
58!!acm Inroads! 2016 June • Vol. 7 • No. 2

G* Studio:
An Adventure in
Graph Databases,
Distributed Systems,
and Software
Development

CONTRIBUTED ARTICLESARTICLES

By Alan Labouseur, Shane Crumlish, Cassandra Graves,
Melissa J. Iori, Gregory Miller, and Thomas J. Wojnar,
Marist College

The e-mail from the department chair was urgent. !ere
were several graduate students with no classes to take.

“Would somebody please run an independent study?” she
asked. !e semester was already a few days old. Alan had to
strike fast. “I’m in,” he wrote, “I’ll put them to work on my
graph database research.” With that, Alan and his new team,
which would become known as the G-stars, began a two-
semester adventure in graph databases, distributed systems,
and software development that resulted in more than 8,000
lines of code over 520 Git commits. !is is their story.

Some key contributions of this story include the following:
• !e authors discuss a large, independent study software

development project in the new and original context of
graph processing and analytics.

• !ey tell the story of successful full stack development
using, at the time of this writing, cutting-edge hybrid
application development tools.

• !e authors show an example of large-scale application
development that educators can use to send a message to
their own students: “It can be done. Here’s what they did,
why they did it, and how they accomplished it.”

• !ey note some current best practices for bleeding-edge
software architecture in a modern, blended software
development environment, using many of the tools
commonly found in industry today, at the same time
documenting a practical experience that’s day-one
applicable in our students’ post-college careers. If we are
to balance theory and practice, projects like this make for
great practice.

BACKGROUND

THE PROBLEM
We are awash in a daily deluge of data, much of which looks like
a network or which a network can model. !ese networks are
constantly growing with ever more products, services, messag-
es, and transactions. !ey are constantly changing with con-
nections added, removed, and modi"ed all the time. In domains
as diverse as marketing, transportation, pharmacology, com-
munication, "nance and others, real-world networks tend to
be large (big data) and dynamic, evolving over time (long data).
Piling up data is easy. Gaining insight from the data pile is hard.

acm Inroads!•!inroads.acm.org!!59

ARTICLES

Q: How do we gain insight from large,
evolving networks?
A: Treat them like dynamic graphs.

Modeling network evolution as a series of
graphs—whose vertices represent entities and
edges represent relationships between enti-
ties—allows us to capture network evolution
as a series of graph snapshots, each represent-
ing the network at a di#erent point in time.

Most of today’s graph systems store and
analyze only one graph at a time, unable to
handle e$ciently the complexity and subtlety
inherent in dynamic graphs. Even the most
modern of relational database systems (in-
cluding in-memory systems) cannot e#ective-
ly support analytics on large, evolving graphs
because of the O(n2) nature of self-joins. Yet
modern analytics on real-world data requires
systems capable of storing and processing large
series of graph snapshots. What can we do?

A PARTIAL SOLUTION
G* (pronounced “JEE-star”) is a distributed system for storing
and processing series of graph snapshots [8]. G* compresses dy-
namic graph data based on commonalities among snapshots,
providing deduplicated storage across multiple workers to
save space. G* supports multiple cores for scale up and mul-
tiple servers for scale out. In this manner, I/O bound analytic
tasks bene"t from parallel reads and writes among workers.
G* executes analytic queries on large graphs using distributed
operators for parallel processing. It speeds up these queries by
processing graph commonalities only once and sharing results
across relevant graphs and workers. !is architecture not only
provides scalability, but since G* is not limited to processing
only what is available in RAM, its analytic capabilities exceed
those of systems constrained by what they can hold in memory.

!e G* engine works quite nicely [8,9] but, when we started
this project, it was only accessible to end users through a text-
based command-line interface uninspiringly called “Terminal.”
(See Figure 1.) We needed something better.

OUR CHALLENGE: THE REST OF THE SOLUTION
!e text-based command line terminal worked, but it was “re-
search code” (i.e., utilitarian and somewhat unpleasant to use).
We needed something less technical and more enjoyable to use
in order to introduce the world to our dynamic graph database
and encourage adoption. We needed something visual—some-
thing everybody could run on any system. Realizing that G* was
only one part of an overall solution, we set out to develop G*
Studio—an interactive environment for G* available as an em-
beddable component or as a complete application. Its features
would include a syntax-highlighting graph editor and console,
visualization tools, query and analysis tools, as well as con"gu-
ration analysis and management.

We also realized that G* Studio would need to be able to teach
its users how it works. Further, although we did not see this at
"rst, we soon learned, from external feedback, that in order for
users to use G* Studio e#ectively, they would need to know about
graph theory and graph databases, and why they are awesome.

