) is then just defined to be ψ̂ : B → CA, where
ψ = f ◦ 〈π′B,A, πB,A〉. One of the outcomes of the categorical formalization of
type theories consisted in providing a way of speaking of types without necessarily
assuming that they are sets in a strict sense, because categories with a rich enough
structure have an internal logic that still allows one to reproduce set-theoretical
arguments to a significant extent. This was exploited systematically by Lawvere in
his work on elementary topoi, regarded as universes of “variable sets”, [Lawvere,
1970b; Lawvere, 1972; Lawvere, 1976].

This insight set the stage for the most advanced developments in domain the-
ory, especially the idea of synthetic domain theory (§10 below) as a comprehensive
framework unifying constructive mathematics and computation theory.

8.1.4 Types as propositions
The interpretation of types as objects of a cartesian closed category, and the

observation that such a category corresponds precisely to positive intuitionistic
propositional calculus, is only one way of arriving at the analogy between types
and formulas that is nowadays called the “propositions as types” correspondence.
As mentioned in §4.2, the first published hints of this correspondence date back to
[Curry, 1934a] and [Curry, 1934b], and it was first described explicitly in [Curry and
Feys, 1958, §9E], as an isomorphism between the provable formulae of intuitionistic
implicational logic and the type-expressions assignable to closed terms.

(In the early 1950s, Carew Meredith had observed that proofs in this logic
corresponded to composite combinators, and that certain fragments of this logic
corresponded to restricted sets of terms, but his observations were not published
till later, see §7 of Notes on the axiomatics of the propositional calculus by C. A.
Meredith and A. N. Prior, Notre Dame Journal of Formal Logic 4 (1963), 171–187.)

In 1969 Curry’s correspondence was extended by Howard to one between proofs
in a sequent calculus version of intuitionistic logic and typed λ-terms. He further
observed (after [Tait, 1965]) that cut-elimination was a consequence of the normal-
ization of terms. Howard’s 1969 manuscript circulated informally and became the
locus classicus of the correspondence, especially in the proof-theoretic literature,
after [Prawitz, 1971] and [Girard, 1972]. It was eventually published in [Howard,
1980]. (Roughly, the idea behind Howard’s contribution may be described as a
generalization of Gödel’s theory of primitive recursive functionals of finite type by
extending the set of types to formulas of Heyting arithmetic.)

Independently of these proof-theorists and with very different motivations, but
at about the same time, there were also two other efforts that led to formalisms
centred systematically around the correspondence between proofs and terms, and
whose technical and philosophical insights still underlie current work on applications
of typed λ-calculi to the mechanization of mathematical proofs. These were Dana
Scott’s work on “constructive validity” [Scott, 1970a], motivated explicitly by an
attempt to analyze the notion of construction as used by the intuitionists, and
Nicolaas de Bruijn’s Automath family of languages for checking the correctness of
ordinary mathematical proofs, [Bruijn, 1980].

The starting point of the Automath project was around 1967, when de Bruijn
began to look at the problem of devising a formal language such that the correct-
ness of a completely formalized mathematical proof can be verified by a computer
program [Bruijn, 1970].57 The design of the Automath languages did not depend
on any philosophical position concerning the foundations of mathematics; in fact,
it is possible to describe the overall format of an Automath text (called a book in

57Our description here is based on [Bruijn, 1994], which contains several remarks of historical
interest on the Automath languages. More details can be found in [Bruijn, 1980], and the editors’
introduction to [Nederpelt et al., 1994], which is a collection of the basic papers on Automath by
de Bruijn and others.
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the Automath jargon) by asking what items of information a machine would need
in order to check its correctness. First of all, the text is subdivided into lines, each
of them composed of the following items: (1) an identifier to refer to that line later
in the book; (2) a definition, indicating whether the identifier is a primitive notion,
a free variable or the abbreviation of a compound expression formed from previous
identifiers; (3) a context that keeps track of which assumptions are valid and which
identifiers are currently visible at that line, and finally (4) a category for the identi-
fier, including a primitive category type.58 The context structure of the Automath
languages is a way of describing proofs in a natural deduction format, and was sug-
gested by the similarity between the block structure of the programming language
Algol [Naur and others, 1963] and the way mathematicians structure proofs.59 The
λ-notation was familar to de Bruijn, who used it systematically in his work in anal-
ysis, and it was natural for him to include (typed) λ-terms in Automath in order
to discharge assumptions by binding free variables, thus making contexts shrink as
well as expand.

More relevant from the point of view of this Section is the interpretation of the
category part of an Automath line. The leading formal insight here consists in unify-
ing the treatment of proofs and objects by observing that in informal mathematical
discourse the two notions play the same role. In the statement of a theorem T it is
usual to declare the category of the objects involved, e.g. “Let x be an integer,” and
the properties that these objects have to satisfy, e.g. “Assume that x > 0.” The
conclusion of the theorem then states a property that depends on the (free) name x,
which can be instantiated to any specific object k provided that k is an integer and
that we have a proof that k > 0. Then the theorem T is more faithfully represented
by an expression of the form T(k, π), showing its dependence on both k and a proof
π that k > 0. In a line where the identifier a has the expression e of category C
as definiens (in a context Γ), a has two possible interpretations: as the name of
the object e of type C, or as the name of a proof e of a proposition P , provided
that C can be interpreted as the type Proof(P ) of proofs of P .60 Types are not
formally identical to propositions; rather, to every proposition can be assigned a
type, the type of its proofs, and asserting a proposition amounts to saying that the
type of its proofs is inhabited [Bruijn, 1970].61 This paradigm of “proofs as objects”
specializes to the constructive interpretation of logical constants following [Heyting,
1956] where, for example, a construction of an implication A ⊃ B is a function that
maps each construction of A to a construction of B. This is recognized in [Bruijn,
1994, p.205] to have been one of the clues to the interpretation of proof classes as
types.62

Typed λ-abstraction is denoted, in languages of the Automath family, by [x :A]B
where B might be a type. If, in a context Γ extended with the assumption that x :A,
the expression e (possibly depending on x) has type B, then the abstraction [x :A]e
has type [x :A]B; but observe that here the expression B can also depend on the
variable x :A (i.e., B may contain free occurrences of x). One interpretation of the
type [x :A]B is set-theoretic: it is the type of functions that assign a result of type

58For a heuristic explanation of how the format of Automath lines can be motivated starting
from a complete formalization of natural deduction proofs, see [Daalen, 1980]. Observe that,
except for the identifier part, the components of a line correspond to those of an ordinary typing
judgement Γ ` e : C, for a context Γ, an expression e and a category C.

59See [Bruijn, 1994]; the natural deduction formalism used by de Bruijn is close to that used by
[Fitch, 1952]. It is worth remarking that the block structure of Algol 60 led Landin to the formal
analysis of that language by means of λ-calculus [Landin, 1965].

60In de Bruijn’s papers, this type was denoted by TRUE(P ).
61This is similar to Kreisel’s notion of modified realizability [Kreisel, 1959] for HAω , where the

type of realizers of a formula A ⊃ B is the function-set σ → τ , if σ is the type of realizers of A
and τ of those of B. See [Oosten, 2002] for a history of realizability.

62The constructive explanation of the meaning of logical constants was learned by de Bruijn
directly from Heyting, who was one of his colleagues in Amsterdam from 1952 to 1960.
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B(a) to every argument a of type A, a type that may be written as
∏

x:A B(x).63

When B does not depend on x, [x :A]B is just another notation for the function
type A→ B. Another interpretation is logical: if A and B represent the proof
classes Proof(P ) and Proof(Q), respectively, then the type [x : Proof(P )] Proof(Q)
represents the proof class Proof(∀x :P.Q), where the formula ∀x :P.Q specializes to
P ⊃ Q when Q does not contain free occurrences of x.

A more uniform approach is obtained in later languages of the Automath family,
[Daalen, 1973], where besides the category type there is a category prop intended to
represent the type of proofs of propositions. If A : prop and B : prop whenever x :A,
then [x :A]B can be read as an abbreviation of ∀x :A.B and, when x :A is not free
in B, of A ⊃ B.

A different and more complex background was behind [Scott, 1970a]. Scott was
interested in setting up a formal calculus of constructions that would substantiate
Heyting’s claim that “there is no essential difference between logical and mathe-
matical theorems, because both sorts of theorems affirm that we have succeeded in
performing constructions satisfying certain conditions” [Heyting, 1958].64

The work [Scott, 1970a] lay at the confluence of several threads. On the one
hand Kreisel’s papers [Kreisel, 1962; Kreisel, 1965] aroused Scott’s interest in the
problem of finding a theory of proofs and constructions on which the interpretation
of intuitionistic logic could be based. Kreisel’s project was taken up by Goodman
[Goodman, 1970] (based on his PhD thesis in Stanford in 1968, supervised by Dana
Scott), who deviated from the original formulation in allowing partial functions,
represented by type-free combinators.

On the other hand, there was the work of Läuchli [Läuchli, 1965; Läuchli, 1970]
on a set-theoretical version of Kleene’s recursive realizability interpretation of intu-
itionistic logic [Kleene, 1945], that we have seen in §8.1.3 above to have influenced
also Lawvere’s work in categorical logic.65

Scott took as central the connection, already exploited by Läuchli and Lawvere,
between the universal quantifier and the cartesian product of an indexed family of
species, and considered also the dual notion of the sum of such a family, with the
evident connection to existential quantification. In general terms, Scott’s system
was “an attempt at axiomatizing in a constructive way a theory of both functions
and families of sets of functions” [Scott, 1970a, p.241].66 The system of Scott
uses intuitionistic sequents ∆ ` A where formulas A are of the two shapes A ∈ B
and A = B, for terms A,B that may denote functions or species depending on the
context, where species here should be understood as types. Term-forming operations
include typed functional abstraction λx∈A.B, which satisfies standard rules with

63If B contains x free, this is a dependent type; for other examples, see §8.3 and G in §5.4.
64A detailed description of the motivations behind [Scott, 1970a], on which our account is based,

is contained in that paper on pp.237–242. The development of Scott’s theory of constructions
was also influenced at an early stage by the design of Automath: a preliminary version of the
above paper, containing a discussion of de Bruijn’s language, was presented in November 1968
at Troelstra’s seminar [Scott, 1968], while Scott was on sabbatical leave in Amsterdam. The
paper itself was read in December of the same year at the Versailles conference on Automatic
Demonstration, whose proceedings also include the first published paper on Automath, [Bruijn,
1970].

65The Russian logician Ju. T. Medvedev in [Medvedev, 1962] had described an interpretation of
the positive part of the intuitionistic propositional calculus in terms of finite problems, following
Kolmogorov, that is quite close to that given by Läuchli. In particular, Medvedev interpreted
conjunction, disjunction and implication by means of cartesian product, disjoint union and expo-
nentiation of sets, as Läuchli did.

66The attempt to develop a purely category-theoretic treatment of parameterized families of
sets started around 1970 in Lawvere’s lectures at Dalhousie University, was further developed in
[Lawvere, 1972] and led to the theory of indexed categories, [Johnstone et al., 1978], that may be
seen as a continuation of Lawvere’s earlier work on hyperdoctrines (§8.1.3). A related approach
was that of [Bénabou, 1985] using fibrations, and both approaches are relevant to the semantics
of dependent types and higher-order type theories discussed later, in §8.3.
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the notable exception of rule (ξ) to allow for an intensional interpretation. The
type of the above λ-abstract is a dependent product given by the rule:

∆, x ∈ A ` B ∈ C
∆ ` (λx ∈ A .B) ∈ (∀x ∈ A .C)

(where x 6∈ ∆)

which is at the same time the ∀-introduction rule. The dual elimination rule is the
typing rule for application:

∆, f ∈ (∀x ∈ A .B), x ∈ A ` f(x) ∈ B.

The usual (non-dependent) function type becomes A→ B =def ∀x ∈ A .B where B
does not depend on x ∈ A. It is under this identification that the correspondence
between types and propositions becomes evident, and in fact a theorem of this
calculus of constructions like

x ∈ A ` [∀f ∈ (∀x ∈ A .B) . f(x)] ∈ (∀x ∈ A .B)→ B

is the logical axiom of universal instantiation [Scott, 1970a, p.248]. The clearest
statement of how the correspondence works in general is to be found in this paper
(p.260):

“We began by regarding species and constructions as mathematical ob-
jects and found that there were some simple axioms governing their prop-
erties. It then became slowly apparent that these properties were highly
analogous to properties familiar from formal logic. We then turned this
analogy into a dogma by insisting that the logical formulas be read (bet-
ter: interpreted) as (mathematically meaningful) terms of the theory of
constructions. This interpretation requires that validity be asserted by
the act of giving an explicit construction belonging to the (interpretation
of the) formula. Validity is established by giving a proof from the ax-
ioms for constructions of the membership assertion. [. . . ] a proposition
does not simply degenerate to one of two truth values but instead is rep-
resented by a complex species of possible constructions that conceivably
can be used in its validation.”

