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By Alan G. Labouseur, Marist College

COVID in the 
Classroom

The COVID-19 pandemic presented a vast array of 
challenges for colleges and universities all over the 

world. Many of those challenges remain as we navigate 
COVID’s long tail, its wide-spread and long-lasting effects 
continuing to be felt. Awful as those effects are, being 
wide-spread and long-lasting makes them both practical 
and useful as real-world common ground motivation for 
teaching topics in computer science. In fact, the author has 
already done so. In addition to teaching in full-time faculty 
of the Computer Science department, he was a key member 
of the COVID-19 testing and screening team at Marist 
College during the Fall 2020 and Spring 2021 semesters, 
modeling pooled testing protocols in C++ and Java as 
well as designing and implementing database systems for 
generating representative samples of the college population 
for surveillance testing, results tracking, and compliance 
monitoring. These experiences prompted new, meaningful, 
hands-on ways to integrate computer science theory with 
real-world practice in an immediate and authentic manner 
as the faculty and students were living a common first-
hand experience in real time. Even once this pandemic has 
receded fully into the past, this experience serves as an 
example of ways we can incorporate events affecting student 
and faculty lives into computer science courses. This article 
describes three of those ways.

INTRODUCTION
For decades students have been observed complaining that 
some of their programming courses lack “real world” applica-
tions. Much ink has been spilled (or, to modernize the idiom: 
many PDFs have been generated) about presenting computer 
science topics in a fashion relevant to those we teach. We are 
always looking for authentic, hands-on ways to reach our stu-
dents. While the COVID-19 pandemic presented many chal-
lenges, it also presented new and meaningful ways to inform 
computer science theory with real-world practice in an im-
mediate and authentic manner. And it’s not a one-time thing. 
In her New York Times article “Reaching ‘Herd Immunity’ Is 
Unlikely in the U.S., Experts Now Believe” of May 3, 2021 [5], 
science reporter Apoorva Mandavilli explained that herd im-
munity may not be achievable even with widespread vaccina-

tions, and that virus variants will continue to spread, so that “…
rather than making a long-promised exit, the virus will most 
likely become a manageable threat that will continue to circu-
late in the United States for years to come…”. Since it looks like 
COVID may persist for a while in some form, we might as well 
make the best of it.

As a member of the COVID testing and screening team 
at Marist College during the Fall 2020 and Spring 2021 se-
mesters, I modeled pooled testing protocols in C++ and Java. 
I also designed and implemented database systems for gen-
erating representative samples of the college population for 
surveillance testing. This database recorded test results and 
monitored testing compliance as well. (I was among the three 
people at Marist approved for access to this sensitive data.) 
This experience in real-world COVID testing and tracking 
revealed new ways to inform computer science theory with 
practice. The global and pervasive nature of this pandemic, 
and that methods of addressing it are both theoretical and 
practical, aligns with best practices specified in the 2020 
ACM Computing Curricula in terms of supporting both stu-
dent and industry use cases for competency-based curricular 
dynamics. (See CC2020 chapters 5 and 7 for details.) This ar-
ticle describes three use cases drawn from my COVID test-
ing experience that motivate and illustrate core concepts in 
undergraduate computer science courses. In the first case we 
will take a brief look at the multi-process bounded-buffer pro-
ducer-consumer problem often discussed in Operating Sys-
tems courses. The second case goes deeper, illustrating var-
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Assuming we have an unbiased and uniform population to 
test, and assuming the test is sufficiently accurate, sensitive, and 
specific to signal the presence of a COVID virus, combining bio-
markers (i.e., pooling samples) from multiple patients into single 
test can reduce the overall number of tests needed. It’s based on 
a core principle of computer science: divide and conquer. Here’s 
how it works: divide the population into small groups and test 
(or “conquer” in this metaphor) each group for infection. If the 
test comes out negative, then nobody in the group is infected. 
If the test comes out positive then one or more members of the 
group are infected, but we don’t know which one(s) so we must 
continue by testing everybody in the group or subdividing into 
smaller groups and repeating the process.

There are three possibilities to consider when testing a pool 
of samples.