Finally, with what to do "rmly in hand, we began to think about
why we would be doing it. After some re%ection, we agreed that
full stack development experience is critical for success in our
modern world and the Internet of !ings. Just as balancing theory
with practice is essential regardless of domain, we must embrace a
range of software development talents suitable for modern appli-
cation development, from databases through servers to APIs and
clients. Regardless of domain, responsibility for the entire stack is
important. To that end, we decided that the students would
• make all front-, back-, and middle-end design choices (with

guidance towards best practices)
• Divide and conquer the work on their own
• set and enforce their own source code style guidelines
• have root access to the servers

Armed with unanimous buy-in on what to do and why we
would be doing it, we began our software development journey
by asking the next question: How would we do it?

GETTING STARTED
!e "rst decisions we made about how to proceed focused on
our development environment: hosting, source code control, and
team collaboration. To avoid using our school’s inconveniently
secure cloud—it’s really more of a bunker than a cloud—we chose
to host our system on Amazon Web Services (AWS) [2] Elastic
Compute Cloud (EC2). Amazon o#ers one year of free service,
perfect for a two-semester project. We managed our source code

Figure 1: G* Terminal

60!!acm Inroads! 2016 June • Vol. 7 • No. 2

G* Studio: An Adventure in Graph Databases, Distributed Systems, and Software Development

ARTICLES

ity without spending signi"cant time on “plumbing.” Further,
the responsive design features of Bootstrap moved us towards
having a mobile browser app with no additional e#ort. (Adding
a library like jQuery Mobile would get us the rest of the way
there.) Experience with these tools makes for excellent additions
to our students’ resumes, since industry uses them routinely.

Another note from the professor—Projects extending
more than a single semester also make wonderful additions
to students’ resumes. !ey get to brag about exercising their
vital software development powers in projects a#ording
them scope beyond in-class assignments. If their projects
involve shiny terms like API development, graph databases,
and analytics, so much the better. !row in some distributed
systems—as they are everywhere today and experience with
solving common distributed systems problems is great—with
a dash of popular tools like Git and Slack, and our students
will have a "ne resume replete with valuable experience by
the time they are done with us. Stories like this one, where
students learn hard and soft skills that enhance their career
prospects after graduation, make for great answers to parents
asking about educational ROI.

with Git and stored it in the cloud on GitHub [5]. We would all
develop locally, commit our code and push it to Git, and then
deploy to our EC2 instance in the cloud. We used Slack [12] for
team collaboration in addition to our weekly in-person meetings.

A note from the professor—Many students are beset with
anxiety on two fronts when starting out with source code
control. One challenge comes from their not understanding
the technical details of how it works, what it does, and where
it’s stored. (!ankfully, everyone seems to understand why we
need it.) Teaching our students how it works and what it does
and where it’s stored easily remedied this problem. !e second
source of anxiety is far more pernicious. It’s social anxiety
stemming from fear of “breaking it.” (See sidebar.) While there
tends to be considerable pressure to avoid “breaking the build”
with untested code (another thing that’s easy to "x by teaching
our students about testing and continuous integration), the
real problem is the students’ fear of corrupting other people’s
code by somehow misusing source code control. !ey worry
about overwriting others’ code, accidentally reverting the
repository to an earlier state, or somehow losing code. !ese
fears are not without merit. Git, for example, is complex to say
the least. !ere is “pull” and “fetch,” which sound the same but
are actually di#erent. !ere’s “update” which does not. And
what the heck is “rebase?” (I’m still not sure, but I know it’s
not “reset.”) As my students note in the sidebar, having the
team work together in person, experimenting as a group with
adding, committing, pushing, and pulling code may relieve
this anxiety thanks to the technical knowledge they share and
the social experience of having safely done it together.

Our next decision involved the target platform. After brie%y
considering building native mobile and tablet apps for iOS and
Android, we quickly decided that the best way for us to imple-
ment a visual environment capable of running on any system
would be to take advantage of the HTML Document Object
Model (DOM) and JavaScript execution environment present
in all web browsers.

Having chosen a web-based interactive environment for
G* Studio, we set out to tackle a few more fundamental issues
such as look and feel, tools for building browser-based applications
(once called “Rich Internet Apps,” today called “apps”), and how to
communicate with the G* database from inside the browser.

For look and feel, we took inspiration from R Studio [11] and
a few browser-based operating systems projects [13] that other
students had recently written. Both R Studio and those operat-
ing systems provide a lot of information about complex systems
in user-friendly ways.