Scott’s full description of the correspondence follows almost verbatim the expla-
nations of the meaning of the logical constants given in [Heyting, 1956; Heyting,
1958]:

Formula Construction
A ∧B a pair of constructions, the first of which justifies A, and

the second B
A ∨B a pair whose first coordinate is either 0 or 1: if 0 then the

second coordinate justifies A; if 1, then B
> the justification is 0, as > =def {0}
⊥ no justification is known, as ⊥ =def { }
∀x ∈ A .B a construction that maps every element a ∈ A into a jus-

tification of B(a)
∃x ∈ A .B a pair whose first coordinate is an element a ∈ A and whose

second coordinate justifies B(a).

The correspondence between proposition and types was used systematically in
the intuitionistic type theory of Martin-Löf. That theory was first proposed in 1971
but then underwent several revisions; cf. [Martin-Löf, 1971b; Martin-Löf, 1972b;
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Martin-Löf, 1975; Martin-Löf, 1984].67 Martin-Löf had learned about this corre-
spondence from Howard in early December 1968, and had exploited it already in a
paper, written in March 1969 and eventually published as [Martin-Löf, 1972a], on
the infinitary proof theory implicit in [Tait, 1965]. The first proposal of intuitionis-
tic type theory included a type constant V such that A : V meant that A is a type,
with the axiom that V : V . This assumption allowed for a very succinct system: the
primitive notions could be reduced, essentially, to typed λ-abstraction, dependent
product and the constant V , using the coding of Russell and Prawitz to define the
following basic type constructors (i.e., logical connectives) [Russell, 1903, §§18,19],
[Prawitz, 1965, Ch. V, Thm. 1]:

⊥ =def ∀X : V . X

A×B =def ∀X : V . (A→ B → X)→ X

A+B =def ∀X : V . (A→ X)→ (B → X)→ X

∃x :A .B(x) =def ∀X : V . (∀x : A . (B(x)→ X)→ X.

There were substantial motivations for making the strong impredicative assumption
of a type of all types, based on the simultaneous acceptance of

“the following three principles. First, quantification over propositions,
as in impredicative second order logic. Second, Russell’s doctrine of
types according to which the ranges of significance of propositional func-
tions form types so that, in particular, it is only meaningful to quantify
over all objects of a certain type. Third, the identification of proposi-
tions and types” [Martin-Löf, 1971a, p.5].

However, the theory turned out to be inconsistent, as a form of the Burali-Forti para-
dox could be coded in it.68 The impredicative character of the theory was removed
in its subsequent versions [Martin-Löf, 1972b; Martin-Löf, 1975; Martin-Löf, 1982;
Martin-Löf, 1984]. Broadly, the outcome can be described as an intuitionistic theory
of iterated inductive definitions developed in the framework of dependent types,69

but here the correspondence between types and propositions is even more systemat-
ically exploited than in the systems discussed earlier. The correspondence suggests
a formulation of the rules for type-forming operations as introduction and elimina-
tion rules, as in [Gentzen, 1935]. This yields automatically a notion of reduction
for terms as deductions as in [Prawitz, 1965; Prawitz, 1971], from which computa-
tion rules can be read off directly. The resulting system then becomes a functional
programming language including its own logic, whose formulas are regarded as
program specifications, as Martin-Löf himself pointed out in [Martin-Löf, 1982].70

It was that paper that first outlined a correspondence between proof-theory and
the theory of functional programming languages that had a widespread conceptual
and terminological influence on logically-oriented functional programming. In par-
ticular, under the identification of propositions with types, the introduction rules

67Martin-Löf’s work on this theory began in October 1970. It grew out of earlier proof-theoretical
work on normal form theorems (Hauptsätze) for the intuitionistic theory of iterated inductive
definitions, the theory of species and intuitionistic simple type theory, and also an interest in
category theory, which was found inadequate as a foundational framework because of its lack of a
clear distinction between extensional and definitional equality.

68This was proved by Girard [Girard, 1972, III, Annexe A], and his paradox was studied in
[Coquand, 1986]; for a study of this system from a different point of view, see [Jacobs, 1989], who
suggested that Girard’s paradox could be viewed as a version of the paradox of Mirimanoff on the
universe of well-founded sets [Mirimanoff, 1917].

69This appropriate description was given in [Coquand, 1999].
70The particular technique used in describing the computation rules in [Martin-Löf, 1982] is

closely related to what is now called “structured operational semantics”, cf. [Plotkin, 1981] and
[Kahn, 1988].

34



behave as the constructors of [Landin, 1964], while logical constants correspond
to operations that form new types by specifying what are their canonical elements
(i.e., those whose outermost symbol is a constructor), like the concrete data types of
functional programming languages since [Burstall, 1977] (see [Peyton Jones, 1987,
§4.1.4]).

On the more philosophical side, these ideas are also in accordance with a theory
of meaning that started from [Gentzen, 1935, §II.5.13], according to which the
meaning of a logical constant is determined by its introduction rules in a system
of natural deduction, whereas the corresponding elimination rules depend on this
meaning. It was this idea that led to a precise formulation in [Prawitz, 1965] of
the “inversion principle” of [Lorenzen, 1955], where it contributed to isolating the
reduction rules for derivations in natural deduction. The meanings of the constants
of Martin-Löf’s intuitionistic theory of types were first studied in [Hancock and
Martin-Löf, 1975] for a simple language of primitive recursive definitions; these
studies were brought to a more mature state with [Martin-Löf, 1984; Martin-Löf,
1985; Martin-Löf, 1987], and were very relevant to the work on the semantics of
intuitionistic logical constants, and more generally to the constructive theories of
meaning and the philosophical foundations of the intuitionistic interpretation of
mathematical propositions (see [Sundholm, 1986] for a survey of this area until
1985).

Work related in several ways to Martin-Löf’s theory of types had also been
carried out at Cornell University by Robert Constable and his collaborators from the
early 1970s. Constable attributed to Kleene’s work on realizability in the 1940s the
awareness that various kinds of constructive proofs can be compiled into executable
code, [Constable, 1982, p.3]. For instance a proof of an assertion of the form “for all
integers n there is an integer y such that R(n, y)” can be compiled into a computable
function f such that R(n, f(n)).

He proposed in [Constable, 1971] that certain constructive formal systems could
be used directly as programming languages, and designed a programming logic based
on this idea in [Constable and O’Donnell, 1978]. Further refinements of this system,
[Constable, 1980; Constable, 1985; Bates and Constable, 1985], together with the
inclusion of ideas from [Martin-Löf, 1982] and from Edinburgh LCF (§8.1.2), led
eventually to the Nuprl system [Constable and others, 1986] that manipulated proofs
directly in a version of Martin-Löf’s intuitionistic type theory.

From the researchers in the Nuprl group also emerged an extension of the “types
as propositions” idea to classical logic. In particular, Tim Griffin and Chetan
Murthy ([Griffin, 1990], [Murthy, 1991]) observed a correspondence between the
continuation passing style translation of control operators for λ-calculus [Felleisen
et al., 1987] and the double-negation translation of classical into intuitionistic logic
as described, for example, in [Friedman, 1978].

8.2 Early normalization proofs

From a syntactic point of view, the most desirable properties of a system of typed
terms include the weak normalization (WN) property that every typed term has a
normal form, and, better, the strong normalization (SN) property that no infinite
reductions exist.

The first proof of such a property for λ or CL was by Turing, as mentioned in
§5.1. Turing’s proof covered λ-terms with pure arrow types and β-reduction. It was
found in a typewritten note among his papers after his death, and is known to have
been composed before 1942, but was not published until about 40 years later, when
it appeared as [Turing, 1980].

In the meantime Curry made a very different WN proof in the 1950s using cut-
elimination, and this was the first proof to be published; it appeared in [Curry and
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Feys, 1958, §9F6, Cor. 9F9.2].71

The method used by Turing was re-discovered independently several times in the
1960s and ’70s, for example by James H. Morris in his unpublished thesis [Morris,
1968, p.107 Thm. 2], and by Garrel Pottinger in [Pottinger, 1978, p.448] (with or-
dinals added in). The first published proof using Turing’s method was in [Andrews,
1971, p.417, Prop. 2.7.3], where the author’s source for the proof was given as James
Guard, who was, like Andrews, a 1960s student of Church, and the theorem was
attributed to “folklore”.

For stronger type-systems, several WN proofs were made in the 1960s. The
initial stimulus was Gödel’s Dialectica paper [Gödel, 1958], together with studies
of the ideas behind it led by Kreisel in Stanford University. Roughly speaking,
Gödel interpreted first-order arithmetic in a logic-free theory T of primitive recursive
functionals of finite type, and deduced the consistency of arithmetic by finitary
reasoning from an assumption that all closed terms in T of numerical type (closed
type-0 terms) computed to unique numerals. One way of formalizing T was as
a version of typed CL or λ augmented by primitive-recursion operators, and the
above computability property of T then became the statement that WN held for
all closed type-0 terms of the augmented CL or λ..72 This drew the problem of
verifying the WN theorem for such extensions of CL and λ to the forefront, and
at least five different WN proofs came into being by 1966. Two were made around
1963 by Tait. One of these was published in [Tait, 1965]; it covered a version of λ
augmented by certain infinite terms, but based on a weak λ-reduction analogous to
weak reduction in CL. The other was reported in the informally circulated notes of
a seminar held at Stanford in 1963 (Section V Appendix B), but was not actually
published until [Tait, 1967]; it covered CL augmented by operators for primitive
recursion and bar-recursion. It introduced the method due to Tait that is now
more or less standard, of defining by a carefully organised induction on types a
computability predicate that implies normalizability, and proving by induction on
terms that all terms satisfy this predicate.73

Other early normalization proofs for versions of Gödel’s T included ones in 1965
by Luis Sanchis for (CL+R)t [Sanchis, 1967, Thm. 8], in 1966 by Justus Diller for
(λβ+ R′)t [Diller, 1968, §6], in 1966 by Yoshito Hanatani [Hanatani, 1966], in 1967
by Shigeru Hinata [Hinata, 1967], and in 1968 by A. G. Dragalin [Dragalin, 1968].
For more on normalization proofs stemming from Gödel’s T , see [Troelstra, 1973,
§§2.2.1–2.3.13, esp. 2.2.35].

The property SN can be seen as a safety feature for computing systems. But
at first there was no interest in this property, as WN was all that was needed in
consistency proofs; the WN proof in [Tait, 1967] would have needed almost no
change to give SN had Tait wanted it. The first explicit SN proof was Sanchis’ 1965
proof mentioned above. An SN proof by directly assigning ordinals to terms was
made by Howard in 1968, [Howard, 1970]; it worked for weak λ-reduction augmented
by R, but not for full-strength λβR-reduction. (An extension to that reduction had

71Curry’s WN theorem was for CL with βη-strong reduction. It was deduced via a λ-CL trans-
lation from his cut-elimination theorem for a system based on λβ, see §5.4 above.

72A simple formalization of Gödel’s T is the system (CL+R)t defined in outline in [Hindley and
Seldin, 1986, 1st edition, pp.297–299]. It consists of CL with weak reduction plus a constant Rτ

for every type-expression τ , with reduction-rules Rτ XY 0 . X, Rτ XY (succn) . Y n(Rτ XY n).
(Types are omitted here, and 0 and succ are atoms.) A proof of WN (indeed SN) for (CL+R)t is
in [Hindley and Seldin, 1986, 1st edition, Appendix 2], based on the method in [Tait, 1967].

By the way, although Rτ was adequate to formalize T , [Tait, 1967] and many other formaliza-
tions were actually equivalent to a slightly stronger operator R′τ with the rule R′τ XY (succZ) .
Y Z(R′τ XY Z).

73In [Tait, 2001, §5] Tait expressed the opinion that his computability idea had been anticipated
by Gödel in unpublished notes in 1938 and lectures which were given in 1941 but not published
in print, see [Gödel, 1995, items *1938a, *1941]. But our interest here is only in explicit proofs of
WN, and none occurs in these sources.
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to wait for nearly 30 years, until Gunnar Wilken and Andreas Weiermann’s [Wilken
and Weiermann, 1997].) After the 1960s, most workers studying normalization
aimed to prove SN whenever possible.

Normalization proofs for Gentzen-style natural deduction systems of logic are
also relevant here, because deductions in such systems can be viewed as a kind of
typed λ-terms. Some such proofs will be mentioned in the following sections. For
others, the reader is referred to the history of mainstream proof theory.

