
32  acm Inroads  2021 September • Vol. 12 • No. 3

CONTRIBUTED ARTICLESARTICLES

By Alan G. Labouseur, Marist College

COVID in the
Classroom

The COVID-19 pandemic presented a vast array of
challenges for colleges and universities all over the

world. Many of those challenges remain as we navigate
COVID’s long tail, its wide-spread and long-lasting effects
continuing to be felt. Awful as those effects are, being
wide-spread and long-lasting makes them both practical
and useful as real-world common ground motivation for
teaching topics in computer science. In fact, the author has
already done so. In addition to teaching in full-time faculty
of the Computer Science department, he was a key member
of the COVID-19 testing and screening team at Marist
College during the Fall 2020 and Spring 2021 semesters,
modeling pooled testing protocols in C++ and Java as
well as designing and implementing database systems for
generating representative samples of the college population
for surveillance testing, results tracking, and compliance
monitoring. These experiences prompted new, meaningful,
hands-on ways to integrate computer science theory with
real-world practice in an immediate and authentic manner
as the faculty and students were living a common first-
hand experience in real time. Even once this pandemic has
receded fully into the past, this experience serves as an
example of ways we can incorporate events affecting student
and faculty lives into computer science courses. This article
describes three of those ways.

INTRODUCTION
For decades students have been observed complaining that
some of their programming courses lack “real world” applica-
tions. Much ink has been spilled (or, to modernize the idiom:
many PDFs have been generated) about presenting computer
science topics in a fashion relevant to those we teach. We are
always looking for authentic, hands-on ways to reach our stu-
dents. While the COVID-19 pandemic presented many chal-
lenges, it also presented new and meaningful ways to inform
computer science theory with real-world practice in an im-
mediate and authentic manner. And it’s not a one-time thing.
In her New York Times article “Reaching ‘Herd Immunity’ Is
Unlikely in the U.S., Experts Now Believe” of May 3, 2021 [5],
science reporter Apoorva Mandavilli explained that herd im-
munity may not be achievable even with widespread vaccina-

tions, and that virus variants will continue to spread, so that “…
rather than making a long-promised exit, the virus will most
likely become a manageable threat that will continue to circu-
late in the United States for years to come…”. Since it looks like
COVID may persist for a while in some form, we might as well
make the best of it.

As a member of the COVID testing and screening team
at Marist College during the Fall 2020 and Spring 2021 se-
mesters, I modeled pooled testing protocols in C++ and Java.
I also designed and implemented database systems for gen-
erating representative samples of the college population for
surveillance testing. This database recorded test results and
monitored testing compliance as well. (I was among the three
people at Marist approved for access to this sensitive data.)
This experience in real-world COVID testing and tracking
revealed new ways to inform computer science theory with
practice. The global and pervasive nature of this pandemic,
and that methods of addressing it are both theoretical and
practical, aligns with best practices specified in the 2020
ACM Computing Curricula in terms of supporting both stu-
dent and industry use cases for competency-based curricular
dynamics. (See CC2020 chapters 5 and 7 for details.) This ar-
ticle describes three use cases drawn from my COVID test-
ing experience that motivate and illustrate core concepts in
undergraduate computer science courses. In the first case we
will take a brief look at the multi-process bounded-buffer pro-
ducer-consumer problem often discussed in Operating Sys-
tems courses. The second case goes deeper, illustrating var-

While the COVID-19 pandemic
presented many challenges, it also

presented new and meaningful
ways to inform computer science

theory with real-world practice in an
immediate and authentic manner.

And it’s not a one-time thing.

acm Inroads • inroads.acm.org  33

ARTICLES

Assuming we have an unbiased and uniform population to
test, and assuming the test is sufficiently accurate, sensitive, and
specific to signal the presence of a COVID virus, combining bio-
markers (i.e., pooling samples) from multiple patients into single
test can reduce the overall number of tests needed. It’s based on
a core principle of computer science: divide and conquer. Here’s
how it works: divide the population into small groups and test
(or “conquer” in this metaphor) each group for infection. If the
test comes out negative, then nobody in the group is infected.
If the test comes out positive then one or more members of the
group are infected, but we don’t know which one(s) so we must
continue by testing everybody in the group or subdividing into
smaller groups and repeating the process.