We decided to adopt three currently standard tools for build-
ing browser-based applications: (1) the Bootstrap GUI frame-
work for responsive page layout, typography, and user interac-
tion [3]; (2) the jQuery JavaScript library for DOM manipulation
and AJAX/JSON functionality [6]; and (3) the D3 JavaScript vi-
sualization library for drawing graphs and charts [4]. Using these
common tools allowed us to focus our development e#orts on
building valuable application-speci"c user-facing functional-

STUDENT STORY: SCARED TO GIT

I was scared to use Git, even though the point of Git should
have been to make me feel better about the safety of the
code. I made it through a class requiring that I use Git
myself, minimally committing changes to GitHub while
trying to “commit early and commit often” as the semester
progressed. In my last year at school I became a member
of the G-stars. The professor wanted source control, which
was smart and useful, as we had several developers working
together. But I had never contributed to code like that in
any of my previous projects. So I was back to feeling like I
had before, practically back to “How do I GitHub?” Luckily I
had smart, supportive teammates who helped me get up to
speed with Git and GitHub, but I was still scared of com-
mitting my own code. I’d send my code to teammates and
they’d add it into theirs in their next commit. I did that until
my professor called me out for not committing. I explained
that I didn’t want to mess anything up, but that didn’t fly,
and by the end of that meeting, I felt the same as I did when
I first ever tried using GitHub. So, I had the rest of the team
practically hold my hand as they helped me walk through
the process. I really didn’t want to let the team down, and
they were all really supportive and patient with me and my
timidness towards the idea. We went from the beginning to
the end of a commit, and I felt much more confident about
it. I didn’t break anything, and I even helped contribute
towards the code-this time with my name on it!

1 Why REST? We like that REST is based on existing HTTP verbs and therefore requires
no additional infrastructure. (We’re always seeking to minimize dependencies.) Its URL
encoding scheme makes it universal to today’s internet. We considered XML for a few
seconds, but immediately thought better of it.

acm Inroads!•!inroads.acm.org!!61

ARTICLES

tions. Finding a willing audience was easy in our academic envi-
ronment, so we arranged demos for our faculty and dean. Also,
any time someone from industry came on campus to speak to a
class or present to a group we tried to show them our software.
Several G* Studio features came from suggestions, questions,
and discussions incorporating people outside of our school
and outside of our "eld (professionals in "nance, supply chain,
pharmaceuticals, and more.)

DEVELOPMENT
We separated our functionality/development milestones into
three phases: Phase one, API request and response; phase two,
GUI / web interface to the API; and phase three, additional
features. We considered phases one and two as “need to have”
features without which the project would fail. Phase three con-
sisted of “nice to have” features that made our system more
powerful and easier to use.

PHASE ONE:
API REQUEST AND RESPONSE
!e "rst task we tackled was developing simple request-
response connectivity, sending browser-based REST requests
to our server-based graph database and getting JSON responses
from our server back to the browser. Once we integrated
NanoHTTPD and veri"ed that we could indeed interact with it
from the browser, we started developing APIrest (see Figure 2)
by implementing elementary get3 commands such as version
and time. !ese simple commands did not require any interac-
tion with the G* database and their JSON representation was
quite simple.

We chose to design and implement a REST1 API to commu-
nicate with our graph database. It would be callable from the
browser or any client with an internet connection via standard
HTTP verbs. It would respond with objects in JavaScript Object
Notation (JSON). To that end, we quickly discovered the utility of
JSONLint [7], a JSON validator that helped us debug our API re-
sponses. Since REST uses HTTP verbs, we would need an HTTP
server to implement our API. Enamored of the KISS principle,
and wanting a modular, testable solution with as few dependen-
cies as possible, we chose to forego bulky middleware like JBoss,
WebSphere, and (the accursed) Struts in favor NanoHTTPD
[10], a tiny, embeddable HTTP server written in Java.

<aside>
We can hear you asking, “Wait… what? Why use NanoHTTPD
instead of something standard and easy like PHP or
Python?” We thought of that. But G* is written in Java.
Our core API functionality needed to be tightly coupled
with the G* engine so it could call G*’s graph management
and analytic routines. Since we were trying to minimize
dependencies (always a best practice) we took a dim view
of building our system around heavyweight Java containers
like Tomcat, JBoss, WebLogic, WebSphere, etc. because
bridging the server environment of PHP or Python to G*’s
Java environment would be a problem. While there exist
PHP/Java integration bridges (the accurately named and
open source php-java-bridge and Zend, for example), they
typically require Java application containers (Tomcat
and WebLogic, respectively) to work. Having decided to
forego heavyweight dependencies like those introduced
by Java containers and application servers, integration
with Python or PHP became untenable. We needed something
lightweight and with no dependencies other than a JAR.
Enter NanoHTTPD.