8.3 Higher-order type theories

In 1953, Gaisi Takeuti formulated a sequent calculus GLC for higher-order logic
and conjectured that the cut-elimination property would hold for it, i.e. that if a
formula had a derivation D in GLC then it would have a derivation D∗ in which
the cut-rule was not used, [Takeuti, 1953].

After 13 years, two proofs of Takeuti’s conjecture were eventually found for the
second-order fragment of GLC [Tait, 1966; Prawitz, 1967], and Moto-o Takahashi
and Dag Prawitz found proofs for the whole of GLC [Takahashi, 1967; Prawitz,
1968]. But these proofs gave no procedure for finding D∗ from D; they all relied
on a result of Kurt Schütte which reduced the conjecture to the problem of proving
that every partial valuation could be extended to a total valuation [Schütte, 1960].

The first proof to contain a procedure to find D∗ was made by Jean-Yves Girard
in 1970, see [Girard, 1971; Girard, 1972].

Girard formulated two systems of typed λ-calculus, F corresponding to the
second-order fragment of GLC, and the system nowadays called Fω corresponding
to full GLC, and he solved Takeuti’s problem via proofs of SN for these systems.
The key idea in his SN proofs, candidats de réductibilité, was a development of Tait’s
computability method, [Tait, 1967], and was very quickly adopted and extended by
other workers in proof-theory and has been used widely since.74

Girard’s system F is particularly important in our story.75 Its main novelties
were the possibility of forming universally quantified types ∀t.σ, and the operation
of applying a term M of type ∀t.σ to a type τ . Corresponding to this operation
there was an abstraction operation Λt.M to represent a function whose application
to a type τ reduced to the term M{τ} of type [τ/t]σ. The impredicativity implicit
in this extension, whereby the type variable t in ∀t.σ ranged over all types, including
∀t.σ itself, made the SN proof for reductions in this calculus far from obvious.

The impact of system F was limited to proof theory in the years immediately
following its invention, but the idea of having λ-terms taking types as parameters
was also becoming important in those years in the theory of programming languages
(see, for example, [Cheatham Jr. et al., 1968]). It is not surprising, then, that
almost the same system was independently reinvented in 1974 by John Reynolds,
[Reynolds, 1974].76 One motivation for the development of a system of quantified
types was the formalization of ideas on polymorphism in programming languages
expressed by Christopher Strachey (see, e.g., [Strachey, 1967, §3.6.4]), especially
the notion of parametric polymorphism. Take, for example, the function map that
applies a function f to all elements of a list. If f : σ → τ , then it is natural to
assign to map(f) the type List(σ) → List(τ) that depends parametrically on σ and
τ . By using universally quantified types, map could be assigned the type

∀s.∀t. (s→ t)→ (List(s)→ List(t)).

74An analysis of Girard’s method, and of several SN proofs that use it, is [Gallier, 1990].
75For an introduction to system F, see [Girard et al., 1989].
76Reynolds has often pointed out that he presented his paper in April 1974 at a meeting at Paris

VII University, where Girard was teaching, but nobody in the audience noticed the similarity of
the two systems or brought Girard’s work to his attention.
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An important remark was that polymorphic terms can be used to represent basic
data structures; for example the natural numbers can be represented by polymorphic
Church numerals of the form

Λt. λf : t→ t. λx : t. f(· · · (fx) · · · ),

each having type
nat = ∀t. (t→ t)→ (t→ t),

see [Girard, 1972, p. I.5.5]. Representations which occurred in [Girard, 1972, pp.
I.5.2, I.5.3], also in [Martin-Löf, 1971b, §3] which referred to [Russell, 1903], were

σ × τ = Λt. ((σ → (τ → t))→ t),
σ + τ = Λt. ((σ → t)→ ((τ → t)→ t)).

The boolean values had representations

Λt. λx : t. λy : t. x, Λt. λx : t. λy : t. y

of type
bool = ∀t. t→ (t→ t).

The representation of a list [e1, . . . , en] of elements of some type s appeared in
[Reynolds, 1983, p.520] as the term

Λt. λf : s→ (t→ t). λx : t. fe1(· · · (fenx) · · · )

of type
list(s) = ∀t. (s→ (t→ t))→ (t→ t)

and was said to have been “suggested by a functional encoding of lists devised by
C. Böhm”.

Another source for representations by polymorphically typed terms was [Leivant,
1983]; this had some influence on Böhm and Berarducci [Böhm and Berarducci,
1985] which contained a systematic account of how to encode many-sorted term
algebras as closed types of the polymorphic λ-calculus, together with the iteratively
defined functions over them as polymorphic terms.77

We have remarked that the main motivation for Reynolds’ development of the
polymorphic typed λ-calculus was the formal clarification of Strachey’s notion of
parametricity , by describing the uniform dependence of a polymorphic term Λt.M
upon an input type. Informally, the behaviour of a parametric function defined by
such a term should not depend on the input type or, in other words, should be the
same for all input types [Reynolds, 1983, p.519]. The main technical difficulty was
to compare values whose types were different, and Reynolds proposed a semantic
criterion of parametricity, consisting in the property of terms of the form Λt.M
of preserving certain hereditarily defined relations between sets corresponding to
different types [Reynolds, 1983].78 Reynolds’ notion of parametricity was based,
however, on a set-theoretical interpretation of polymorphic types extending the
general models of Henkin (§8.1.2 above). Accordingly, the relational account of
parametricity showed several similarities with the theory of logical relations, in
particular with the treatment of definability in [Plotkin, 1980].

The existence of a set-theoretic model for the polymorphic typed λ-calculus
was conjectured in [Reynolds, 1983]. But a year later Reynolds disproved his own

77There are several accounts of these representations in the literature: for example [Girard et
al., 1989, §§11.3,11.4,11.5] and [Leivant, 1990, §3], besides the original papers.

78Formal systems based on this relational approach to parametricity are described in [Abadi et
al., 1993] and [Plotkin and Abadi, 1993]. For a survey of parametricity see also [Longo et al., 1993,
§1] and [Longo, 1995].
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conjecture by showing that the functor (over the category of sets and functions)
(2X)X is definable by a type expression, hence should have an initial algebra A ∼=
(2A)A, which is impossible by a cardinality argument.79

The model theory of system F was initiated by Girard in his [Girard, 1972,
§II.5], which contained the description of a model HEO2 (and its generalizations to
higher-orders HEOn) based on the Kleene applicative structure 〈N, ·〉, where n ·m
denoted the result of applying the n-th partial recursive function to the argument
m. Every type σ was interpreted as a pair consisting of a set Dσ ⊆ N×{σ} and an
equivalence relation =σ over Dσ.

For functional types σ → τ this interpretation was specified by the clauses:

– Dσ→τ is the set of all pairs (e, σ → τ) such that for all (e1, σ) and (e2, σ) in
Dσ, e · ei is defined for i = 1, 2 and is an element of Dτ , and
(e · e1, τ) =τ (e · e2, τ) whenever (e1, σ) =σ (e2, σ);

– (e1, σ → τ) =σ→τ (e2, σ → τ) iff (e1 · x, τ) =τ (e2 · x, τ) for all (x, σ) in Dσ.

The interpretation of for-all-types used the notion of primary type P , defined
as a set A ⊆ N containing 0 together with an equivalence relation on A. Then the
pair D∀t.σ with the equivalence =∀t.σ was specified by the clauses:

– D∀t.σ is the set of all pairs (e,∀t.σ) such that (e, [P/t]σ) ∈ D[P/t]σ for all
primary types P ;

– (e1,∀t.σ) =∀t.σ (e2,∀t.σ) iff (e1, [P/t]σ) =[P/t]σ (e2, [P/t]σ) for all primary
types P .

With some simplifications, see [Troelstra, 1973, §§2.4.11, 2.9.7], this was to
become probably the best-known model for the polymorphic typed λ-calculus, the
model based on partial equivalence relations (PERs), i.e., symmetric and transitive
relations over some type-free structure like 〈N, ·〉 or, later, over some model of
untyped λ-calculus [Scott, 1976, §7].80

Reynolds’ proof of the non-existence of set-theoretic models of polymorphism
made an essential appeal to classical logic. In fact, two years after Reynolds’ result,
it turned out that, within a constructive metatheory provided by the internal logic of
an elementary topos, the set-theoretic intuitions behind the polymorphic λ-calculus
could be rescued by internalizing the constructions of category theory within such
a topos, looking at the latter as a constructive universe of sets.

Already in 1984, Eugenio Moggi described to Martin Hyland, then visiting Pisa,
a way of looking at a model of polymorphic λ-calculus as an internal cartesian closed
category M in a topos E, with M having all products indexed over the objects of
M itself. Moggi found such a model in 1986 by taking E to be the effective topos
of [Hyland, 1982] and M as the category of modest sets, which was equivalent to
the familiar category of partial equivalence relations over the applicative structure
〈N, ·〉, directly related to Girard’s HEO2 model of system F. The right notion
of completeness needed to make M a small complete category was then found by
[Hyland, 1988].

Remarkably, the intersection of a family of partial equivalence relations becomes
their product under internalization. It is the existence of such a small complete

79Reynolds’ result was generalized by Plotkin in a letter to Reynolds dated July 16, 1984. His
remarks led to [Reynolds and Plotkin, 1990]. (By the way, [Reynolds, 1974] contained a proposal
for a model of Reynolds’ first polymorphic system, but with a warning that its discussion contained
a “serious lacuna”. As he has pointed out since, this warning turned out to be justified, in that
the proposed model did not work.)

80Some historical remarks on the notion of PER as an interpretation of types are given in [Bruce
et al., 1990], where we learn that they were introduced in [Myhill and Shepherdson, 1955] for types
of first-order functions, and then extended to simple types by [Kreisel, 1959].
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category inside a universe of constructive sets that enables one to interpret a poly-
morphic type ∀X.A[X], roughly, as a product

∏
X∈M AX of a family of elements

of M indexed by M itself.81 In particular, completeness of M implies that every
functor T : M→M has an initial algebra 〈A, a : TA→ A〉, which is the stumbling
block to the construction of a set-theoretic model of system F.

From the present point of view, it is of some interest to observe that these de-
velopments exploit in an essential way the language of category theory, especially
the notion of indexed category [Johnstone et al., 1978], which has become a funda-
mental tool in the semantical description of theories of dependent types and may
be regarded as a natural outgrowth of Lawvere’s work on hyperdoctrines and topoi
in the 1970s.

A polymorphic type ∀t.σ is, implicitly, a dependent type (Πt : type). σ, provided
suitable rules about the constant type are added to systems with dependent types
like those of §8.1.4 or §5.4. As mentioned in §5.4, a general system of dependent
types was developed and studied from 1972 to 1975 by Seldin, [Seldin, 1979]. But
a stronger system offering an integration of polymorphism with dependent types
was the calculus of constructions, developed by Thierry Coquand and Gérard Huet
from 1984 onwards. It was described in a series of papers starting with Coquand’s
Thèse de Troisième Cycle: [Coquand, 1985], [Coquand and Huet, 1985], [Coquand
and Huet, 1988], [Coquand, 1990]. The calculus of constructions has been concisely
described as “a version of type theory that expresses naturally Heyting semantics
of intuitionistic higher-order logic” [Coquand, 1990, p.91]. Paradoxes like that de-
scribed by Girard for Martin-Löf’s impredicative version of intuitionistic type theory
were avoided by adopting a restricted form of the identification between types and
propositions, which only assumed that to each proposition is associated the type
of its proofs. But the other two points in Martin-Löf’s argument for introducing
a type of all types quoted on page 34 above, namely quantification over proposi-
tions and the doctrine of types as ranges of significance of propositional functions,
were preserved. The resulting system was therefore quite similar to that described
in [Martin-Löf, 1971b], and also to some of the systems in the Automath family,
extended by quantification over elements of type, a possibility already envisaged in
[Bruijn, 1970, §12.6]. For the calculus of constructions a weak normalization proof
was given in [Coquand, 1985, §4, Cor. 1], together with some hints on how Girard’s
notion of candidat de réductibilité might be extended to give an SN proof for this
system. A proof of SN for deductions and for terms was included in [Seldin, 1987,
§4.3] and [Seldin, 1997, §3].

8.4 Intersection types and recursive types

In systems where types denote sets, a natural extension of the language of simple
type theory would be to adjoin types of the form σ ∩ τ to denote the intersection
of whatever sets were denoted by σ and τ .82 This extension was actually made in
the late 1970s. Its history was, however, less simple than might be expected given
the naturalness of the idea.