There are three possibilities to consider when testing a pool
of samples.

1. There are no infected samples.
2. there is exactly one infected sample.
3. there are two or more infected samples.

Given these three cases, we apply our divide and conquer
approach by testing groups of 8 (for example) and then testing
subgroups of 4 if any infection is found. The best-case scenario
is that we determine all 8 are infection-free with 1 test. See Case
(1) in Figure 1. The second case occurs when we find 1 infection
with 7 tests: 1 test for the group of eight, 2 tests for subgroups
of four, and 4 individual tests for the (single) infected subgroup.

ious aspects of SQL, database design, and stored procedure
programming in a Database Systems course. The third case
is the most thorough: motivating a semester-long project in
an Algorithms course. In all cases these courses were taught
in synchronous hybrid mode, consisting of partially in-person
and partially online class sessions, and thus are widely appli-
cable to a variety of classroom circumstances.

BACKGROUND
Many aspects of the COVID-19 pandemic could be used to
motivate examples for teaching computer science topics.

There are epidemiology issues like stochastic or determin-
istic disease spread models based on population density, prox-
imity, and infection rate. One could see discussing all manner
of graph algorithms like computing network density, maximum
cliques, connected components, and clustering coefficients in
this context. Then there is logistics: from efficiently distributing
testing gear and protective equipment to closing transportation
pathways for quarantine. Again, more graph algorithms spring
to mind, like calculating shortest paths and betweenness cen-
trality for distribution, and determining minimum edge cuts for
quarantine. Also, consider all of the statistics involved: given
a certain population size and infection rate, what is the likeli-
hood of an outbreak occurring in the next x days? Those are
all excellent topics… for another article. This article focuses
on a different topic: pooled testing. Before I could use pooled
COVID testing to motivate in-class examples I had to introduce
the concept.

INTRODUCING POOLED TESTING
In his New York Times column of May 7, 2020 [3], Jordan Ellen-
berg wrote about a World War II era technique called pooled
(or “group”) testing. It can be used to reduce the number of
tests needed to screen a large population by simultaneously
testing multiple samples. Back then there was a different kind
of social virus causing trouble: syphilis. US Army economists
Robert Dorfman and David Rosenblatt created a group testing
method for detecting (and rejecting) syphilitic draft candidates.
This old technique has renewed importance in our modern en-
vironment of COVID testing.

Many aspects of the COVID-19
pandemic could be used to

motivate examples for teaching
computer science topics. There are
epidemiology issues like stochastic

or deterministic disease spread
models based on population density,

proximity, and infection rate.

Figure 1: Pooled Testing Cases

34  acm Inroads  2021 September • Vol. 12 • No. 3

ARTICLES
COVID in the Classroom

OPERATING SYSTEMS
Deep into the semester, once material required for the semes-
ter-long project [4] had been covered, my students and I turned
our attention to some classic problems of managing multiple
processes: locking, blocking, deadlock, semaphores, critical
sections, and the bounded-buffer producer-consumer problem
(see chapter 5.7 in the 9th edition of Operating System Con-
cepts by Silberschatz, Galvin, and Gagne) as specified in the
“OS/Concurrency Core-Tier2” component of the ACM Com-
puter Science Curricula 2013 Body of Knowledge. For binary
semaphores, selling concert tickets online makes an excellent
example of mutual exclusion and the need for critical sections.
(See chapters 4.2 and 4.3 in Operating Systems and Middleware
by Max Hailperin.) For bounded-buffer producer-consumer
problems, one typically presents a fast-food restaurant environ-
ment where a chef produces food items into a bounded-buffer
holding area while customers consume items from that buffer
by purchasing them from a cashier. The food item buffer (a
queue) is bounded by the number of items it can hold so we can
use counting semaphores to avoid overflow or underflow. After
covering these examples, I introduced the COVID context and
presented a screening environment where people in our com-
munity enter a bounded-buffer holding area (a queue) while
health care professionals “consume” people from that buffer by
administering their COVID tests. The people buffer is bounded
by the number of people it can hold so we can use counting
semaphores to avoid overflow or underflow.