</aside>

We separated the core of our API from its REST and JSON
implementation. !is internal separation of the core API and
the REST (of the) API makes our solution both modular and
extensible. !e core API (called, appropriately enough, APIcore)
is responsible for “tactics” in that it has to "gure out how to get
results by making calls into G*’s database internals and returning
those results in raw strings. APIrest is responsible for “strategy”
in that it receives requests for what to do from the browser via
HTTP, calls the appropriate routine in APIcore, and then takes
the resulting raw strings2 from APIcore and builds the JSON re-
sponse returned to the browser. If, in the future, we wanted to
implement an XML API (or any other form of API) we could
implement XML-returning “strategy” code while leaving the
APIcore “tactics” untouched. Figure 2 shows this architecture.

DEVELOPMENT AND DEMOS
Avoiding embarrassment is a great motivator. And that’s why
demonstrations make great development milestones. !e "rst
thing we did was set up a calendar of important dates that in-
cluded functionality/development milestones and demonstra-

2 In this context, “raw” strings are minimally formatted or un-formatted strings. They
are not JSON. They are not XML. They are just packed arrays of (raw) character data.

3 This is the HTTP verb GET, which requests data from a server. The POST verb, which
we’ll use later, submits data.

Figure 2: Architecture

62!!acm Inroads! 2016 June • Vol. 7 • No. 2

G* Studio: An Adventure in Graph Databases, Distributed Systems, and Software Development

ARTICLES

With API request and response "nally working, we moved
on to phase two.

PHASE TWO:
GUI/WEB INTERFACE TO THE API
Pablo Picasso might have once mentioned that, “Good artists
copy; great artists steal.” (De"nitive attribution of this is di$cult
to "nd.) One of our early design decisions was to copy steal R
Studio’s layout. While we certainly did not (and do not) consider
ourselves great artists, we recognized in R Studio what so many
others have: it provides the concise power of a command line in-
terface while simultaneously presenting an easy-to-use interac-
tive graphical environment. Where it provides an R language ed-
itor, we provide our graph language editor. Where it provides an
interactive console to the R engine, we provide our interactive
console to the G* engine. Where it provides a plotter for charts
and graphs, we provide a visualizer for graphs and charts. !ere
are even similarities in our help system and tutorials. Using the
responsive grid layout tools provided by Bootstrap, we struc-
tured our R Studio–inspired web app around a graph editor, a
graph console, a visualizer, and a tabbed help/tutorial/log panel.

For the graph editor we used ACE [1], an open source high per-
formance code editor for the web. By embedding an ACE instance
in a Bootstrap well contained in a (grid) row (the well in the row
e#ectively becoming a container), we were able to provide text
editing functionality, including syntax highlighting, without rein-
venting a code-editor ourselves. Implementing syntax highlighting
for our custom grammar was not as easy as the examples on the
ACE web site might have led us to believe. Eventually, we found
that modifying the LISP de"nition "le (mode-LISP.js) for our own
syntax was an e$cient way to bypass the brain damage of manual
con"guration from scratch. In hindsight, we would also recom-
mend using the “Ace Mode Creator” utility on their web site.

A note from one of the G-stars—For me, the most chal-
lenging part of the project was dealing with the libraries we
used for di#erent functions of the user interface. D3 and the
Ace editor provided countless hours of frustration and stress
as we tried to work through the limited, vague, or wrong
documentation, misleading tutorials, or just broken func-
tionality. It should have been enough to drive most people
crazy and just give up, but we stuck with it and somehow we
were always able to overcome the issues we faced.

Once we got good at it, ACE became the basis for our graph
console as well. We wrote a special key-handling function to
process the home, end, arrow, and backspace keys in order to
implement the prompt, command history and recall, and other
behaviors necessary to provide the interactive, line-by-line ex-
perience of the console as opposed to the page-based experience
of the editor. To do this, we assigned our special key-handling
function to the ACE instance’s keyBinding.onCommandKey event
and processed keystrokes according to their keycode parameters.

At this point, the user interaction %ows as follows: A user
enters one or more graph commands in the editor and clicks/
touches the execute button; or they enter one command in the

get Request: http://ec2-gstar.amazonaws.com:8080/version

JSON Response: { “version” : “42.007.2112.8675309” }

After debugging our API responses—with help from JSON-
Lint—we moved on to the logging module. At "rst, we recorded
server-side activity in a text "le that we would tail so we could
monitor it. Later, in phase three, we incorporated logging to a
relational database via ODBC.

