THEORY OF PROGRAMMING LANGUAGES

CMPT 331 • SPRING 2025

Background							
When and where	^{d where} Wednesdays at 8AM and Fridays at 11AM in Hancock 2005						
Required Text	<i>Concepts of Programming Languages</i> , by Robert W. Sebesta, any recent edition Published by Addison Wesley						
Web site	http://www.labouseur.com/courses/tpl						
Instructor	Alan G. Labouseur Hancock 3 007	Alan.Labouseur@Marist.edu <i>Office hours are posted</i> .					

-Grades				
Letter Grades	F D C- C	C+	B- B B+ A- A	
	→ → → 65% 70% 73%	→ 77% 8	→ → → → 0% 83% 87% 90% 93%	
You can earn up to	Programming In The Past	10.0%	100 points	[1, 2]
1000 points, broken	Fun with Lambda Calculus	10.0%	100 points	[1, 2]
down as follows:	Functional Programming	10.0%	100 points	[1, 2]
	Exams 1, 2, and 3	50.0%	500 points (150 + 150 + 200)	[1, 2, 5]
	Language Design Project	15.0%	150 points	[1, 2, 5]
	Attendance & Participation	2.5%	25 points - for quality and quantity	[1, 2, 5]
	Laziness & Whining	2.5%	25 points - for not (lazy or whining)	[1, 2, 5]

-Themes, Objectives, and Assessment -

Assessment methods include assignments, quizzes, exams, discussions, presentations, peer review, and projects.	 In this course I hope that you will learn about and practice programming language criticism based on four domain- independent categories and use this knowledge and practice to better understand today's software development environment. [1, 2] explore the concepts of many historical programming languages and their impact on the languages of today, remembering that those who forget the mistakes of history
[References] refer to Department of Computing Technology Goals available at http:// www.labouseur.com/ courses/goals.pdf	 are doomed to repeat them. [1, 2] avail yourself of the opportunity to develop small programs in many historical programming languages. [1, 2] engage in the philosophy of programming languages. [1, 2] evolve critical debugging skills by developing programs in many languages. [1, 2] enhance your continuing education skills, realizing that capable problem solvers never stop learning. Additionally, preparation and presentation of the projects, as well as participation in class discussions and assignments, requires at least a little research, so there's that to look forward to. [1, 2, 5] have fun with programming. [1, 2]

THEORY OF PROGRAMMING LANGUAGES

CMPT 331 • SPRING 2025

-Schedule	
-----------	--

#	Wed	Fri	Chapters	Topics	Due Friday
0	22-Jan	24-Jan	1	Introduction • Criteria for programming language evaluation Issues and tradeoffs in prog. language design • Compiler Phases	_
1	29-Jan	31-Jan	2	A brief history of programming languages	_
2	5-Feb	7-Feb	2	A brief history of programming languages	_
3	12-Feb	14-Feb	3	Describing syntax • Fruit flies • Chomsky • Grammars • Sheep Derivations • Parse trees • Grammar ambiguity	—
4	19-Feb	21-Feb	3 4	Lex & Parse • Beginning semantics • The need for context-sensitive grammars • Attribute grammars • Operational Semantics	Programming In The Past
5	26-Feb	28-Feb	 15	Exam 1 in HC 2023 — Study sheet permitted; some restrictions apply. Lambda Calculus, part $\lambda f x \cdot (f x)$	-
6	5-Mar	7-Mar	15	Lambda Calculus, part λf x . (f (f x)) Lambda Calculus, part λf x . (f (f (f x)))	—
7	12-Mar	14-Mar	15	Lambda Calculus, part λf x . (f (f (f (f x)))) Functional programming with LISP, ML, and Erlang	-
8	19-Mar	21-Mar	—	Spring Break	—
9	26-Mar	28-Mar	16 —	More functional programming and some logic programming in Prolog Exam 2 in DY 4005 — <i>Study sheet permitted; some restrictions apply.</i>	Fun with λ Calculus
A	2-Apr	4-Apr	_	Alan's traveling	_
В	9-Apr	11-Apr	4	<i>College-wide time-wasting day</i> Axiomatic Semantics	Functional Programming
С	16-Apr	18-Apr	4	Axiomatic Semantics Easter Break	—
D	23-Apr	25-Apr	4 5, 6	Axiomatic Semantics A tour through the final Language Design Project	
E	30-Apr	2-May	9, 10, 13	Static and Dynamic Type Systems • Scope and Type checking Subprograms • Parameter passing	—
F	7-May	9-May	9, 10, 13 —	Concurrency • Threads Exam 3 in DY 4005 — <i>Study sheet permitted; some restrictions apply.</i>	Language Design Project
8	14-May	r at 9AM	_	Final Class Wrap-up at 9AM in our usual room	