1. There are no infected samples.
2. there is exactly one infected sample.
3. there are two or more infected samples.

Given these three cases, we apply our divide and conquer 
approach by testing groups of 8 (for example) and then testing 
subgroups of 4 if any infection is found. The best-case scenario 
is that we determine all 8 are infection-free with 1 test. See Case 
(1) in Figure 1. The second case occurs when we find 1 infection 
with 7 tests: 1 test for the group of eight, 2 tests for subgroups 
of four, and 4 individual tests for the (single) infected subgroup. 

ious aspects of SQL, database design, and stored procedure 
programming in a Database Systems course. The third case 
is the most thorough: motivating a semester-long project in 
an Algorithms course. In all cases these courses were taught 
in synchronous hybrid mode, consisting of partially in-person 
and partially online class sessions, and thus are widely appli-
cable to a variety of classroom circumstances.

BACKGROUND
Many aspects of the COVID-19 pandemic could be used to 
motivate examples for teaching computer science topics.

There are epidemiology issues like stochastic or determin-
istic disease spread models based on population density, prox-
imity, and infection rate. One could see discussing all manner 
of graph algorithms like computing network density, maximum 
cliques, connected components, and clustering coefficients in 
this context. Then there is logistics: from efficiently distributing 
testing gear and protective equipment to closing transportation 
pathways for quarantine. Again, more graph algorithms spring 
to mind, like calculating shortest paths and betweenness cen-
trality for distribution, and determining minimum edge cuts for 
quarantine. Also, consider all of the statistics involved: given 
a certain population size and infection rate, what is the likeli-
hood of an outbreak occurring in the next x days? Those are 
all excellent topics… for another article. This article focuses 
on a different topic: pooled testing. Before I could use pooled 
COVID testing to motivate in-class examples I had to introduce 
the concept.

INTRODUCING POOLED TESTING
In his New York Times column of May 7, 2020 [3], Jordan Ellen-
berg wrote about a World War II era technique called pooled 
(or “group”) testing. It can be used to reduce the number of 
tests needed to screen a large population by simultaneously 
testing multiple samples. Back then there was a different kind 
of social virus causing trouble: syphilis. US Army economists 
Robert Dorfman and David Rosenblatt created a group testing 
method for detecting (and rejecting) syphilitic draft candidates. 
This old technique has renewed importance in our modern en-
vironment of COVID testing.
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Figure 1: Pooled Testing Cases
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OPERATING SYSTEMS
Deep into the semester, once material required for the semes-
ter-long project [4] had been covered, my students and I turned 
our attention to some classic problems of managing multiple 
processes: locking, blocking, deadlock, semaphores, critical 
sections, and the bounded-buffer producer-consumer problem 
(see chapter 5.7 in the 9th edition of Operating System Con-
cepts by Silberschatz, Galvin, and Gagne) as specified in the 
“OS/Concurrency Core-Tier2” component of the ACM Com-
puter Science Curricula 2013 Body of Knowledge. For binary 
semaphores, selling concert tickets online makes an excellent 
example of mutual exclusion and the need for critical sections. 
(See chapters 4.2 and 4.3 in Operating Systems and Middleware 
by Max Hailperin.) For bounded-buffer producer-consumer 
problems, one typically presents a fast-food restaurant environ-
ment where a chef produces food items into a bounded-buffer 
holding area while customers consume items from that buffer 
by purchasing them from a cashier. The food item buffer (a 
queue) is bounded by the number of items it can hold so we can 
use counting semaphores to avoid overflow or underflow. After 
covering these examples, I introduced the COVID context and 
presented a screening environment where people in our com-
munity enter a bounded-buffer holding area (a queue) while 
health care professionals “consume” people from that buffer by 
administering their COVID tests. The people buffer is bounded 
by the number of people it can hold so we can use counting 
semaphores to avoid overflow or underflow.