Once we had server-side logging and our request–response
cycle working, we began implementing a few “informational”
graph commands (get graphs, get vertices, get edges) by de-
veloping APIcore, which is tightly coupled with G*’s database
internals. (See Figure 2). !is required that we parse GET re-
quests in APIrest and call the appropriate routine in APIcore,
which in turn would call the appropriate routine(s) in G* and
return the results to APIrest as a raw string for formatting into
the JSON response to the browser. We veri"ed these web-based
results against those from our Terminal (see Figure 1).

get Request: http://ec2-gstar.amazonaws.com:8080/graphs

JSON Response: [{“graph” : “0.0”, “vertices” : 2, “edges” : 1},
 {“graph” : “1.0”, “vertices” : 4, “edges” : 2}]

With a few graph information commands implemented, we
spent the "nal part of our initial phase implementing graph cre-
ation in the API via HTTP POST commands. Once again, we
added to APIrest for the “strategy” (what to do) and APIcore for
the “tactics” (how to do it). And, again, we veri"ed our API-
based results against those from our Terminal.

post Request: http://ec2-gstar.amazonaws.com:8080/graphs/5

JSON Response: {“message” : “ New graph 5.0 was created.”}
 status: success

We ran into some problems where the browser would block
our request-response round trips due to cross-origin POST restric-
tions. !is surprised us because both our browser-based client and
our Java-based server were running on the same IP address both lo-
cally and on EC2. But the client app runs on port 80 while our serv-
er listens on port 8080. Much to our surprise, we learned that using
di#erent ports—even on the same IP address—is enough to trigger
cross-origin security precautions implemented by most modern
browsers. To avoid this, we added an OPTIONS request before
every POST to permit the next cross-origin request by telling the
browser to allow GET, POST, PUT, DELETE, and OPTIONS oper-
ations by including the following in the OPTIONS response:

options Response: 200 OK
 Allow: GET,POST,PUT,DELETE,OPTIONS

We also added three “Access-Control-Allow” headers to all
responses:

Access-Control-Allow-Methods, DELETE, GET, POST, PUT, OPTIONS
Access-Control-Allow-Origin, *
Access-Control-Allow-Headers, X-Requested-With, Content-Type

acm Inroads!•!inroads.acm.org!!63

ARTICLES

the editor and console have been waiting for the next command.
Once we had our graph editor and graph console working,

we began testing G* functionality via the GUI. We veri"ed the
responses in the GUI against the results of the same commands
on the same graphs executed in Terminal. When all was looking
good, we turned our attention to the visualizer.

After considering several JavaScript visualization libraries,
we chose to implement our visualizer with D3, speci"cally its
force-directed graph. !e D3 web site had some helpful exam-
ples, one of which was a graph of character co-occurrence in
Les Misérables, which was very similar to the kind of graph we
wanted to show. Some of the challenges in getting D3 integrat-
ed into our visualizer involved getting the z-index right for the
multiple overlays that comprise the visualizer display, "guring
out how to use DOM selectors to access and modify the SVG
graphic objects D3 painted, and keeping D3’s many global vari-
ables properly updated with our (more modular) state.

We once again turned to Bootstrap for the tabbed help/tuto-
rial/log panel, using its nav-tabs class with divs as wells (some
of which contained an iframe) for each tab.

With all the pieces of our GUI / web interface in place (see
Figure 3), we noticed that we rarely used the API any more.
In fact, we sometimes forgot to update the server-side API
help and documentation after adding new client functionality
because the GUI was so pleasant to use and working so well.

console followed by the enter key. JavaScript functions parse
the command(s) “behind” the GUI using regular expression pat-
tern matching. Each command is processed with two functions,
the "rst doing error checking and reporting, the second imple-
menting the command actions. (We split this code to improve
readability and reusability.) !en, each command is checked for
whether or not the user supplied a graph ID. If so, it is used. If
not, the current graph ID (tracked by the GUI) is used unless
there is none (because of a cold start or browser refresh), in which
case an error is reported. If all goes well, the REST API request
URL is created, typically get or post. (put and delete are oth-
er possibilities in REST but we have not yet made use of those
HTTP verbs.) One of two jQuery functions (.getJSON for get or
.ajax for post) send the REST requests to the server. At this
point, the server receives the browser requests in APIrest where
it decodes the request and calls the appropriate routine in API-
core. APIcore uses G* internals to execute the command actions
and collect the results, which are returned to APIrest as a raw
string (or possibly a list or a set of raw strings). APIrest formats
the data from APIcore as JSON and sends it to the browser. !ese
responses from the server trigger a JavaScript callback function
that examines the status (200 is success, others less so) and the
data (the JSON object, one hopes). If all is good, the JSON re-
sponses are instantiated as JavaScript objects, formatted, and dis-
played in the GUI’s console, visualizer, or data panel. Meanwhile,