Systems of intersection types are usually “Curry-style” systems, in which types
are assigned to untyped terms by rules and an infinite number of types may be
assigned to one term, rather than “Church-style” systems, in which each term has a
unique built-in type. They also use types, not as safety-devices to avoid paradoxes,
as Russell and Church did, but simply as labels to describe the formal computational
behaviour of terms.

81This result was announced in a famous message by Moggi to the types electronic forum, at
that time moderated by Albert Meyer, dated February 10, 1986. The result and its background
are discussed in much more detail in [Longo and Moggi, 1992] and [Asperti and Longo, 1991].

82In the present subsection and §8.5, “type” is short for “type-expression”.
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According to ideas of Böhm on the use of λ-calculus as a programming language
(cf. §6.3), data and programs are represented by λ-terms thought of as states of a
computation that evolves by applications of the rule of β-reduction, with normal
forms corresponding to final states. The notion of program equivalence that arises
from this approach regards two programs (i.e. λ-terms) P and P ′ as equivalent if, for
every argument F , either PF and P ′F both have normal form and PF =β P

′F , or
both fail to have a normal form.83 In order to match this notion of equivalence with
convertibility, it turned out to be essential that P , P ′ and F have normal forms,
see [Böhm and Dezani, 1975]. This remark prompted a search for a classification
of normal forms according to their normalizability when applied to other normal
forms.

Starting in 1975, a suitable classification was defined and analysed by Böhm
and his former students in Turin, Mariangiola Dezani and Mario Coppo; see [Böhm
and Dezani, 1975], [Dezani, 1975], and [Böhm et al., 1977]. The theme of types
was introduced in [Dezani, 1975]; each normal form was given a finite sequence
(m, j, h1, . . . , hn) or (ω, h1, . . . , hn), called its “type”, which encoded a description
of its computational behaviour. Types appeared again in [Coppo and Dezani, 1978],
written in 1977, in which simple types were assigned to all normal forms, including
those untypable in previous simple type theories, by new rules involving two formally
defined relations between types, an equivalence and a pre-order. The atomic types
were 0, to represent the set of all normal forms, and 1 for the set of all terms whose
application to any finite sequence of normal forms always reduces to a normal form.

In 1977 Coppo and Dezani put forward the idea of assigning a finite sequence of
types to a term to say that this term denoted a member of a finite intersection. This
was published in [Coppo and Dezani, 1978], and the results in that paper included
the theorem that the types received by a term were invariant under conversion in
the λI-calculus.

The sequence idea was extended by Patrick Sallé in Toulouse, [Sallé, 1978, §5].
He adjoined a new atomic type-constant ω to denote the universal set, and by
this means he extended the conversion-invariance theorem from λI to the full λK-
calculus, and described the connection between non-ω types and head-normal forms,
see [Sallé, 1978, Thms. 9–12] and the joint paper [Coppo et al., 1979, Thms. 1, 2].
The system with sequences and ω was further studied in [Coppo et al., 1980] and
[Coppo et al., 1981]. In §5 of the former paper, Betti Venneri showed that, by
interpreting a closed term as the set of all its types, one could obtain a new model
of untyped λ-calculus.

The intersection idea was also invented independently by Pottinger, who proved
some of its basic properties in [Pottinger, 1980].

But although the intersection system was perfectly adequate for its original
purpose, it was not semantically complete. Suitable extra deduction-rules to make it
complete were first formulated in 1980, by Coppo, Dezani and Barendregt together,
[Barendregt et al., 1983], and by Hindley independently, [Hindley, 1982]. The system
given in [Barendregt et al., 1983] soon became standard: its types were built from
variables and ω by means of constructors→ and ∩, and it contained rules defining a
relation≤ between types analogous to the subset relation. In what is nowadays often
called the “generation lemma” [Barendregt et al., 1983, Lemma 2.8] the invertibility
of its main rules was proved, and from this a normalization theorem for deductions
was deduced, [Barendregt et al., 1983, Cor. 4.9]. In [Barendregt et al., 1983, §3]
the first of the interesting class of λ-models called filter models was defined, whose
elements were filters (i. e., ≤-upward closed and ∩-closed sets) in the set of all types.
These models turned out to be closely related to the original Scott construction to
be discussed below in §9.1.

83This is close to the notion of contextual equivalence in [Morris, 1968] discussed in §7.1.
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Over the next 10 years the system of [Barendregt et al., 1983] was studied
intensively, with many interesting results emerging, for example an analysis of its
principal types by Simonetta Ronchi della Rocca and Venneri in [Ronchi della Rocca
and Venneri, 1984] and [Ronchi della Rocca, 1988]. Applications of intersection
types included their use in type systems for the control of interference in Algol-like
languages, [Reynolds, 1989] and in static analysis of functional programs, [Coppo
and Ferrari, 1993].

The use of types for describing behavioural properties of terms motivated several
other type systems in the 1980s, for statically detecting properties of λ-terms and
(functional) programs. Among these, the recursive types (see, e.g., [MacQueen et
al., 1984], [Coppo, 1985] and [Cardone and Coppo, 1991]) were a natural extension
of Curry’s type inference system by adjoining types of the form µt.σ to represent
the solution of the equation t = σ, where the type variable t may occur in σ. (The
possibility of having circular type expressions was already considered in [Morris,
1968], see above §7.1.) Clearly, recursively typed λ-terms lack the normalization
property, e.g. ∆∆, where ∆ ≡ λx.xx, can be assigned every type σ, provided x
is given type µt.t → σ (which is equivalent to (µt.t → σ) → σ). But there is a
principal typing algorithm for the basic type inference system for recursive types
(extending fairly directly the one for Curry’s system, §8.5), and this makes it a
rather practical tool for preventing incorrect applications when special constants
like e.g. arithmetical primitives are added to the λ-calculus [Wand, 1987; Cardone
and Coppo, 1991].

The semantics of recursive types systematically exploited the techniques in-
vented towards the end of the 1960s for solving recursive equations involving sets.
Typical among these is the solution of the equation D = D → D satisfied by a
model of pure, extensional λ-calculus that will be discussed at some length in §9.1.

Recursive types are also interesting when added to higher order type systems
like system F , or to systems that include a subtyping relation: such a system was
first proposed by Luca Cardelli and Peter Wegner in [Cardelli and Wegner, 1985]
as a tool for analyzing certain features of object-oriented programming languages,
originating a whole new field of research; see, for example, [Gunter and Mitchell,
1994] and [Pierce, 2002].

8.5 Algorithms for simple types

For a given system of terms and types, a typability test decides whether an untyped
term M is typable in the system; it is called a principal type algorithm if it fur-
thermore assigns to any typable term its principal type, i.e. the most general type
it can receive under the system’s rules. Such algorithms have no meaning for a
Church-style type-system, which has no untyped terms in its language, but only for
Curry’s style, in which types are assigned to untyped terms by rules, cf. §4.2.

In §4.2 we mentioned that Quine’s concept of stratified formula was based on a
Curry-style approach, [Quine, 1937, pp. 78–79]. In 1942 a test for stratification was
invented by M. H. Newman and stratification was proved equivalent to typability,
[Newman, 1943, §§1–4]. But Newman also extended his algorithm to give a typabil-
ity test for λ-calculus, with a proof of its correctness. Unfortunately his exposition
was rather abstract, and his paper was not read by any later worker on typability
tests until the preparation of the present history, as far as we know.84

A more direct test, which moreover gave principal types, was described infor-
mally in [Curry and Feys, 1958, §§9B2–4]. Roughly speaking, for a given term M

84For an outline of [Newman, 1943], see Hindley’s extended review M. H. Newman’s typability
algorithm for lambda calculus, Journal of Logic and Computation, to appear, 2006/7. Newman’s
test was not a principal type algorithm; indeed his paper contained no concept of principal type.)
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its method is to list all M ’s subterm-occurrences with their types given as type-
variables, write out equations connecting these variables, and then solve these equa-
tions as generally as possible. Several examples were worked out in detail in [Curry
and Feys, 1958], but the method was not stated explicitly as a formal algorithm.
Curry later wrote it out as a formal algorithm, with a proof of its correctness, in
private notes [Curry, 1966] and a paper [Curry, 1969a].

A different principal type algorithm, which used the unification algorithm of
[Robinson, 1965] to save itself some work, was made and proved correct by Hindley
for CL in 1967, [Hindley, 1969b, §3]. (Curry and Hindley communicated during the
writing of [Curry, 1969a] and [Hindley, 1969b] but deliberately kept their approaches
different.)

A Curry-style equation-solving algorithm for λ was made, with a correctness
proof, by James H. Morris in his thesis [Morris, 1968, Ch. 4, §E], independently of
Curry’s and Hindley’s 1966–69 work.

Then the 1970s and ’80s saw the development of the programming language ML
by the group led by Robin Milner in Edinburgh. ML included a type-assignment
system for λ plus the extra operator let, and Milner described a principal type algo-
rithm for it in [Milner, 1978, §4.1, Algorithm W]. This algorithm was unification-
based like that in [Hindley, 1969b], though it was invented independently. It was
rewritten and extended in [Damas and Milner, 1982], and its correctness was proved
by Luis Damas in his thesis [Damas, 1984].

After 1980, typability and principal-type algorithms were made for various more
complex systems, some depending on pre-existing unification algorithms and some
being self-sufficient: for a survey see [Tiuryn, 1990]. A long-standing open problem
was the existence of a typability test for Girard’s system F (see §8.3 above); this
was raised by Daniel Leivant in [Leivant, 1983], and was solved in the negative by
Joe Wells in 1994; indeed Wells proved that not even type-checking for this system
was decidable, [Wells, 1994; Wells, 1999].

But the history of principal type algorithms is not confined to type theory,
strange to say. Under the propositions-as-types correspondence, simple types whose
atoms are variables become propositional formulas, and a combinator M with prin-
cipal type τ becomes a proof of τ by the propositional rule called condensed detach-
ment.

Roughly speaking, the condensed detachment rule corresponds to the construc-
tion of the principal type of a term PQ from those of P and Q. It was invented by
the Dublin logician Carew Meredith at some time before 1954, and was first used
in print in [Lemmon et al., 1957, §9]. Meredith never published a formal statement
of it, but his cousin David Meredith was taught the rule by him in 1954, wrote it
up as a program, and ran it on the computer UNIVAC1 in the U.S.A. in 1957.85

Thus, by 1957 the key step in a principal-type algorithm had not only been stated
formally, but had been implemented on a machine.

Looking further back: an argument very like an analysis of a particular case of
condensed detachment was used in [ Lukasiewicz, 1939, Engl. edn., p.276].  Lukasie-
wicz attributed his method to Tarski, and in [ Lukasiewicz and Tarski, 1930, Engl.
edn., p.44] a method was mentioned which might perhaps be the one to which he
referred. But the method was not actually described there, and “might perhaps” is
conjecture not history. (See [Kalman, 1983, §4] for further comments.)

Other algorithms for the simple type theory of pure λ and CL include the count-
ing algorithm made by Choukri-Bey Ben-Yelles in 1979 for counting and listing the
normal inhabitants of a given type, see [Ben-Yelles, 1979, Ch. 3] or [Hindley, 1997,

85For a formal statement of the condensed detachment rule, see [Kalman, 1983, §2] or [Hindley,
1997, §7D]. For further historical information, see those references and [Meredith, 1977]. The rule
has similarities with the well known resolution rule of J. A. Robinson, and pre-dates it.
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Ch. 8].86 Ben-Yelles’ method was later modified by Sabine Broda and Luis Damas
to give an algorithm which counts and lists just the principal normal inhabitants,
[Broda and Damas, 1999].

Several algorithms for constructing a principal inhabitant of a type from any
other inhabitant have also been published. The first was in [Hindley, 1969b, §6], for
full λK. Others, which worked also for restricted sets of terms such as λI, were made
by Robert Meyer in 1986, Grigori Mints and Tanel Tammet in 1988, and Norman
Megill and Martin Bunder in 1994; see [Meyer and Bunder, 1988], [Meyer et al.,
1991, §4], [Mints and Tammet, 1991], [Megill and Bunder, 1996].

As David Meredith noted in [Meredith, 1980], such an algorithm provides a
proof that the condensed detachment rule is complete for the weak implicational
logic corresponding to the restricted λ-calculus in question.

9 Models for λ

9.1 Scott’s D∞ model

The first set-theoretical model for untyped λ was made by Dana Scott while he
was in Oxford to work with Strachey during a leave from the Princeton Phi-
losophy Department.87 In [Scott, 1969c, p.51] he gives a precise date for the
idea: 14 November 1969. Only one month before, he had strongly advocated a
typed alternative to the (untyped) programming languages defined in [Böhm, 1966;
Böhm and Gross, 1966] and [Landin, 1966b], in a privately circulated manuscript
written for Strachey ([Scott, 1969e], mentioned in §8.1.2 above). His model was
unexpected, and showed that despite his previous criticisms of untyped languages
they could be given a mainstream mathematical sense. Further, the means he used
for this turned out to be a natural outgrowth of the notions on which his earlier
typed alternative had been based.