By the time this came up in the semester most of my stu-
dents had been through this screening process several times.
It was easy for them to identify with this scenario and visualize
themselves “in the buffer,” seeing the problems of overflow (they
would have to wait outside) and underflow (the health care pro-
fessionals would have nothing to do). Not only does this scenar-
io illustrate similar points as more traditional examples in an
immediate and authentic-to-real-life way, but it also lends itself
to additional complexity by varying the buffer capacity based
on changing social distancing guidelines.

DATABASE SYSTEMS
At the beginning of each semester, I was given a snapshot of stu-
dent and employee data from Banner, our higher education ERP
system, which I imported into the PostgreSQL object-relational
database in a table called People, shown in Figure 2. A month or
two into surveillance testing it became clear that more attributes
were needed, which I added, as noted in Figure 2c.

With the People data in place—and purposefully ignoring
any design issues until later—my students and I began dis-
cussions of elementary SQL. There is a plethora of obvious
and simple select - from - where queries to use here, e.g.,
on-campus computer science majors:

select lastName, firstName
from People
where isStudent

and livesOnCampus
and major = ‘Computer Science’

See Case (2) in Figure 1. The worst-case scenario occurs when
there are two or more infected samples in the group and we
divide them into subgroups of 4 and end up using 11 tests: 1
test for the group of eight, 2 tests for the groups of four, and
8 individual tests. See Case (3) in Figure 1. Thankfully, the
worst-case scenario is rare when the infection rate is low, but
that changes along with the infection rate. (Note that there is
overlap between cases (2) and (3) because of the possibility of
2, 3, or 4 infections being found in the same subgroup, which
is a case (2) situation requiring 7 tests rather than a case (3)
situation requiring 11 tests. For now, let’s make the simplifying
assumption that 2+ infections is always case (3), the worst case.
We will revisit this later.)

This high-level overview of pooled testing is all we need
to teach our students before moving on to other pedagogical
opportunities at the heart of this article. For further details on
pooled testing and its applications see Du and Hwang’s 2000
book Combinatorial Group Testing and Its Applications [2] and
Aldridge, Johnson, and Scarlett’s 2019 paper Group Testing: An
Information Theory Perspective [1].

COVID SCREENING ON CAMPUS
A team of healthcare professionals, faculty, staff, and admin-
istrators conducted COVID screening via pooled surveillance
testing during the Fall 2020 and Spring 2021 semesters. As part
of that team, I incorporated three aspects of this endeavor into
my classes: the physical logistics of testing; selecting members
of the population for testing via representative sampling and
then monitoring their compliance; and modeling the pooled
testing protocol.

Physical Logistics
Hundreds of people from our community were pseudo-ran-
domly selected for surveillance testing every day. We invited
them to report to a specific campus location in a particular win-
dow of time so our health care professionals could collect and
pool saliva samples for screening. Managing the physical logis-
tics of all of those people flowing through our testing locations
provided a timely example of queues and bounded-buffer pro-
ducer-consumer problems, as we will see in the next section.

Selection and Compliance Monitoring
Generating daily representative samples of hundreds of people
from our community and then tracking their compliance—be-
cause believe it or not, every day there were people who skipped
their test—provided a vivid landscape for discussing SQL que-
ries and views, relational database design, and stored procedure
programming, which we will explore in the Database Systems
section.