By the time this came up in the semester most of my stu-
dents had been through this screening process several times. 
It was easy for them to identify with this scenario and visualize 
themselves “in the buffer,” seeing the problems of overflow (they 
would have to wait outside) and underflow (the health care pro-
fessionals would have nothing to do). Not only does this scenar-
io illustrate similar points as more traditional examples in an 
immediate and authentic-to-real-life way, but it also lends itself 
to additional complexity by varying the buffer capacity based 
on changing social distancing guidelines.

DATABASE SYSTEMS
At the beginning of each semester, I was given a snapshot of stu-
dent and employee data from Banner, our higher education ERP 
system, which I imported into the PostgreSQL object-relational 
database in a table called People, shown in Figure 2. A month or 
two into surveillance testing it became clear that more attributes 
were needed, which I added, as noted in Figure 2c.

With the People data in place—and purposefully ignoring 
any design issues until later—my students and I began dis-
cussions of elementary SQL. There is a plethora of obvious 
and simple select - from - where queries to use here, e.g., 
on-campus computer science majors:

select lastName, firstName
from People
where isStudent

and livesOnCampus
and major = ‘Computer Science’

See Case (2) in Figure 1. The worst-case scenario occurs when 
there are two or more infected samples in the group and we 
divide them into subgroups of 4 and end up using 11 tests: 1 
test for the group of eight, 2 tests for the groups of four, and 
8 individual tests. See Case (3) in Figure 1. Thankfully, the 
worst-case scenario is rare when the infection rate is low, but 
that changes along with the infection rate. (Note that there is 
overlap between cases (2) and (3) because of the possibility of 
2, 3, or 4 infections being found in the same subgroup, which 
is a case (2) situation requiring 7 tests rather than a case (3) 
situation requiring 11 tests. For now, let’s make the simplifying 
assumption that 2+ infections is always case (3), the worst case. 
We will revisit this later.)

This high-level overview of pooled testing is all we need 
to teach our students before moving on to other pedagogical 
opportunities at the heart of this article. For further details on 
pooled testing and its applications see Du and Hwang’s 2000 
book Combinatorial Group Testing and Its Applications [2] and 
Aldridge, Johnson, and Scarlett’s 2019 paper Group Testing: An 
Information Theory Perspective [1].

COVID SCREENING ON CAMPUS
A team of healthcare professionals, faculty, staff, and admin-
istrators conducted COVID screening via pooled surveillance 
testing during the Fall 2020 and Spring 2021 semesters. As part 
of that team, I incorporated three aspects of this endeavor into 
my classes: the physical logistics of testing; selecting members 
of the population for testing via representative sampling and 
then monitoring their compliance; and modeling the pooled 
testing protocol.

Physical Logistics
Hundreds of people from our community were pseudo-ran-
domly selected for surveillance testing every day. We invited 
them to report to a specific campus location in a particular win-
dow of time so our health care professionals could collect and 
pool saliva samples for screening. Managing the physical logis-
tics of all of those people flowing through our testing locations 
provided a timely example of queues and bounded-buffer pro-
ducer-consumer problems, as we will see in the next section.

Selection and Compliance Monitoring
Generating daily representative samples of hundreds of people 
from our community and then tracking their compliance—be-
cause believe it or not, every day there were people who skipped 
their test—provided a vivid landscape for discussing SQL que-
ries and views, relational database design, and stored procedure 
programming, which we will explore in the Database Systems 
section.

Modeling the Protocol
Programming a model of our pooled testing protocol and sta-
tistically determining the expected test usage provided an ideal 
opportunity to explore data structures and discuss statistics, 
which we will see in the Algorithms section.
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We factored out the student and employee attributes from 
the People table as noted in Figures 2a and 2b and into subtype 
entities. Having done this, we noted that we no longer needed the 
isStudent and isEmployee attributes, that functionality now being 
accomplished via pid membership in the new subtype tables. This 
led to a discussion of logical data independence, demonstrated 
by rewriting the OnCampusStudents, OffCampusStudents, and 
Employees views to make use of the new subtype tables and then 
executing unchanged our earlier queries against those revised views.