In the first versions of Scott’s model construction, domains were complete lat-
tices, [Scott, 1969b]. In a later account of the construction in [Scott, 1970c], he
introduced continuous lattices, characterized algebraically as those complete lat-
tices D where, for every y ∈ D,

y =
∨
{
∧
U | y ∈ U and U is Scott-open and U ⊆ D},

or topologically as those T0-spaces such that every continuous f : X → D from a
subspaceX ⊆ Y can be extended to a continuous f : Y → D.88 It was this extension
property that made continuous lattices especially attractive for “a coherent theory
of partial functions (in extension)” [Scott, 1973, p.178], and more precisely for “an
extensional theory of functions, related directly to computability, where functions
(rather than syntactic representations or programs for the functions) can be treated
as objects in themselves” (Scott, in [Stoy, 1977, p.xxviii]).89

86An inhabitant of a type τ is any closed term M with type τ . It is normal iff it contains no
β-redexes. It is principal iff τ is its principal type.

87The history of this collaboration, and the circumstances in which the model was invented,
are given in Scott’s foreword to [Stoy, 1977], in his Turing Award lecture [Scott, 1977], in [Scott,
2000], and in his comments in the 1993 published version of [Scott, 1969e].

88See [Scott, 1972] for details. Here
W

and
V

are the usual lattice operators. A Scott-open
subset U of a domain D is an upward closed set such that if

W
∆ ∈ U for a directed ∆ ⊆ D then

U ∩∆ 6= ∅. A function f : D → D′ is (Scott-) continuous iff it is monotonic and preserves the least
upper bounds of directed subsets of D. An instance of this topology had already been considered
in [Nerode, 1957; Nerode, 1959], and even before, in [Uspenskii, 1955]. The interplay of algebraic
and topological notions has been a fruitful one in recent developments of domain theory, see §10
later.

89The theory of continuous lattices gained further impetus from their rediscovery and application
in analysis, functional analysis and topological algebra, as documented in [Gierz et al., 1980]. Their
connection with interval analysis was pointed out in [Scott, 1970b, p.87].
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From a global point of view, domains and Scott-continuous functions formed
cartesian closed categories where the exponential objects [D → E] were the complete
lattices of Scott-continuous functions from D to E: this made them suitable for the
semantics of typed λ-calculus (see §8.1.3). But they also contained reflexive domains
D∞, that solved the equationD∞ = [D∞ → D∞] non-trivially (up to isomorphism),
and these yielded models of the untyped λ-K-calculus with βη-conversion.

The insight that led Scott to the construction of reflexive domains consisted
basically in extending to operations on domains, in particular F(D) = [D → D],
the iterative construction of the least fixed-point of a continuous function f : D → D
as

fix(f) =def

∨
n∈ω

fn(⊥). (1)

The technical device needed for this extension was later recognized by Scott himself
[Scott, 1973, p.181] to be the most original step of his construction: given domains
D and E, an embedding-projection pair from D to E is a pair of (Scott-) continuous
functions i : D → E, j : E → D such that j ◦ i = idD and i ◦ j v idE , where the
order relation on functions is defined pointwise. Embedding-projection pairs defined
an approximation relation on domains in analogy to the approximation relation on
elements of domains described by the partial ordering. Reflexive domains were built
as inverse limits of sequences of projections

〈Dn
jn← Dn+1〉n∈ω

where D0 was arbitrary and Dn+1 was defined as [Dn → Dn], with a suitable choice
of the initial embedding-projection pair 〈i0, j0〉. These spaces were “function-space
analogues to the simple types of the Russell-Zermelo theory” [Scott, 1969b, p.24],
and Scott always regarded his models as spaces of functions of infinite type, rather
than of untyped functions, [Scott, 1975, pp.348–349].90

Soon after Scott’s D∞ models, several other models were invented by other
workers, see 9.3 below, and there was intensive research on the structure of D∞ and
its application to the denotational semantics of programming languages. Probably
the first result in this area was due to David Park [Park, 1976], who proved in
early 1970 that the interpretation of the Rosenbloom-Curry combinator Y in D∞
coincided with the least fixed point operator defined iteratively as in (1) above. On
the negative side, Park also showed that this definability result could be ruined by
a different choice of the initial embedding-projection pair 〈i0, j0〉 from D0 to D1.

9.2 Computational and denotational properties

A subject of extensive research in the early 1970s was the relation between the
operational properties of λ-terms and their denotations as elements of some D∞
model. A particularly interesting problem was to relate the lattice structure of
the models, where the order relation among elements reflected their amount of
information in an abstract sense (see, for example, [Scott, 1970c, p.171]), to the
intuition that some terms are more informative than others in an operational sense.
For example, there are λ-terms X such that, for all contexts C[ ] and all normal
forms N ,

if C[X] =β N then C[M ] =β N for every other term M ; (2)

90Actually, in his first note on the construction, in [Scott, 1969a], Scott used direct limits of
sequences of embeddings, obtaining an equivalent result. This was the first instance of what is
now called the limit-colimit coincidence [Smyth and Plotkin, 1982], that lies at the heart of the
categorical versions of the construction.
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one of these is ∆∆, where ∆ ≡ λx.xx. Such terms contribute no information
to the surrounding context C[ ], and could therefore be interpreted as the least
element ⊥ in any model. This problem was investigated thoroughly by Christo-
pher Wadsworth, who was at the time a graduate student of Strachey at Ox-
ford University, in his 1971 PhD thesis and two later papers, [Wadsworth, 1971;
Wadsworth, 1976; Wadsworth, 1978].91 He found a precise and easily grasped char-
acterization of the sense in which reduction of a term M can be said to develop
information out of better and better approximations of a normal form of M (if one
exists). He extended the λ-calculus with a new constant Ω representing the unde-
fined value, and defined an approximate normal form to be a term of the extended
language (a λ-Ω-term) without β-redexes.92 An approximate normal form A could
then be said to match an ordinary λ-term except at occurrences of Ω in A, and this
was exploited by Wadsworth in defining the set of approximate normal forms of
M . One of his main results was the “limit theorem”, [Wadsworth, 1976, Thm. 5.2],
later called the “approximation theorem”, [Barendregt, 1981, Thm. 19.2.2], which
stated that the interpretation of a term M in Scott’s D∞ model is the least upper
bound of the interpretations of its approximate normal forms.

A key technical concept throughout was that of a term M having a head normal
form, that is, being convertible to a term of the form λx1 . . . xn.zX1 . . . Xm, for some
n,m ≥ 0. The identification of diverging computations with terms without a head
normal form was found to be a natural one: for terms without head normal form,
property (2) held, [Wadsworth, 1976, Cor. 5.5], and furthermore the interpretation
of every such term in standard D∞ models was the least element ⊥ (ibid., Corollary
5.3).

Independently, Henk Barendregt, in June 1971 in his PhD thesis [Barendregt,
1971], proposed identifying diverging computations with what he called unsolvable
terms, namely those λ-terms M such that

MX1 . . . Xk =β I (3)

held for no sequence of terms X1, . . . , Xk with k ≥ 0. Barendregt was then at-
tempting to construct a model for the λ-K-calculus based on recursion-theoretic
notions, related to the model of hereditarily recursive operations for the simply
typed λ-calculus described in [Kreisel, 1958].93

A natural problem in this setting was to find out whether non-normalizing terms
like ∆∆ were defined in the recursion-theoretic interpretation.94 However, the no-
tion of undefinedness induced by divergence of partial recursive functions turned
out to be too strong, and the identification of undefinedness with unsolvability
emerged through an analysis of terms that do not have a normal form, yet possess
a meaningful computational behavior that prevents them from all being identified
consistently.95 The consistency of the theory resulting from the identification of all
unsolvable terms was then proved by proof-theoretic means in [Barendregt, 1971,

91Another important contribution of Wadsworth dating back from the same period (October
1970) was the idea of continuations as a technique for the denotational semantics of jumps. Pub-
lication of this, as a joint report [Strachey and Wadsworth, 1974], was delayed because of work
on his thesis. The history of his work on continuations can be found in [Wadsworth, 2000]. The
notion of continuation was also invented by several other people at about the same time; see the
historical account in [Reynolds, 1993].

92This extension was suggested to Wadsworth by Dana Scott in conversation, in October 1970,
see [Wadsworth, 1976, fn.4, p.506].

93[Barendregt, 1996] gives a very clear account of this attempt and of the positive results arising
from it. These include, in particular, the partial validity of the ω-rule (i.e. if FZ = GZ for all
closed terms Z then F = G) for λβη-conversion, when F and G are not universal generators like
those constructed later in [Plotkin, 1974].

94In this interpretation, ∆ becomes a partial recursive function ϕe such that ϕe(x) ' ϕx(x).
95An example is the pair of terms λx.x(∆∆)K and λx.x(∆∆)(KI), whose identification would

lead immediately to the equation K = KI.
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Cor. 3.2.15 and Remark 3.2.16]. Also, by using unsolvable terms to represent un-
defined values f(n) of a partial recursive function f , Barendregt obtained a simpler
new proof that all partial recursive functions were λ-definable, [Barendregt, 1971,
§1.3] or [Barendregt, 1981, §8.4].

It was Wadsworth (and Hyland, independently) who realized that a term M
had no head normal form if and only if it was unsolvable [Wadsworth, 1971, p.94a],
[Wadsworth, 1976, Cor. 5.3], allowing him to obtain a semantical version of Baren-
dregt’s consistency result by an immediate application of his limit theorem. (On the
other hand, for the λI-calculus, Barendregt proved in 1973 that a term is unsolvable
if and only if it has no normal form, [Barendregt, 1973].)

The interpretation of λ-terms in a D∞ model induces a preorder on terms, de-
fined by M 6 N if and only if the interpretation of M is less than the interpretation
of N for every choice of the interpretation of variables free in MN . The character-
ization of this preorder was given in [Wadsworth, 1976, Thm. 6.3] by introducing
a notion of semi-separability of λ-terms, according to which M is semi-separable
from N (M 6. N) iff there is a head context C[ ] such that C[M ] =β I but C[N ] is
unsolvable. Then M 6. N if and only if M 66 N . Independently, Hyland and Reiji
Nakajima, then a student of Morris, obtained the same result for D∞ [Hyland, 1975;
Hyland, 1976; Nakajima, 1975], and Hyland found a similar characterization for
the model P(ω).96 Behind all these studies lie, more or less explicitly, the tech-
niques introduced by Böhm in the proof of his separability theorem [Böhm, 1968]:
[Wadsworth, 1976] refers to a paper on “A general form of a theorem of Böhm and
its application to Scott’s models for the λ-calculus”, that apparently was never pub-
lished, while all the above results can be reformulated, following [Barendregt, 1977;
Barendregt, 1981], using the notion of Böhm tree, cf. §7.1.

Jean-Jacques Lévy in his Thése d’Etat [Lévy, 1978] used λ-Ω-terms as the
building blocks of an “algebraic” model for the λ-calculus, much in the tradition
of the French school of algebraic semantics of recursive programs [Nivat, 1973;
Vuillemin, 1974b].

At about this time the question arose of saying what exactly the phrase “model
of λ” meant in general. This was examined in 1978 by Hindley and Giuseppe
Longo, [Hindley and Longo, 1980, §§2–3] and further in 1980 by Albert Meyer
[Meyer, 1982, §6]. There turned out to be several variant concepts: λ-model , λ-
algebra, combinatory algebra, as well as a category-based definition (see [Koymans,
1982, §§3–4]).97 Each of these has given rise to further studies, some of which will
be mentioned below. Another definition, related to λ as cylindric and polyadic
algebras are related to first-order predicate calculus, was that of lambda abstraction
algebra, introduced by Don Pigozzi and Antonio Salibra (and independently by
Z. B. Diskin) around 1993; see [Pigozzi and Salibra, 1998] for a good overview.

We should mention here that the informal set theory in which Scott built D∞
corresponded to the standard Zermelo-Fraenkel system, in which self-membership
and infinite descending ∈-chains x1 3 x2 3 x3 3 . . . are forbidden by the axiom
of foundation. But “non-well-founded” set theories have been proposed at various
times, in which such chains are allowed, and in such a theory the construction of a
model of λ is very much simpler to carry out. This was first done by Michael von
Rimscha in 1978, [Rimscha, 1980]. Some comments on non-well-founded models are
in [Plotkin, 1993, pp.375–377], and [Aczel, 1988] is a general account of non-well-
founded set theories.