Modeling the Protocol
Programming a model of our pooled testing protocol and sta-
tistically determining the expected test usage provided an ideal
opportunity to explore data structures and discuss statistics,
which we will see in the Algorithms section.

acm Inroads • inroads.acm.org  35

ARTICLES

We factored out the student and employee attributes from
the People table as noted in Figures 2a and 2b and into subtype
entities. Having done this, we noted that we no longer needed the
isStudent and isEmployee attributes, that functionality now being
accomplished via pid membership in the new subtype tables. This
led to a discussion of logical data independence, demonstrated
by rewriting the OnCampusStudents, OffCampusStudents, and
Employees views to make use of the new subtype tables and then
executing unchanged our earlier queries against those revised views.

Stored Procedure Programming
With SQL queries, views, and design issues behind us, we con-
sidered how to go about generating representative samples of
our community for COVID screening. Figure 3 shows (most of)
the PL/pgSQL code for pseudo-randomly selecting on-campus
students who had not been recently tested or recently select-
ed for testing, grouped by dormitory clusters. (The code for
selecting off-campus students and employees is substantially
similar and excluded in the interest of space and anti-redun-
dancy.) This code was used to demonstrate many features of
stored procedures: local variable declaration and usage, date
functions, (nested) for loops, advanced SQL inside of control
structures, table manipulation, and the need for good format-
ting and comments to make sense of it. My students felt strong-
ly connected to this because, by this time in the semester, all of
them had been selected for COVID screening by this very code.

To illustrate the utility of views, we created them for On-
CampusStudents, OffCampusStudents, and Employees. Then I
had my students look at some of the same queries from earlier
with instructions to use the new views instead of base tables:

select lastName, firstName
from OnCampusStudents
where major = ‘Computer Science’

This led to a discussion of view definitions being stored in the
system catalog and an illustration of query rewriting. We would
revisit this table in the context of advanced SQL when discussing
stored procedures later in the semester. But before we could do
that, we would have to take up relational database design and
address some of the pressing deficiencies of the People table.

Relational Database Design
The deficiencies of the People table were made clear by the
presence of NULLs in the data due to some attributes being
relevant only to certain rows. With this in mind we began our
database design discussions. After covering the normal forms
and developing an appreciation for Codd and his rules, we
looked to revise the People table. It was apparent by this point
that there are multiple (sub)types of people and that we have a
few different attributes for each. The fact that student-only and
employee-only views eased query writing provided an excellent
opportunity to introduce entity subtypes and their implemen-
tation as one-to-one relationships with optional participation
on the subtype side. (This also proved to be a good time to note
the use of a primary key simultaneously as a foreign key in the
subtype tables.)

Figure 2: The People table

Figure 3: Stored Procedure

36  acm Inroads  2021 September • Vol. 12 • No. 3

ARTICLES
COVID in the Classroom

Case (3) happens slightly less than 0.04% of the time be-
cause the likelihood of randomly choosing two infected
samples is 0.022 or 0.0004 or 0.04%. (It’s actually less, but
it’s safe to err on the side of an upper bound. Also, the
likelihood of randomly choosing more than two infected
samples is even lower, so again we are safe with this upper
bound.) In this case, at most 11 tests are needed.

Case (2) is the only other possibility, which happens the
rest of the time, which is 14.96%, and 7 tests are needed.

So, for 1000 people where 20 of them (2%) are infected
and 980 are infection-free, we could make 125 pools of 8
samples each and work out what we expect based on the
percentages we just calculated:

As noted earlier in the section introducing pooled testing,
there is overlap between cases (2) and (3) because of the possi-
bility of 2, 3, or 4 infections being found in the same subgroup.
When that happens, we have a case (2) situation requiring 7
tests rather than a case (3) situation requiring 11 tests. We
made the simplifying assumption that 2+ infections would al-
ways require 11 tests. This makes sense in an Algorithms class
where we exclude constant factors and evaluate worst-case
scenarios when talking about asymptotic performance, and I
did not address this with my students. In the end, two students
noticed this issue. One noticed a discrepancy between the pre-
dicted and actual values produced by his simulation when he
ran his code on populations of 100,000 or 1M people. The oth-
er student, an Applied Mathematics and Data Science double
major, noticed this issue right away and documented it in her
write up. Future versions of this project will include an extra
credit portion addressing this, to be completed once every-
thing else is perfect.