Figure 3: G* Studio

64!!acm Inroads! 2016 June • Vol. 7 • No. 2

G* Studio: An Adventure in Graph Databases, Distributed Systems, and Software Development

ARTICLES

graph consisting of four consecutive snapshots. Now, all the
user needed to do to create any of these graphs was to select
one from the menu in the graph editor and execute it. !e com-
mands are all synchronously piped to the console and the graph
is created. With the success of pre-loaded common graphs, we
quickly realized that we could pre-load some common graph
queries as well: degree distribution, top-k vertices by total
degree, and trends of rising or falling stars across contiguous
graph snapshot pairs by total degree centrality.

One more note from the professor—Anytime we can work
into a practical project material that’s primarily theoretical—
graph theory in this case—we win. Talking about teaching a
balance of theory and practice is "ne, in theory. Demonstrat-
ing it in practice, like this, is great.

Finally, as our use cases and examples became more complex
and more apropos of the “real world,” we found ourselves want-
ing more features. We enhanced our visualizer to show 1-hop,
2-hop, and 3-hop in%uence from any vertex in the graph by col-
oring the vertices. (Note the green vertices of 1-hop in%uence
from the red vertex shown in the graph visualized in Figure 3.)
We also implemented the ability to update vertices and edges
(rather than just adding new ones), setting and getting arbitrary
attributes (as strings) on vertices and edges, and easy graph clon-
ing (for those evolutionary graph snapshot examples). On the
systems management side, we implemented a new visualizer
pane to show master and worker con"guration hardware details
(and IP addresses) for con"guration analysis and (eventually)
management. While designing, developing, testing, and integrat-
ing those features into our system, some of us got mischievous4
and implemented hidden features. While the non-mischievous
team member was "ghting Heisenbugs by implementing a facil-
ity to force checkpoints in the storage manager components of
the underlying distributed database, others implemented “festive
mode,” the details of which are highly classi"ed.5

We tracked our progress by looking at our Git commits over
two semesters in time and three phases of development. In the
commit chart for the backend G* database code (see Figure 5)
we can see the initial commit in September followed by many
commits in October and November as we developed APIcore
and APIrest in phase one. !e addition of new features once the
initial version of G* Studio was working (phase three) caused
the bump in February. In contrast, the commit chart for G* Stu-
dio (see Figure 6) shows most of the work in February through
April, when we developed most of G* Studio (phases two and
three), having put together only a minimally viable version by
the previous December.

DEMONSTRATIONS
Armed with a full-featured graph database and our brand new
interactive GUI with which to show it o#, we set out to spread
the word about graphs and graph databases. As previously

PHASE THREE:
ADDITIONAL FEATURES
With the system architecture done and the basic GUI complete,
our “need to have” features were in place, and we turned our
attention to teaching our users about graphs, graph databases,
their awesomeness, and how to use G* Studio. In the process of
doing this we added some other “nice to have” features to make
our system even more powerful and easy to use.

We developed an interactive tutorial (see Figure 4 for a tiny
part of it) that teaches the user about graphs and graph data-
bases. It also shows them how to use G* Studio. After starting
out with a little bit of graph theory, the tutorial walks the user
through various GUI elements and features of G* Studio (see
Figure 3). We made the tutorial interactive within the GUI. !is
was easy with the tutorial embedded inside the GUI and both
written in JavaScript, so simple messaging and event processing
worked quite well to integrate the two. In that sense, rather than
being a passive learning “read about it” experience, our tutorial is
very much an active learning “try it and see” experience. As the
user interacts with the tutorial the results are presented (as new
graphs, drawings, queries, etc.) in G* Studio itself.

Once users have gone through the interactive tutorial once
or twice, all they really need from that point on is a standard
help facility of reminders and command shortcuts. So we built
one. Like our tutorial, it is also interactive with the GUI.

Developing the tutorial with an eye towards teaching users
about graphs and graph databases caused us to think about il-
lustrative use cases. To facilitate graph theory education, we
pre-loaded several common graph de"nitions and use cas-
es inside the graph editor, including 8-vertex full, 32-vertex
ring, 32-vertex bipartite, 63-vertex binary tree, 64-vertex star,
64-vertex Erdős-Rényi random, and an incrementally-evolving

Figure 4: Interactive Tutorial

4 The mischievous “us” refers to graduate students, of course.
5 Like Portal’s cake, this too is a lie.

acm Inroads!•!inroads.acm.org!!65

ARTICLES

project gave me experience that I’m us-
ing each day at work. !e camaraderie
we shared between work and play was
an experience I will miss and treasure
forever. We may have all moved away
from each other for now, but I hope for
the day when we are all back in the Nor-
ton room at Marist, working through the
twilight hours together again.