96Hyland played an important role in these developments: for example, in January 1972 he sug-
gested the typed λ-calculus used in Wadsworth’s proof of the approximation theorem, [Wadsworth,
1978]; see [Wadsworth, 1976, fn.5, p.508].

97A combined account is in [Barendregt, 1981, 2nd. edition, Ch. 5].
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9.3 Other models

After Scott’s construction of the D∞ models, Plotkin observed in 1972 [Plotkin,
1993, Part I] that a suitable generalization of the notion of graph of a function
yielded a new family of models, now collectively called the graph models. For this
generalization, he took an arbitrary atom ι and defined inductively a set TC by the
clauses:

– ι ∈ TC ,

– if µ, ν are finite subsets of TC , then 〈µ, ν〉 ∈ TC .

Then the powerset P(TC) became a (non-extensional) model of the λ-calculus when
application was defined by

x · y =def

⋃
{ν | ∃µ ⊆ y. 〈µ, ν〉 ∈ x}. (4)

A similar idea had also occurred to Bob Meyer in 1973–’74, stimulated by some
work of Larry Powers, and resulted in a graph model of CL that he called the Fool’s
model, [Meyer et al., 1991, §5]. But this models reduction not equality. A related
structure, for λβ-reduction, is described in [Plotkin, 1994, §4].

Other models in this family include those of [Scott, 1980a] and [Engeler, 1981],
but the best-known of them is certainly P(ω) of [Scott, 1976]. The model P(ω) was
motivated by “the project of making the connections with ordinary recursion theory
easier to comprehend, since a satisfactory theory of computability and programming
language semantics had to face this problem” [Scott, 1976, Appendix B]. The story
of this model started at Easter 1973, when it was presented by Scott for the first
time in Oberwolfach; later in the same year Scott realized that the idea behind
it was essentially the same as Plotkin’s definition (4), and that the same idea was
“already implicit in a very precise form in much earlier work by Myhill-Shepherdson
[Myhill and Shepherdson, 1955] and Friedberg-Rogers [Friedberg and Rogers, 1959]
(see also [Rogers, 1967]) on enumeration operators” (Scott, ibid. p.576).98

The definition of application in P(ω) needed the standard Cantor coding of pairs
of natural numbers and an enumeration {en}n∈ω of finite subsets of ω. Then the
graph of a continuous function f : P(ω)→ P(ω) on the (complete algebraic) lattice
P(ω) was defined by

{〈n,m〉 | n ∈ f(em)},

and (4) became, under coding,

x · y =def {n ∈ ω | ∃em ⊆ y. 〈m,n〉 ∈ x}.

One of the aspects of P(ω) that turned out to be important, especially for
later investigations on the semantics of type theories, was the peculiar semantics of
types allowed by the properties of this model. A closure is a continuous function
a : P(ω) → P(ω) such that a(a(x)) = a(x) ⊇ x for all x ∈ P(ω). Then a may
be thought of as a type, namely the type of all x ∈ P(ω) such that a(x) = x.
For example, when a, b are closures, define a ◦→ b as λu. b ◦ u ◦ a, obtaining thus a
closure that represents the type of (continuous) functions from a to b. Furthermore,
there is a closure V : P(ω) → P(ω) such that a ∈ P(ω) is a closure if and only if
V(a) = a. Such a V may be defined by V =def λa.λx.

⋃∞
n=0 x

(n), where x(0) = ∅
and x(n+1) = x ∪ a(x(n)), or equivalently by:

V(a)(x) =def

⋂
{y ∈ P(ω) | x ⊆ y and a(y) ⊆ y}.

98This story has had a recent – though implicit – continuation, in the study of equilogical spaces
of [Scott, 1996], [Bauer et al., 2004].
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The lattice of closures therefore directly yields a model for a type system with a
type of all types, like Martin-Löf’s first version of intuitionistic type theory. The
construction of V is due essentially to Martin-Löf and Peter Hancock (circa 1974),
and was devised in the course of Martin-Löf’s attempts to extend Kreisel’s topo-
logical interpretation to type theory. This extension was carried out essentially by
means of spaces described by formal neighborhoods, similar to the information sys-
tems studied later by Scott as the canonical description of domains [Scott, 1982a].
In order to handle universes, they needed a “space of spaces”, for which the quan-
tifiers and the type operations were continuous. The construction of that space
was described by Hancock (then a PhD student in Oxford) to Scott, and he soon
adapted it to P(ω).

Therefore, the domain P(ω) was also the first example of a universal domain,
in two different senses: every countably based algebraic (continuous) lattice is the
image of a closure (retraction) over P(ω), where a retraction is a continuous end-
ofunction of P(ω) idempotent with respect to composition, see [Scott, 1976]. This
result set up a powerful tool for solving recursive domain equations (up to equality)
inside P(ω): in particular, the model D∞ is represented by the least fixed-point of
the closure λa. a◦→ a (see [Scott, 1976], and [Drakengren, 1996] who showed that
this solution is unique, amending an incorrect statement in [Scott, 1976, p.553]).

These remarks gave rise to two different lines of research. On the one hand, there
was a search for other similar universality results: progress in this area was based
initially on modifications of the proofs for P(ω), like Plotkin’s universal domain
Tω in [Plotkin, 1978b], or properties of the free Boolean algebra on ℵ0 generators
[Scott, 1982b]. Later it turned out that universal domains could be built uniformly
by exploiting model-theoretic properties [Gunter, 1987; Gunter and Jung, 1990], in
particular the amalgamation property [Droste and Göbel, 1993], that allowed homo-
geneous universal domains to be constructed for several classes of domains, unique
up to isomorphism. On the other hand, the flexibility of retracts and related classes
of endofunctions over universal domains in modelling type constructors suggested
their use for interpreting higher-order type systems, especially the polymorphic λ-
calculus. Types were interpreted as closures over P(ω) in [McCracken, 1979], as
retracts in [McCracken, 1982], and as finitary projections in [Amadio et al., 1986].
Barendregt and Rezus also used closures for the semantics of Automath and related
systems with dependent types [Barendregt and Rezus, 1983].

10 Domain theory

10.1 Classical domain theory

It is not completely clear what we can take as the starting date of a theory of
domains, but by 1978 there was already a considerable bulk of results on categories
of domains, many of them due to the efforts of Gordon Plotkin and collected in
his notes for a lecture course in Pisa ([Plotkin, 1978a], complemented later by the
notes [Plotkin, 1981]). The guiding analogy in that presentation was that between
the complete partial order structure of domains and the approximation structure
on domains induced by embedding-projection pairs. The iterative construction of
the least fixed-point of a continuous endofunction of a domain corresponded in
this analogy to Scott’s inverse limit construction; in the meantime the latter had
been given a categorical description through the contributions of Reynolds, Wand,
Smyth and Plotkin himself [Reynolds, 1972; Wand, 1974; Wand, 1977; Wand, 1979;
Smyth and Plotkin, 1982].99

99Scott had already mentioned in [Scott, 1972, pp.128-129] a suggestion of Lawvere to the effect
that the inverse limit construction of D∞ could be carried out by regarding [D → D′] as a functor
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However, the main impetus to the study of the structure of domains was given
not so much by the models of untyped λ as by the full abstraction problem for
the typed λ-system PCF, the logic-free part of Milner’s LCF ([Milner, 1972] and
§8.1.2 above). This problem was described in 1975 in two papers, [Milner, 1977] and
[Plotkin, 1977],100 and concerns the relations between operational and denotational
equivalence on programs.101 Operationally, we say that two terms M and N of the
same type σ are observationally equivalent, written M ≈ N , when, for every context
C[ ] with one hole of type σ such that C[M ] and C[N ] are programs, we have that
C[M ] ⇓ v if and only if C[N ] ⇓ v. This relation was first introduced in [Milner,
1975] in the context of a semantics of parallel computation, although it owed much
to [Morris, 1968] and the early studies of the denotational properties of untyped
λ-terms by Hyland, Wadsworth and Plotkin described in §9.2 above. Writing [[P ]]
for the denotation of a program P in some type structure, we say that programs
P,Q are equivalent iff [[P ]] = [[Q]], and a denotational semantics is fully abstract
[Milner, 1977] when [[P ]] = [[Q]] is equivalent to P ≈ Q for all PCF programs P,Q.

Plotkin showed that the standard model of PCF based on domains and Scott-
continuous functions was not fully abstract [Plotkin, 1977, pp.234-236], but that it
became so if one added parallel conditional operators :⊃σ of type o → (σ → (σ →
σ)), where σ = o or σ = ι. The interpretation of :⊃σ was the following continuous
function:

:⊃σ (p)(x)(y) =


x if p = true
y if p = false
x if x = y and p = ⊥o

⊥σ if x 6= y and p = ⊥o.

On the other hand, [Milner, 1977, p.19, Cor. 3] proved that there is a unique fully
abstract model for PCF (up to isomorphism); he constructed it essentially as a
(quotiented) term model. The full abstraction problem consists basically in the
search for a syntax-independent description of Milner’s model.102

The failure of full abstraction for the semantics of PCF based on Scott continuous
functions is due to the presence of parallel functions, like the “parallel or” connective
V : o → (o → o), already considered in [Platek, 1966, pp.127–131] and discussed
there and in [Scott, 1969e], defined by the truth-table

V ⊥ false true
⊥ ⊥ ⊥ true

false ⊥ false true
true true true true.

This fact drew attention to the problem of developing a semantic notion of sequen-
tiality in order to “define a ‘smaller’ collection of domains containing only functions

(over the category of continuous lattices with projections as morphisms) whose second argument
preserved inverse limits and whose first argument turned direct into inverse limits. The proof that
D∞ ∼= [D∞ → D∞] was then a direct consequence of these facts. A more general categorical
framework for the solution of recursive domain equations was later described in [Freyd, 1990;
Freyd, 1991; Freyd, 1992].
100See also the independent work carried out in the same year by Vladimir Yu. Sazonov and

described in [Sazonov, 1976c; Sazonov, 1976b; Sazonov, 1976a].
101By a program in this context is meant a closed PCF-term of type either o, with values true

and false, or ι, whose values are the numerals n for each natural number n. If a program M
reduces to a value v, we write M ⇓ v.
102We do not pursue further the technical aspects of full abstraction, although they determined

much of the course of research on domains from 1975 onwards, for at least 20 years after. A
comprehensive account of the strategies for solving it (and of the technical advances produced
by those attempts) is in [Ong, 1995]. The solutions of the full abstraction problem obtained
independently by Abramsky, Jagadeesan and Malacaria and Hyland and Ong, rely on a game
semantics for PCF whose applications are still being investigated, [Abramsky et al., 1994; Hyland
and Ong, 2000]. See below, §10.3.
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capable of deterministic realization” [Plotkin, 1977, p.236]. Definitions of sequen-
tial function had already been given in [Milner, 1977, p.20] and [Vuillemin, 1974a,
§3.3]. However, these were coextensive only for Scott-continuous functions defined
over flat domains (i. e., those where every chain had at most two elements) and
depended upon a specific way of choosing the number of arguments of functions.
A more general notion of sequentiality arose from the theory of concrete domains
introduced in the Fall of 1975 by Gilles Kahn and Gordon Plotkin in [Kahn and
Plotkin, 1978], where they axiomatized an abstract notion of “argument place” of a
function by means of information matrices (or concrete data structures), over which
computation proceeds by occurrence of events that consist in filling cells by values,
subject to an accessibility relation that constrains the order in which cells are able
to be filled. A domain is generated by an information matrix as the collection of
its configurations, where each configuration is a set of events that represents the
history of a computation over the matrix.

Though the general definition of sequential function based on concrete domains
did not appear in [Kahn and Plotkin, 1978], the idea circulated widely, especially
in the group of young French researchers at Sophia-Antipolis (including Gérard
Berry and Pierre-Louis Curien). In [Berry, 1978], Berry used the algebraic model of
[Lévy, 1976] to show that computation in pure untyped λ-calculus was essentially
sequential in the sense of Kahn and Plotkin, extending Lévy’s continuity theorem
(these results are described in detail in [Barendregt, 1981, §§14.3–4]).

Later, Berry and Curien [Curien, 1979; Berry and Curien, 1982] introduced the
notion of sequential algorithm over concrete data structures as a semantical frame-
work for PCF. While sequential algorithms are not functions in the set-theoretic
sense, they do form a cartesian closed category and therefore provide a categori-
cal model for PCF [Berry, 1981; Curien, 1986].103 The calculations needed in the
study of the category of concrete data structures and sequential algorithms also led
Curien to introduce categorical combinators [Curien, 1985]; these became important
in computational applications, starting from [Curien, 1986] (see also [Huet, 1990a])
who used them as instructions of an abstract machine [Cousineau et al., 1987] for
the implementation of the functional programming language ML.