Stored Procedure Programming
With SQL queries, views, and design issues behind us, we con-
sidered how to go about generating representative samples of 
our community for COVID screening. Figure 3 shows (most of ) 
the PL/pgSQL code for pseudo-randomly selecting on-campus 
students who had not been recently tested or recently select-
ed for testing, grouped by dormitory clusters. (The code for 
selecting off-campus students and employees is substantially 
similar and excluded in the interest of space and anti-redun-
dancy.) This code was used to demonstrate many features of 
stored procedures: local variable declaration and usage, date 
functions, (nested) for loops, advanced SQL inside of control 
structures, table manipulation, and the need for good format-
ting and comments to make sense of it. My students felt strong-
ly connected to this because, by this time in the semester, all of 
them had been selected for COVID screening by this very code.

To illustrate the utility of views, we created them for On-
CampusStudents, OffCampusStudents, and Employees. Then I 
had my students look at some of the same queries from earlier 
with instructions to use the new views instead of base tables:

select lastName, firstName
from OnCampusStudents
where major = ‘Computer Science’

This led to a discussion of view definitions being stored in the 
system catalog and an illustration of query rewriting. We would 
revisit this table in the context of advanced SQL when discussing 
stored procedures later in the semester. But before we could do 
that, we would have to take up relational database design and 
address some of the pressing deficiencies of the People table.

Relational Database Design
The deficiencies of the People table were made clear by the 
presence of NULLs in the data due to some attributes being 
relevant only to certain rows. With this in mind we began our 
database design discussions. After covering the normal forms 
and developing an appreciation for Codd and his rules, we 
looked to revise the People table. It was apparent by this point 
that there are multiple (sub)types of people and that we have a 
few different attributes for each. The fact that student-only and 
employee-only views eased query writing provided an excellent 
opportunity to introduce entity subtypes and their implemen-
tation as one-to-one relationships with optional participation 
on the subtype side. (This also proved to be a good time to note 
the use of a primary key simultaneously as a foreign key in the 
subtype tables.)

Figure 2: The People table

Figure 3: Stored Procedure
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Case (3) happens slightly less than 0.04% of the time be-
cause the likelihood of randomly choosing two infected 
samples is 0.022 or 0.0004 or 0.04%. (It’s actually less, but 
it’s safe to err on the side of an upper bound. Also, the 
likelihood of randomly choosing more than two infected 
samples is even lower, so again we are safe with this upper 
bound.) In this case, at most 11 tests are needed.

Case (2) is the only other possibility, which happens the 
rest of the time, which is 14.96%, and 7 tests are needed.

So, for 1000 people where 20 of them (2%) are infected 
and 980 are infection-free, we could make 125 pools of 8 
samples each and work out what we expect based on the 
percentages we just calculated:

As noted earlier in the section introducing pooled testing, 
there is overlap between cases (2) and (3) because of the possi-
bility of 2, 3, or 4 infections being found in the same subgroup. 
When that happens, we have a case (2) situation requiring 7 
tests rather than a case (3) situation requiring 11 tests. We 
made the simplifying assumption that 2+ infections would al-
ways require 11 tests. This makes sense in an Algorithms class 
where we exclude constant factors and evaluate worst-case 
scenarios when talking about asymptotic performance, and I 
did not address this with my students. In the end, two students 
noticed this issue. One noticed a discrepancy between the pre-
dicted and actual values produced by his simulation when he 
ran his code on populations of 100,000 or 1M people. The oth-
er student, an Applied Mathematics and Data Science double 
major, noticed this issue right away and documented it in her 
write up. Future versions of this project will include an extra 
credit portion addressing this, to be completed once every-
thing else is perfect.

Another thing I did not address with my students is the sub-
tle fudge in the expected values for test usage. The expected 
values we calculated were based on selection with replacement 
(binomial distribution), which is not the case when creating a 
representative population sample. Once a person is selected for 
testing, they cannot be selected again in the same sample. To 
be more accurate I could have done the calculations based on 
selection without replacement (hypergeometric distribution). 
For example, the likelihood of selecting 8 healthy people in a 
population of 100 given a 2% infection rate is slightly less than 
0.988 (which is 0.8507). It’s actually

All told, this database material addressed many areas of the 
“IM/Database Systems and IM/Data Modeling Core-Tier2” 
component of the ACM Computer Science Curricula 2013 
Body of Knowledge in a practical way.