Another thing I did not address with my students is the sub-
tle fudge in the expected values for test usage. The expected
values we calculated were based on selection with replacement
(binomial distribution), which is not the case when creating a
representative population sample. Once a person is selected for
testing, they cannot be selected again in the same sample. To
be more accurate I could have done the calculations based on
selection without replacement (hypergeometric distribution).
For example, the likelihood of selecting 8 healthy people in a
population of 100 given a 2% infection rate is slightly less than
0.988 (which is 0.8507). It’s actually

All told, this database material addressed many areas of the
“IM/Database Systems and IM/Data Modeling Core-Tier2”
component of the ACM Computer Science Curricula 2013
Body of Knowledge in a practical way.

ALGORITHMS
The Algorithms course at Marist could more accurately be
called Algorithms and Data Structures. Given that the entire
school was undergoing surveillance testing using a pooled test-
ing protocol, it was natural to focus on examples and scenarios
from that realm when exploring algorithms utilizing data struc-
tures such as lists, stacks, queues, and trees. After discussing
the physical logistics of surveillance testing in terms of students
queueing in the holding area while health care professionals ad-
ministered COVID tests from their stack of test kits, I wanted
to introduce the semester-long project. But first I would need
to cover some statistics.

Statistics
After explaining our pooled testing protocol (remember, there are
three possibilities to consider: no infected samples, exactly one
infected sample, and two or more infected samples) as described
earlier and shown in Figure 1, we discussed the expected test
usage for a given population and a given infection rate under that
protocol. Here are some highlights of that discussion:

Why do we think this works? We can determine the like-
lihood of each testing possibility based on the number of
samples we pool into each group and the infection rate
of the disease. For example, when testing groups of 8 for
a disease with an infection rate of 2% using the protocol
described here…

Case (1) is expected to happen 85% of the time. This
is because a 2% infection rate means that, on average,
98% of the population is uninfected. The likelihood of
randomly choosing 8 uninfected people is 0.988, which
is 0.8507 or roughly 85%. When this occurs only one test
is needed.

The other student, an Applied
Mathematics and Data Science

double major, noticed this
issue right away and documented

it in her write up. Future
versions of this project will include

an extra credit portion
addressing this, to be completed
once everything else is perfect.

Case (1): 125 × 0.8507 = 106.33 instances
requiring 107 tests (no partials)

Case (2): 125 × 0.1496 = 18.70 instances
requiring 131 tests

Case (3): 125 × 0.0004 = 0.05 round to 1 instance
requiring 11 tests

That’s 249 tests to screen a population of 1000
people for a disease with an infection rate of 2

Note: This assumes 100% testing accuracy. Since tests are rarely perfect, it
would be wise to incorporate test reliability into the model by introducing
conditional probability and Bayes’ theorem. But that’s for another class.

acm Inroads • inroads.acm.org  37

ARTICLES

case. You’ll know you’ve got it right when your output
gets close to the statistically expected values.

Q: Should the total number of people being tested be input by
the user or set in the code?

A: To avoid complicating things with I/O, take a com-
mand-line parameter for the population size. If the pro-
gram is called “sim” then …

> sim 1000

…would run the simulation on 1000 people, while…
> sim 1000000

… would run the simulation on 1 million people.
Q: Will randomness be a part of our program?
A: Yes. You’ll need to use a random() function. There is prob-

ably one built into your programming language.
Q: How will individual positive or negative people be repre-

sented? (Ex. 1s and 0s ?)
A: It’s up to you, but I like 1s and 0s.
Q: What’s the best way for those 1000 people to be broken up

into groups of 8 and then inserted into a data structure?
A: Randomly. Kinda. It’s actually not all that important. Let’s

say you are running the simulation on 1000 people, take
the first 8 as a group, then the next 8 as a group, and so on
through the 125th group.

Q: If the theoretical approach to the pooled testing assumes
100% testing accuracy, would the entire nature of the sim-
ulation fall apart due to the inaccuracies of actual testing?