!omas: Just the idea of working on
something from scratch, but at the same
time, being on a team, was an amazing
experience. Instead of just contributing
to a pre-existing code base, we were
designing things how we wanted (with
some set goals and basic parameters).
!ough we regretted some of our choic-
es later on down the road, that is part of
the learning experience. As a team, we
were successful. !ere were de"nitely

frustrating moments, whether from APIs that lacked correct
documentation or libraries that seemed to work primarily on
magic. !at said, this project still contains some harnessed
magic, and that would not have been possible without the
team and our working relationship. We spent many long nights
trying to make everything perfect, and though there is always
more work that can be done, I do not regret a single second
of it. !is is my favorite project I have ever been a part of, and
easily the best team.

Shane: Initially, my biggest fear about this project was the
scale. After our professor described the project to the team for
the "rst time, it seemed like a massive undertaking and I know
I wasn’t alone in having no idea where to start. I had never
worked on such a large project with so many integrated parts
and features. Many of the GUI features we talked about imple-
menting were very complex and required the use of pre-exist-
ing libraries, most of which I had never heard of. However, as
we started to progress, we quickly realized how prepared we
were for such a challenge.

CONCLUSION
Projects like this allow students to take a longish view of deci-
sion-making, implementation, and maintenance/enhancement.
!is was a two-semester project and the students experienced
"rst-hand the impact of their own earlier decisions such as
• choosing NanoHTTPD over a heavyweight application

server or container,
• deciding on JSON as a response protocol instead of XML,
• selecting D3 as our visualization library instead of writing

the graphics code from scratch or adopting a di#erent
library (like Sigma.js or Arbor.js).

Our early decision to have the students to make front-, back,
and middle-end design choices turned out very well. !ere were

mentioned, demonstrations are wonderful motivators. We al-
ways pushed ourselves to sprint to the next demo date, lest we
be embarrassed. In addition to driving development, perhaps
the biggest bene"t of our many demonstrations was that they
conveyed to people who do not live and breathe graph theory
and distributed systems what a graph is, what a graph database
does, how various enterprises can use them, and why using
them can be both interesting and bene"cial. Repeatedly put-
ting these technical concepts in lay terms greatly improved our
thinking and helped to shape and enhance G* Studio.

In addition to showing G* Studio to our student and faculty
peers, we invited many people from many industries to see it. In
every case we heard new ideas, were asked new questions, and
talked about new scenarios in areas as diverse as marketing,
transportation, pharmacology, communication, "nance and
more. !is too helped to clarify our thinking and sharpen many
aspects of G* Studio.

THE G-STARS REFLECT
Gregory: What made the project so great? We created it from
scratch and got to make all the decisions as a group. Sure, our
professor led some of the decision-making, partially from his ex-
perience and knowledge, and partially because it was using his
research. Even with that, most of the design and decision-making
was still a discussion, something I was not used to in school. To
me, it was amazing to have these discussions then actually build
something from the ground up, something that is cutting-edge. I
knew that we were doing something that many people will nev-
er get to experience in school. It also exposed me to developing
things that I never even heard of before. I loved learning REST
and programming things that I know I would have never done
until maybe having to do them for a job someday.

Cassie: I owe everything to this team. I really enjoyed meet-
ing up with and doing work with the team. Collaborating on this

Figure 5: G* database commits

Figure 6: G* Studio commits

66!!acm Inroads! 2016 June • Vol. 7 • No. 2

G* Studio: An Adventure in Graph Databases, Distributed Systems, and Software Development

ARTICLES

(for better or worse), they are no substitute for in-person
meetings. In-person teamwork promotes a sense of
community, shared experience, and harnesses the comfort
o#ered by safety in numbers to help mitigate Git shyness
and other commitment issues.

• Enforce disciplined source code style.
• Promote disciplined procedures for source code control:

Pull the new code before you begin working each time.
As you work, commit early and often, with descriptive
commit messages. Commit and push from time to time as
you work, and always when you’re "nished for that session.
Discuss any merge con%icts with the team either in person
or on Slack so they can be resolved quickly.

• !e value of buy-in and fun cannot be overstated, especially
fun. Remember to mix work and play. !e more everyone
enjoys it, the better the results. So please, embrace
mischievousness6 and join the fun. �

Acknowledgements
The authors thank Jeong-Hyon Hwang, the original G-star and a giant upon whose
shoulders we stand. We thank as well all the people who attended our demonstrations
of the system and provided feedback. Finally, we wish to thank the Inroads reviewers for
their thoughtful comments. Writing papers like this, just as with writing software, relies
on critical feedback from external stakeholders.