A determinism condition on the computation of continuous functions that was
close to sequentiality was devised by Berry, who called it stability, [Berry, 1976;
Berry, 1978]. Stable functions satisfy a minimum data property whereby, for every
finite approximation e of a value f(x) there exists a minimum d v x such that
e v f(d). Observe that the “parallel or” function is not stable. A more alge-
braic description of stability was possible in most cases of interest [Berry, 1976,
Prop.II.2.1], just by saying that a Scott-continuous function is stable iff f(x ∧ y)
= f(x) ∧ f(y) provided x and y have a common upper bound. At higher orders,
stable functions are ordered by f ≤st g iff f(x) v f(y) ∧ g(x) whenever x v y; and
with this definition, stable functions on appropriate domains (e.g. the dI-domains
of [Berry, 1978, Def. 4.3.2], satisfying some of the properties of concrete domains)
yield cartesian closed categories and, therefore, models of PCF.

The notion of stability was later rediscovered from a different point of view
by [Girard, 1986]. Since the mid-1970s, Girard had been developing a theory of
ordinals whose emphasis was on their geometric structure. The basic idea was that
ordinal operations can be first defined on natural numbers and then extended to the
whole class of ordinals by regarding it as a category whose objects are ordinals and
whose morphisms are strictly increasing functions. The essential technical device
to achieve this program was the notion of dilator [Girard, 1981], namely an endo-
functor of the category of ordinals that preserves directed colimits and pullbacks.
103There is a large literature on categorical models of typed and untyped λ-calculus, stimulated

by the work of Lambek and also by [Scott, 1980b]: see [Koymans, 1982].
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When specialised to domains regarded as categories, the preservation properties
of dilators defined exactly the stable functions, and this was the starting point of
the development of qualitative domains in [Girard, 1986] and [Girard, 1988, Annex
A], and their simplification as coherence spaces in [Girard, 1986]. These yielded
interesting models of his System F in which types were interpreted as domains.
They also suggested the analysis of the (stable) function type D →st E as !D ( E,
where ! was a unary constructor on coherence spaces and ( was linear implication,
that would become the basic connective of linear logic [Girard, 1986], a logical
system whose importance for the whole field of the semantics of computation is
only beginning to be fully appreciated.

The representation of concrete domains as sets of configurations of information
matrices was the central result in the monograph [Kahn and Plotkin, 1978, §7]. This
suggested similar representation theorems for other categories of domains. In his
lecture course at Merton College Oxford in 1981 [Scott, 1982b], Scott represented
(Scott-) domains as the partially ordered sets of filters of structures that described
the basis of a domain and therefore determined its whole partial order structure
(neighbourhood systems).104 The next year, [Scott, 1982a] gave an equivalent rep-
resentation of domains in terms of information systems: these were essentially ab-
stract intuitionistic sequent calculi, which determined a set of elements (i.e., the
elements of the represented domains) identified with Horn theories.

Another approach to the finitary representation of domains arose from an unex-
pected connection between Scott domains and the filter models built by means of
intersection types (§8.4). The idea of using types to build models was not new, for
example it was the main motivation of Plotkin’s 1972 report [Plotkin, 1993, Part
I, p.365].105 Extending the ideas that led to the filter model of [Barendregt et al.,
1983], Coppo, Dezani, Honsell and Longo proved a precise correspondence between
filter models built from what they called extended applicative type structures in
[Coppo et al., 1983] and [Coppo et al., 1984], generalizing the set of intersection
types, and the applicative information systems that form a subclass of the informa-
tion systems used in [Scott, 1982a]. This was also recognized by Scott (ibid.), who
remarked that intersection types could be regarded as just another representation
of the finite elements of a domain. Filter models built from intersection types with
additional constants – essentially a reformulation in this new context of [Coppo and
Dezani, 1978] – were then used in [Coppo et al., 1987] to build a model for untyped
λ which was isomorphic to a non-standard D∞ whose theory coincided with Morris’
extensional theory [Morris, 1968].106

In the same years, Mike Smyth (and also Plotkin, in unpublished work) proposed
looking at the open subsets of a topological space as computable properties of
its points ([Smyth, 1983]; [Plotkin, 1981, Ch. 8, Exs.94–96]). Specialized to the
Scott topology of a domain, this view complemented the identification of continuity
and (abstract) computability suggested originally in [Scott, 1969e; Scott, 1969d]
and [Plotkin, 1978a, §1]. This led to further representation results for domains,
as characterized by the structure of the complete lattices of their open subsets.
These results (thoroughly surveyed in [Abramsky and Jung, 1994]) were in effect
an extension of the representation theory for Boolean algebras via Stone duality
[Johnstone, 1982], influenced by closely related results in the theory of continuous
104The basis of a domain D is the set of its finite elements, with the partial order inherited from

D, where d ∈ D is finite (or algebraic) iff d v
W

∆ for some directed ∆ ⊆ D implies d v e for
some e ∈ ∆. A cpo D is algebraic iff every d ∈ D is the least upper bound of the directed set of
finite elements below it, and a Scott domain is an algebraic cpo with a countable basis and least
upper bounds of upper bounded subsets. This definition goes back to [Scott, 1969d].
105In fact, the graph models and filter models are presented together in [Plotkin, 1993, Part II,

p.373ff.].
106The connections between filter models and the inverse limit construction have been explored

in [Coppo et al., 1984] and in [Plotkin, 1993].
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lattices [Gierz et al., 1980, §V.5] and the domain interpretation of Martin-Löf’s
type theory [Martin-Löf, 1983; Martin-Löf, 1986]. They were exploited in a logic
of observable properties of domains first described systematically in [Vickers, 1989]
and [Abramsky, 1991], and opened the way to the application of point-less topology
in a computational setting, which was seen as very desirable from a constructive
standpoint [Johnstone, 1982; Fourman and Grayson, 1982; Coquand, 1992, p.119],
and led to the point-free study of domain theory within Martin-Löf’s intuitionistic
type theory [Sambin, 1987].

10.2 Effective domains and Synthetic Domain Theory

We have remarked that computability considerations were at the basis of the very
notions of domain and continuous function. Soon after those workers involved came
to see algebraic and consistently complete partial orders as a convenient class of do-
mains, much research was devoted to studying computability theory over effectively
given domains; these allowed researchers to consider computable constructions in
the concrete sense of classical recursion theory, [Constable and Egli, 1974], [Egli
and Constable, 1976], [Smyth, 1977], [Kanda, 1979], [Plotkin, 1981, Ch. 7], [Scott,
1982b, Lecture VII]. Early ideas in this area had been put forward by Yu. Ershov
using the theory of numbered sets proposed by Malcev, where a numbered set A
consists of a set A with a surjective coding function eA from A onto ω. In par-
ticular, in Ershov’s framework the notion of constructive domain was defined, and
it was proved that the Scott topology on such domains coincided with a topology
that was induced in a natural way by its numbering (the Malcev-Ershov topology,
see [Giannini and Longo, 1984; Rosolini, 1986] and the survey in [Longo, 1987]).

However, the resulting theory was still complicated by the need to manipulate
the codes of elements of domains explicitly. A proposal to overcome these compli-
cations was put forward by Dana Scott, as the program of synthetic domain theory.
A synthetic approach to computation consists in the study of constructive universes
in which it is possible to regard domains just as special kinds of sets.107 The name
was suggested by an analogy with Synthetic Differential Geometry, where gener-
alized manifolds are manipulated as sets of a special kind. Scott proposed such
a research program in a talk at the Peripatetic Seminar on Sheaves and Logic in
Sussex University in 1980, and later described its aim as that of having “a universe
that combines logic and mathematics in a natural way and permits a development
of finitary recursion theory in a sufficiently abstract way” [Scott, 1986].

The need for a treatment of partialness within intuitionistic universes of sets,
described as toposes, led Scott’s student Giuseppe Rosolini to introduce the basic
notion in synthetic domain theory, namely that of dominance, a subset Σ of the set Ω
of truth values that classifies the domains of definition of partial functions [Rosolini,
1986]. Intuitively, the elements of Σ are interpretations of the Σ0

1 propositions in
Ω. An important example of dominance arises in the effective topos Eff of [Hyland,
1982], where all functions on natural numbers are recursive, by setting

Σ = {p ∈ Ω | ∃f ∈ NN. p↔ (∃z. f(z) = 0)},

as was first done by Scott in a lecture in Pisa in the Fall of 1983. By exploit-
ing this notion it was possible to define subcategories of the ambient topos whose
objects might be taken as “Scott domains”, and to prove for them the basic prop-
erties that categories of domains must have in order to support the denotational
semantics of programming languages. The work on effective domains was therefore
107Our short account of synthetic domain theory is based on the introduction to Rosolini’s PhD

thesis [Rosolini, 1986], on [Hyland, 1991], and on the section on synthetic domain theory by Moggi
and Rosolini in [Jung (editor), 1996].
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subsumed under the synthetic approach. Early contributions to this area include
the work of Wesley Phoa [Phoa, 1990] on complete Σ-spaces as a synthetic coun-
terpart to (pre)domains, and the alternative approach of [Freyd et al., 1990]; and
the axiomatic presentation of the fundamental ideas in [Hyland, 1991] and [Taylor,
1991]. Even more important, in demonstrating the unification achieved by means
of a synthetic approach within the effective topos, was the discovery by Moggi and
Hyland mentioned in §8.3 above that the category of modest sets yields a model of
the polymorphic λ-calculus.

10.3 Game semantics

The full abstraction problem for PCF, that oriented much research on domain the-
ory since the mid-70s [Milner, 1977; Plotkin, 1977], was given a solution by two
independent teams: Abramsky, Jagadeesan and Malacaria from Imperial College,
London [Abramsky et al., 1994], and Hyland and Ong from Cambridge. Both
groups announced their result in a message to the types mailing list on July
27th, 1993. Both used games as the semantic counterparts of types, and inter-
preted typed λ-terms as strategies, achieving what is called an intensionally fully
abstract model for PCF, namely an algebraic model where every isolated element
is definable.108 The use of games (and strategies) did not come abruptly out of
the blue, however, and has in fact a long history in the semantics of logical sys-
tems; under the correspondence between propositions and types, part of that tra-
dition can be seen to be directly relevant to typed λ-calculi. From our point of
view, the starting point of game semantics can be found in the works of Paul
Lorenzen and his school from 1961 onward on dialogue games formalizing a de-
bate between a Proponent and an Opponent, where the Opponent tries to attack
a first-order formula defended by the Proponent [Lorenzen, 1961; Felscher, 1986;
Lorenz, 2001]. The game-theoretical notion of validity was intended by Loren-
zen to coincide with intuitionistic validity; a connection with typed λ-calculus was
not made, even implicitly. This had to wait until the early 1990s, when it was
exploited in the context of a semantical analysis of Girard’s Linear Logic. The
first mention of games in the context of linear logic goes back to a paper by
Yves Lafont and Thomas Streicher [Lafont and Streicher, 1991], where a game
was seen as a structure 〈A?, A?, e : (A? × A?) → K〉 consisting of two sets with
a “payoff” function valued in a set K. A little earlier, Valeria de Paiva had given
a related categorical account of Gödel’s Dialectica interpretation [Paiva, 1989a;
Paiva, 1989b] and had used it to interpret linear logic.109

The Lorenzen tradition was then brought into the semantics of linear logic by
Andreas Blass in [Blass, 1992], building on his previous work on determinacy of
(infinite) games [Blass, 1972]. With Blass’ paper the use of dialogue games and
strategies became a powerful tool for model construction, and in fact he was able to
obtain a completeness theorem for the additive fragment of linear logic with respect
to his games, stating that a sequent is provable if and only if there is a winning
strategy for Proponent in the associated game.110 One important drawback of this
108A quotient of the game model then yielded the order-extensional fully abstract model for PCF,

as announced in a further message by Abramsky to the types mailing list on September 8th of
the same year. It can be argued that the way to a direct (i.e., not quotiented) construction of the
fully abstract model for PCF is barred by the undecidability of observational equivalence, shown
by [Loader, 2001].
109Both these approaches are related to a method for building ∗-autonomous categories from

suitably complete symmetric monoidal categories, invented by Po-Hsiang Chu and described in
[Barr, 1979, Appendix]. [Seely, 1989] observed that ∗-autonomous categories yield categorical
models for linear logic (see also [Barr, 1991]).
110Blass’ model actually validates the Weakening rule (from Γ ` B deduce Γ, A ` B), and is

therefore a model of what is called affine logic.
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model was that composition of strategies was not associative, hence there was no
category of games arising from Blass’ work. On the other hand, a monoidal closed
category of games (in the sense of [Conway, 1976]) had been already studied by
André Joyal in [Joyal, 1977], who had noticed that it was a natural context for a
“combinatorial” calculus of strategies. A category of games suitable for interpreting
the multiplicative fragment of linear logic was introduced in 1992 by [Abramsky and
Jagadeesan, 1994], who proved what they called a “full completeness” theorem:
proofs in the multiplicative fragment of linear logic plus the MIX rule

` Γ ` ∆
` Γ,∆

correspond bijectively to winning strategies.111 The perfect harmony of semanti-
cal objects (strategies) and syntactical structures (proofs) established by the full
completeness theorem was exactly the kind of correspondence needed for build-
ing the fully abstract model of PCF of [Abramsky et al., 1994], which in fact
owed much to the framework set up for obtaining that theorem. In addition,
the interpretation of composition of strategies as “parallel composition plus hid-
ing” suggested by Abramsky [Abramsky, 1994; Abramsky and Jagadeesan, 1994]
opened the way to the application of game semantics and ideas from linear logic to
the theory of concurrent processes, especially process algebras; [Abramsky, 1994;
Abramsky, 2000].112

Less closely related to the developments in linear logic was the approach of Hy-
land and Ong [Hyland and Ong, 2000]. They too used games, but their approach
was more directly influenced by attempts to find a suitable notion of sequentiality
at higher types, much in the same line as the theory of sequentiality of [Kahn and
Plotkin, 1978] and [Berry and Curien, 1982], see [Ong, 1995], and by the compo-
sitional approach to games arising from [Blass, 1972] and [Joyal, 1977]. (In later
presentations of game semantics, however, the technical framework set up by Hy-
land and Ong was used to build categories of games suitable for modelling (some
fragment of) linear logic; see e.g., [Abramsky and McCusker, 1998].)