ALGORITHMS
The Algorithms course at Marist could more accurately be 
called Algorithms and Data Structures. Given that the entire 
school was undergoing surveillance testing using a pooled test-
ing protocol, it was natural to focus on examples and scenarios 
from that realm when exploring algorithms utilizing data struc-
tures such as lists, stacks, queues, and trees. After discussing 
the physical logistics of surveillance testing in terms of students 
queueing in the holding area while health care professionals ad-
ministered COVID tests from their stack of test kits, I wanted 
to introduce the semester-long project. But first I would need 
to cover some statistics.

Statistics
After explaining our pooled testing protocol (remember, there are 
three possibilities to consider: no infected samples, exactly one 
infected sample, and two or more infected samples) as described 
earlier and shown in Figure 1, we discussed the expected test 
usage for a given population and a given infection rate under that 
protocol. Here are some highlights of that discussion:

Why do we think this works? We can determine the like-
lihood of each testing possibility based on the number of 
samples we pool into each group and the infection rate 
of the disease. For example, when testing groups of 8 for 
a disease with an infection rate of 2% using the protocol 
described here…

Case (1) is expected to happen 85% of the time. This 
is because a 2% infection rate means that, on average, 
98% of the population is uninfected. The likelihood of 
randomly choosing 8 uninfected people is 0.988, which 
is 0.8507 or roughly 85%. When this occurs only one test 
is needed.

The other student, an Applied 
Mathematics and Data Science 

double major, noticed this  
issue right away and documented  

it in her write up. Future  
versions of this project will include 

an extra credit portion  
addressing this, to be completed 
once everything else is perfect.

Case (1):  125 × 0.8507 = 106.33 instances  
requiring 107 tests (no partials)

Case (2):  125 × 0.1496 = 18.70 instances  
requiring 131 tests

Case (3):  125 × 0.0004 = 0.05 round to 1 instance  
requiring 11 tests

That’s 249 tests to screen a population of 1000
people for a disease with an infection rate of 2

Note: This assumes 100% testing accuracy. Since tests are rarely perfect, it 
would be wise to incorporate test reliability into the model by introducing 
conditional probability and Bayes’ theorem. But that’s for another class.
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case. You’ll know you’ve got it right when your output 
gets close to the statistically expected values.

Q:  Should the total number of people being tested be input by 
the user or set in the code?

A:  To avoid complicating things with I/O, take a com-
mand-line parameter for the population size. If the pro-
gram is called “sim” then …

> sim 1000

…would run the simulation on 1000 people, while…
> sim 1000000

… would run the simulation on 1 million people.
Q:  Will randomness be a part of our program?
A:  Yes. You’ll need to use a random() function. There is prob-

ably one built into your programming language.
Q:  How will individual positive or negative people be repre-

sented? (Ex. 1s and 0s ?)
A:  It’s up to you, but I like 1s and 0s.
Q:  What’s the best way for those 1000 people to be broken up 

into groups of 8 and then inserted into a data structure?
A:  Randomly. Kinda. It’s actually not all that important. Let’s 

say you are running the simulation on 1000 people, take 
the first 8 as a group, then the next 8 as a group, and so on 
through the 125th group.

Q:  If the theoretical approach to the pooled testing assumes 
100% testing accuracy, would the entire nature of the sim-
ulation fall apart due to the inaccuracies of actual testing?

A:  No. A simulation that accounts for test accuracy would be 
more accurate than one that assumes 100% accuracy. But 
we’ve got to start somewhere. For now, assume 100% test 
accuracy. Once you’ve got that simulation working, consid-
er taking into account test accuracy as a refinement later.

Q:  I am under the impression that we should be using a binary 
tree to isolate the infected individuals. I feel like this is also 
how you described it. However, at certain points during 
the discussion I got the impression that we should split the 
initial population into 125 groupings of 8. Which is it?

