
CMPT 331L - Fall 2019 - Dr. Labouseur

Scaling

Oliver Fountain
Oliver.Fountain1@Marist.edu

December 16, 2019

page 1 of 18

Contents

1 Introduction 3
1.1 Genealogy . 4
1.2 Hello World! . 5
1.3 Program structure . 5
1.4 Types and variables . 6
1.5 Example Statements . 6

2 Lexical Structure 8
2.1 Programs . 8
2.2 Grammars . 8

2.2.1 Lexical grammar where different from Scala . 8
2.2.2 Syntactic grammar where different from Scala . 9

2.3 Lexical analysis . 9
2.3.1 Comments . 9

2.4 Tokens . 9
2.4.1 Keywords different from Scala . 9

3 Types 10
3.1 Value Types . 10
3.2 Reference Types . 10

4 Example Programs 11
4.1 Caesar Cipher Encrypt . 11
4.2 Caesar Cipher Decrypt . 12
4.3 Factorial . 13
4.4 Bubble Sort . 14
4.5 Fibonacci . 16
4.6 Distance Between Two Points . 18

page 2 of 18

1 Introduction

Scaling is a modified version of Scala that takes inspiration from Erlang. This led to the name, combining
“Scala” and “Erlang” to make “Scalang”. However, someone had my idea before and already used that name,
so I simplified it to Scaling. Scaling also draws some inspiration from COBOL, this can be seen most obviously
in the storage and procedure sections of each function. The goal of this language was to make something
that is very easy to format and create readable code. The new features of Scaling are listed below:

1. The declaration of variables is changed so the type comes first. This was done to make the “storage”
section of each function look neater and to make it easier for the programmer to categorize and index their
variables.

2. Each function is broken up into two parts, storage and procedure. The storage section is where all
variables must be declared. This was done to enforce best practices when writing code and help keep the
programs organized. The procedure function comes next, this is where all of the code goes. Variables can be
reassigned in the procedure but not declared.

3. The types Float, Long, Short and Byte have been removed and all fall under the identifier of
int. This is done because the compiler of Scaling classifies the numeric variables itself behind the scenes and
reduces the complexity to programmer.

4. The type Double has also been put behind the scenes and is now represented by Float. When
a Float is declared, the compiler decides the best way to store the number in memory.

5. Nested comments have also been added to allow for easier debugging and to encourage the use
of comments when writing code.

6. The end of every statement in Scaling must be terminated with a semicolon. This was done
to remove this languages dependency on whitespace and newlines to preemptively avoid any annoying issues
in the code.

7. In Scaling, Strings are stored in memory as arrays of characters. This allows for easier string
manipulation as well as reducing the need for extra built in functions.

page 3 of 18

1.1 Genealogy

page 4 of 18

1.2 Hello World!

1.3 Program structure

page 5 of 18

- All code must be inside the object block that is named after the filename of the program.

- The format of the code is determined by end of line semicolons and functions, storage and procedures
are terminated by closing parenthesis. Scaling does not make use of whitespace to determine end of lines or
functions.

- Like COBOL, Scaling has two parts to every function the storage and the procedure. Variables can only
be declared in the storage section. This is done to encourage best practices and help organize the code in a
more readable way. Directly after the storage section is the procedure section. This is where all of the code
belongs, variables can be reassigned in this section but not declared.

- Variables are assigned using the “:=” sign.

- The type of the variable in its declaration is specified first, this allows for better formatting of the lines.
After the type a colon is used to indicate that the variable name is coming next.

- To test for equality in Scaling, “==” is used and “!=” is used for inequality.

1.4 Types and variables

Scaling uses the two standard variables types, value and reference. All primitive variables like ints and chars
are stored as their value in memory. More complex types like objects and Strings are stored as references to
locations in memory.

1.5 Example Statements

Statement Example

Basic Expression

page 6 of 18

Statement Example

Nested Comments

Strings as Arrays of Characters

If Else

page 7 of 18

Statement Example

Multipart if Else

2 Lexical Structure

2.1 Programs

A Scaling program consists of one or more source files. A source file is an ordered sequence of (probably
Unicode) characters.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into a
sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars

Although Scaling is based on Scala, it has several differences that I will outline below.

2.2.1 Lexical grammar where different from Scala

<assignmentOperator> -> :=
<booleanOperator> -> == | != | <= | >= | <| >
<endOfLineCharacter> -> ;

page 8 of 18

<assignmentOperator> -> :=
<print> -> print | printLine
<concatarrays> -> ++

2.2.2 Syntactic grammar where different from Scala

<program> -> object <string>{ <function>}
<function> -> def <string>(<input>) { <storage><procedure>} <function>

-> ε
<storage> -> storage{ <declaration>}
<procedure> -> procedure{ <statement>}
<declaration> -> <type>: <string>= <value>; <declaration>

-> ε
<ifElseStatement> -> case(<expr>) { <ifBool>}
<ifBool> -> <boolExpr>{ <statement>} <ifBool>

-> ε

2.3 Lexical analysis

2.3.1 Comments

Scaling supports two types of comments, single-line and multi-line. To use a single line comment simply type
// everything after the two slashes will be commented out until a newline is found. To begin a multi-line
comment, the characters /* are used, to terminate the comment use */. Scaling does have support for nested
comments. This was done to allow for easier debugging and encourage commenting of the code as the program
is being written.

2.4 Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens where needed.

tokens:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

2.4.1 Keywords different from Scala

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier.

- New keywords: storage, procedure, case, printLine, const, void

- Removed keywords: extends, if, else, charAt, substring, println, Double, long, short, byte, val, var

page 9 of 18

3 Types

Scaling types are divided into two main categories: Value types and Reference types.

3.1 Value Types

Float: a floating point numeric value, the compiler can determine when it is appropriate to use float or
double.

- Float: exampleFloat := 99.99;

Int: A method of storing numbers, the compiler automatically sets the length of the datatype, removing
the need for Float, Long, Short and Byte datatypes.

- Int: exampleInt := 99;

Boolean: A type that represents either true or false.
- Boolean: exampleBool := true;

Char: A single character.
- Char: exampleChar := ‘a’;

3.2 Reference Types

List: An immutable collection of data set in length.
- List(Char): exampleList := [1,2,3,4,5];

Array: A mutable collection of data that has a variable length .
- Array(Char): exampleArray := [1,2,3,4,5]

String: An array of characters.
- String: exampleString := “Hello”;

page 10 of 18

4 Example Programs

4.1 Caesar Cipher Encrypt

page 11 of 18

4.2 Caesar Cipher Decrypt

page 12 of 18

4.3 Factorial

page 13 of 18

4.4 Bubble Sort

page 14 of 18

page 15 of 18

4.5 Fibonacci

page 16 of 18

page 17 of 18

4.6 Distance Between Two Points

page 18 of 18