In the same direction, and with a bias towards the problem of extending Chur-
ch’s thesis to higher-type computability, there was already in the 1980s a series of
papers by Kleene, who used dialogue games to interpret his higher-type recursion
schemes [Kleene, 1978; Kleene, 1980; Kleene, 1982; Kleene, 1985]. Kleene’s problem,
the attempt to find “a class of functions which shall coincide with all the partial
functions which are ‘computable’ or ‘effectively decidable’, so that Church’s 1936
Thesis will apply with the higher types included” [Kleene, 1978, §1.2], led him
to consider, though implicitly, the full abstraction problem for PCF.113 Kleene’s
ideas were then pursued by Gandy and his student Giovanni Pani for continuous
functionals [Gandy, 1993]. They emphasized the conditions of “no dangling question
mark” for the game-theoretic analysis of computability in PCF, and this influenced,
through informal discussions with Hyland, the formulation of the games of Hyland
and Ong. Also seeming to be rooted in Kleene’s work were the games used by
[Nickau, 1994], that were in fact of the same kind as those of Hyland and Ong.
111This kind of result can be traced back to Läuchli’s completeness theorem for his interpretation

of intuitionistic logic [Läuchli, 1965; Läuchli, 1970].
112The research in this direction was strongly influenced by Girard’s idea of a geometry of interac-

tion [Girard, 1987b; Girard, 1989a; Girard, 1989b], where the correctness criterion for (multiplica-
tive) proof-nets – the natural deduction formulation of (the multiplicative fragment of) linear logic,
[Girard, 1987a] – is expressed in terms of geometrical properties of graphs [Danos and Regnier,
1989].
113Kleene’s work was also independent from the parallel work on characterizations of sequentiality

at higher-types by means of concrete data structures as in [Berry and Curien, 1982], that have
been shown to have substantial game theoretic content, e.g., by François Lamarche [Lamarche,
1992] and by Pierre-Louis Curien [Curien, 1994], [Amadio and Curien, 1998, §14.3].
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Beside the applications of game semantics to the interpretation of programming
languages (surveyed, for example, in [Abramsky and McCusker, 1998]), there are
developments of this area that pertain closely to the foundations of logic. An im-
portant example is ludics, a research program started by Girard in the late 1990s
[Girard, 1998; Girard, 2000; Girard, 2001]. On a generically philosophical side, lu-
dics is motivated by a critical revision of the traditional relations between syntax
and semantics of logic, with a special emphasis on the meaning of logical rules:
according to [Girard, 1998, p.215], this “is to be found in the well-hidden geomet-
rical structure of the rules themselves: typically, negation should [be interpreted]
by the exchange between Player and Opponent”. The resulting emphasis on the
symmetries of computation, already brought to the fore by linear logic, currently
inspires much of the research at the border between logic and computation.

But this belongs to the 21st century, so our history stops here.
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tion of some semantic equalities inside λ-calculus. In H. Maurer, editor, Au-
tomata, Languages and Programming, Sixth Colloquium, volume 71 of Lecture
Notes in Computer Science, pages 133–146. Springer-Verlag, Berlin, 1979.

[Coppo et al., 1980] M. Coppo, M. Dezani, and B. Venneri. Principal type-schemes
and λ-calculus semantics. In Hindley and Seldin [1980], pages 535–560.

[Coppo et al., 1981] M. Coppo, M. Dezani, and B. Venneri. Functional charac-
ters of solvable terms. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 27:45–58, 1981.

[Coppo et al., 1983] M. Coppo, M. Dezani, F. Honsell, and G. Longo. Applicative
information systems. In G. Ausiello and M. Protasi, editors, Colloquium on Trees
and Algebra in Programming, volume 159 of Lecture Notes in Computer Science,
pages 33–64. Springer-Verlag, Berlin, 1983.

[Coppo et al., 1984] M. Coppo, M. Dezani, F. Honsell, and G. Longo. Extended
type structures and filter lambda models. In G. Lolli, G. Longo, and A. Marcja,
editors, Logic Colloquium ’82, pages 241–262. North-Holland Co., Amsterdam,
1984.

[Coppo et al., 1987] M. Coppo, M. Dezani, and M. Zacchi. Type theories, normal
forms and D∞-lambda models. Information and Computation, 72:85–116, 1987.

[Coppo, 1985] M. Coppo. A completeness theorem for recursively defined types. In
W. Brauer, editor, Automata, Languages and Programming, 12th International
Colloquium, volume 194 of Lecture Notes in Computer Science, pages 120–129,
Berlin, 1985. Springer-Verlag.

[Coquand and Huet, 1985] T. Coquand and G. Huet. Constructions: a higher or-
der proof system for mechanizing mathematics. In B. Buchberger, editor, EU-
ROCAL’85, Proceedings Volume 1, volume 203 of Lecture Notes in Computer
Science, pages 151–184, Berlin, 1985. Springer-Verlag.

63



[Coquand and Huet, 1988] T. Coquand and G. Huet. The calculus of constructions.
Information and Computation, 76:95–120, 1988.
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types. In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic
Symposium, pages 63–92. North-Holland Co., Amsterdam, 1971.

[Girard, 1972] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures
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1:145–169, 1939. Journal vol. never appeared. Engl. transl: The equivalential
calculus, in Jan  Lukasiewicz Selected Works, ed. by L. Borkowski, North-Holland
Co., Amsterdam, 1970, pp. 250–277.

[MacQueen et al., 1984] D. MacQueen, G. D. Plotkin, and R. Sethi. An ideal model
for recursive polymorphic types. In Eleventh Annual A.C.M. Symposium on the
Principles of Programming Languages (POPL), pages 165–174. Association for
Computing Machinery, New York, 1984.

[Mann, 1975] C. R. Mann. The connection between equivalence of proofs and
cartesian closed categories. Proceedings of the London Mathematical Society,
31(3):289–310, 1975.

[Manzano, 1997] M. Manzano. Alonzo Church: his life, his work and some of his
miracles. History and Philosophy of Logic, 18:211–232, 1997.
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[1975], pages 62–82.

[Naur and others, 1963] P. Naur et al. Revised report on the algorithmic language
ALGOL 60. Communications of the ACM, 6:1–17, 1963.

[Nederpelt and Geuvers, 1994] R. P. Nederpelt and J. H. Geuvers. Twenty-Five
Years of Automath Research. In Nederpelt et al. [1994], pages 3–54.

[Nederpelt et al., 1994] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, editors.
Selected Papers on Automath. Elsevier, Amsterdam, 1994.

[Nederpelt, 1973] R. Nederpelt. Strong normalization in a typed lambda calculus
with lambda structured types. PhD thesis, Technical Univ. Eindhoven, Nether-
lands, 1973. Publ. 1994 in [Nederpelt et al., 1994], pp. 389–468.

[Nerode, 1957] A. Nerode. General topology and partial recursive functionals. Sum-
maries of talks at the Cornell Summer Institute of Symbolic Logic, 1957.

[Nerode, 1959] A. Nerode. Some Stone spaces and recursion theory. Duke Mathe-
matical Journal, 26:397–405, 1959.

[Neumann, 1925] J. von Neumann. Eine Axiomatizierung der Mengenlehre. Jour-
nal für die Reine und Angewandte Mathematik, 154:219–240, 1925. (Correction
in Ibid. 155, p. 128.) English transl: An Axiomatization of Set Theory, in [Hei-
jenoort, 1967], pp. 393–413.

[Neumann, 1928] J. von Neumann. Die Axiomatizierung der Mengenlehre. Math-
ematische Zeitschrift, 27:669–752, 1928. Based on author’s doctoral thesis in
Hungarian, Univ. Budapest Sept. 1925 (author’s footnote p.669). Reprinted in
The Collected Works of J. von Neumann, Vol. 1, ed. by A. H. Taub, Pergamon
Press, Oxford, England 1961, pp.339–422.

[Newman, 1942] M. H. A. Newman. On theories with a combinatorial definition of
“equivalence”. Annals of Mathematics, 43(2):223–243, 1942.

82



[Newman, 1943] M. H. A. Newman. Stratified systems of logic. Proceedings of the
Cambridge Philosophical Society, 39:69–83, 1943. Reviewed by A. Church in J.
Symbolic Logic 9 (1944), pp. 50–52.

[Nickau, 1994] H. Nickau. Hereditarily sequential functionals. In A. Nerode and
Y. V. Matiyasevich, editors, Proceedings of the Symposium on Logical Founda-
tions of Computer Science, volume 813 of Lecture Notes in Computer Science,
pages 253–264. Springer-Verlag, 1994.
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Archiv für Mathematische Logik, 20:65–74, 1980.

[Robinson, 1965] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the Association for Computing Machinery, 12:23–41, 1965.

[Rogers, 1967] H. Rogers. Theory of Recursive Functions and Effective Computabil-
ity. McGraw Hill, New York, 1967.

[Ronchi della Rocca and Venneri, 1984] S. Ronchi della Rocca and B. Venneri.
Principal type schemes for an extended type theory. Theoretical Computer Sci-
ence, 28:151–171, 1984.

[Ronchi della Rocca, 1988] S. Ronchi della Rocca. Principal type schemes and unifi-
cation for intersection type discipline. Theoretical Computer Science, 59:181–209,
1988.

[Rosen, 1973] B. K. Rosen. Tree manipulating systems and Church-Rosser theo-
rems. Journal of the Association for Computing Machinery, 20:160–187, 1973.

[Rosenbloom, 1950] P. Rosenbloom. The Elements of Mathematical Logic. Dover
Inc., New York, 1950.

[Rosolini, 1986] G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis,
Carnegie Mellon Univ., 1986. Tech. Report CMU-CS-86-123, Dept. of Computer
Science, Carnegie Mellon Univ., Pittsburgh, Pennsylvania, U.S.A.

[Rosser, 1935] J. B. Rosser. A mathematical logic without variables, Part 1. Annals
of Mathematics, Series 2, 36:127–150, 1935. Also Part 2: Duke Mathematical
Journal 1 (1935), pp. 328–355.

[Rosser, 1942] J. B. Rosser. New sets of postulates for combinatory logics. Journal
of Symbolic Logic, 7:18–27, 1942.

[Rosser, 1984] J. B. Rosser. Highlights of the history of the lambda calculus. Annals
of the History of Computing, 6:337–349, 1984.

[Russell and Whitehead, 1913] B. Russell and A. N. Whitehead. Principia Mathe-
matica. Cambridge Univ. Press, Cambridge, England, 1913. In 3 parts, appeared
1910–1913. New edn. 1925–1927.

[Russell, 1903] B. Russell. The Principles of Mathematics. Cambridge Univ. Press,
England, 1903. New edn. publ. 1992 by Routledge and Kegan Paul, England.

[Russell, 1919] B. Russell. Introduction to Mathematical Philosophy. Allen and
Unwin, London, 1919.

86
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