A:  t’s a subtle point that I could have made better. We could 
build a binary tree and use its nodes as containers for the 
tests, as seen in [Figure 1]. But we don’t need to. I used 
a binary tree as a conceptual representation to explain 
our divide and conquer approach. If we test a group of 
8 and there’s an infection then we’ll test groups of 4 and 
4, and when there is one or more infection(s) from those 
tests (as there must be) then we’ll do individual tests. 
The process is conceptually similar a binary tree, but as 
a practical matter of code, we can test population[0] -  
population[7] as one test, and if it’s positive, use 
population[0] - population[3] and population[4] -  
population[7] for the next two tests.

Based on the penultimate question I will likely add a third 
extra-credit option to future projects—an option that considers 
test accuracy and tracking false positives and false negatives. If 
one wants to go even further along these lines, this seems like a 
good place to introduce Bayes’ theorem.

To be even more accurate I could have used our actual pop-
ulation size of 6000 because, while we don’t expect exactly two 
positives in every group of 100, we do expect 120 positives in 
6000. In the end, no students discovered this (not even our Ap-
plied Mathematics and Data Science major), which is a little 
disappointing. This too seems like a nice extra credit enhance-
ment for future instances of the semester-long project.

The Semester-long Project
With the statistics out of the way, we could move on to our 
semester-long project simulating a pooled testing protocol in 
Java or C++. (Most students chose Java, but a few chose C++.) 
This assignment, the details of which can be seen in Figure 4, 
was given early in the semester and the students were invited to 
submit questions and comments before they got started. I col-
lected my students’ questions and posted answers to the entire 
class. Here are some highlights:

Q:  What data structure should I use to store groups of 8?
A:  An array or a list of some sort would be good. Actually, 

you could hold the entire population to be tested in an 
array or a list or a vector.

Q:  Does our program have to come up with the likelihood of 
each case occurring (0.85, 0.1496, 0.0004) or can we set 
them as constants?

A:  Your program/simulation should produce those numbers 
as output by counting the number of occurrences of each 

Figure 4: Semester Project
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CONCLUSION AND FUTURE ACTIVITIES
It is no surprise that circumstances affecting all of us around 
the world should be well suited to motivate various topics and 
assignments in our computer science classes. After only two 
semesters, my experience bears this out, and it aligns with the 
opinions of my students. This quote from a student at the end 
of the Fall 2020 semester puts it nicely.

I wanted to thank you for an interesting and academical-
ly engaging semester. This class really sharpened a lot of 
my core software development skills that I felt I had been 
missing. But most of all I really appreciated how you con-
nected the material in the course to the pandemic instead 
of just pretending it was a regular semester. The connec-
tion of CS courses to the real world has been something I 
have wanted to see more of in my classes so I really enjoyed 
that factor of the semester project. - Maria

SOURCE CODE
Much of the SQL and PL/pgSQL source code (but none of 
the data) for the database is available on GitHub at https://
github.com/Labouseur/CovidInTheClassroom, as is the en-
tirety of my C++ code for the pooled testing simulation as well 
as a Java version from one of my students. You are welcome and 
encouraged to use it… and to improve it.

FUTURE ACTIVITIES
In the near-term it makes sense to analyze vaccination distribu-
tion plans using graph analytics like clustering coefficient and 
maximum cliques so that those who are most connected—the 
“social butterfly super-spreaders”—are among those with the 
easiest access to vaccines. Looking further into the future, the 
wide-spread and long-lasting effects of the COVID-19 pan-
demic will be with us throughout its long tail. This unfortunate 
fact means that the pandemic will remain useful as “real world” 
common ground motivation for teaching subjects in computer 
science for quite some time. In addition to the topics in op-
erating systems, database systems, and algorithms mentioned 
here, there are many other areas to consider: teaching graph 
analytics with examples from disease spread models or network 
density; illustrating pathfinding for protective equipment dis-
tribution with the algorithms of Dijkstra, Kruskal, Prim, and 
those of Bellman-Ford; reasoning about statistics by modeling 
transmission and infection, and more. While this “silver lining” 
is not worth the exorbitant cost of the COVID “cloud,” we can 
make the best of it.  
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