References
 1. Ace; http://ace.c9.io. Accessed 2016 February 27.
 2. Amazon Web Services; https://aws.amazon.com. Accessed 2016 February 27.
 3. Bootstrap; http://getbootstrap.com. Accessed 2016 February 27.
 4. D3; http://d3js.org. Accessed 2016 February 27.
 5. GitHub; https://github.com. Accessed 2016 February 27.
 6. jQuery; https://jquery.com. Accessed 2016 February 27.
 7. JSONLint - The JSON Validator; http://jsonlint.com. Accessed 2016 February 27.
 8. Labouseur, A. et al. “The G* Graph Database: E!ciently Managing Large Distributed

Dynamic Graphs.” Distributed and Parallel Databases 33, 4 (2015), 479-514.
 9. Labouseur, A., et al. “A Demonstration of the G* Graph Database System.” ICDE

2013, 1356–1359.
 10. NanoHTTPD - The tiny, easily embeddable HTTP server in Java; http://nanohttpd.

org. Accessed 2016 February 27.
 1 1. R Studio; http://www.rstudio.com. Accessed 2016 February 27.
 12. Slack; https://slack.com. Accessed 2016 February 27.
 13. Students’ Operating Systems; http://www.labouseur.com/courses/os. Accessed

2016 February 27.

Alan Labouseur,* Alan.Labouseur@Marist.edu

Shane Crumlish, Shane.Crumlish1@Marist.edu

Cassandra Graves, Cassandra.Graves1@Marist.edu

Melissa J. Iori, Melissa.Iori1@Marist.edu

Gregory Miller, Gregory.Miller2@Marist.edu

Thomas J. Wojnar, Thomas.Wojnar1@Marist.edu

Marist College
School of Computer Science and Mathematics
3399 North Road, Poughkeepsie, New York 12601 USA

* corresponding author

DOI: 10.1145/2896823 ©2016 ACM 2153-2184/16/06 $15.00

some mistakes made along the way, but mistakes that don’t kill
you are excellent teachers, even (especially?) if remedying them
is painful.

Putting the students in charge of dividing the work on their
own also worked well. !ey arranged themselves into natural
and e$cient teams. Certainly, the fact that they were graduate
students at the end of their college careers helped this. Less ex-
perienced students might not be as successful in this area.

Letting the students set and enforce their own source code
style guidelines was a mistake. !ey never managed to agree on
a consistent style, in spite of the professor telling (or yelling at)
them that being consistent is more important than the details
of the style. !is resulted in time wasted on code reformatting.
Considering the fact that industry tends to enforce code style
strictly, we should have imposed a strict style for this project.

Giving students root access to the servers was great. It set up
a situation engendering personal responsibility, peer pressure,
and trust, all at the same time. Trusted with root access, the
students were empowered to "x anything and everything they
broke when (not if) they deployed bad code, and to do so before
anyone noticed, lest they risk the wrath of their peers.

Some of the strongest learning outcomes came from using
new technologies, experiencing the value (and, at times, valor) of
teamwork, and end-user focused development in a hard-core CS
class. Many times, the analysis and design parts of a CS or soft-
ware development curriculum are isolated from implementation
courses. (!ere are many reasons for that, and not all of them
bad.) It’s one thing for the analysis for students to produce pretty
diagrams or useless UML. It’s quite another to actually write the
code to implement those designs and make it work. !at lends a
new and valuable perspective to the entire enterprise.

PARTING THOUGHTS:
• Separate strategy from tactics.
• Minimize dependencies.
• Divide features into “need to have” and “nice to have.”
• Demonstrations make great development milestones.
• Let (or make) the students make decisions and then make

(or let) them live with the consequences.
• Watch out for cross-site scripting security exceptions. !ey

are really annoying, and relentless.
• Never underestimate the necessity of consistent JSON

formatting.
• Be sure to put delimiters on your regular expressions, lest

they match too much.
• Be careful with the HTML z-index attribute.
• !e documentation for third party libraries is rarely as good

as you wish it were. Sometimes they seem to rely on magic,
which can be troublesome to harness.

• You and your student developers are too close to the project
to see the proverbial forest for the equally proverbial trees.
Seek outside critique from external stakeholders early and
often.

• While tools like GitHub and Slack promote collaboration,
teamwork, and working at all hours of the day and night

6 Okay, so Festive Mode is not highly classified. It’s seasonal icons (hearts, snowflakes,
graduation caps) and random silliness (companion cubes, fire).