A: No. A simulation that accounts for test accuracy would be
more accurate than one that assumes 100% accuracy. But
we’ve got to start somewhere. For now, assume 100% test
accuracy. Once you’ve got that simulation working, consid-
er taking into account test accuracy as a refinement later.

Q: I am under the impression that we should be using a binary
tree to isolate the infected individuals. I feel like this is also
how you described it. However, at certain points during
the discussion I got the impression that we should split the
initial population into 125 groupings of 8. Which is it?

A: t’s a subtle point that I could have made better. We could
build a binary tree and use its nodes as containers for the
tests, as seen in [Figure 1]. But we don’t need to. I used
a binary tree as a conceptual representation to explain
our divide and conquer approach. If we test a group of
8 and there’s an infection then we’ll test groups of 4 and
4, and when there is one or more infection(s) from those
tests (as there must be) then we’ll do individual tests.
The process is conceptually similar a binary tree, but as
a practical matter of code, we can test population[0] -
population[7] as one test, and if it’s positive, use
population[0] - population[3] and population[4] -
population[7] for the next two tests.

Based on the penultimate question I will likely add a third
extra-credit option to future projects—an option that considers
test accuracy and tracking false positives and false negatives. If
one wants to go even further along these lines, this seems like a
good place to introduce Bayes’ theorem.

To be even more accurate I could have used our actual pop-
ulation size of 6000 because, while we don’t expect exactly two
positives in every group of 100, we do expect 120 positives in
6000. In the end, no students discovered this (not even our Ap-
plied Mathematics and Data Science major), which is a little
disappointing. This too seems like a nice extra credit enhance-
ment for future instances of the semester-long project.

The Semester-long Project
With the statistics out of the way, we could move on to our
semester-long project simulating a pooled testing protocol in
Java or C++. (Most students chose Java, but a few chose C++.)
This assignment, the details of which can be seen in Figure 4,
was given early in the semester and the students were invited to
submit questions and comments before they got started. I col-
lected my students’ questions and posted answers to the entire
class. Here are some highlights:

Q: What data structure should I use to store groups of 8?
A: An array or a list of some sort would be good. Actually,

you could hold the entire population to be tested in an
array or a list or a vector.

Q: Does our program have to come up with the likelihood of
each case occurring (0.85, 0.1496, 0.0004) or can we set
them as constants?

A: Your program/simulation should produce those numbers
as output by counting the number of occurrences of each

Figure 4: Semester Project

38  acm Inroads  2021 September • Vol. 12 • No. 3

ARTICLES
COVID in the Classroom

Acknowledgements
I sincerely thank Dean Roger Norton of the School of Computer Science and
Mathematics for suggesting the use of my COVID testing simulation as the basis for this
paper. Heartfelt thanks also go out to Dean Alicia Slater of the School of Science for
trusting me with all that sensitive data, answering every question I had, and allowing
me to be her sidekick in fighting this pandemic. Thanks also to Hope Neveux from my
Algorithms class, who contributed her Java-based semester project to the GitHub
repository noted earlier. And finally, a thank you to the Inroads reviewers for their
thoughtful comments.

References
 1. Aldridge, M., Johnson, O., and Scarlett, J. Group testing: An information theory

perspective. Foundations and Trends in Communications and Information Theory 15,
3-4 (2019), 196–392.

 2. Du, D., and Hwang, F. Combinatorial Group Testing and Its Applications. Series on
Applied Mathematics, vol 3. World Scientific, 2000.

 3. Ellenberg, J. Five people. One test. This is how you get there. New York Times, May
7, 2020. https://www.nytimes.com/2020/05/07/opinion/coronavirus-group-testing.
html. Accessed 2021 May 6.

 4. Labouseur, A. A Browser-based Operating Systems Project: JavaScript Adventures
in Dinosaur Slaying. SIGCSE Bull. 41, 4 (2009), 71–75.

 5. Mandavilli, A. Reaching ‘Herd Immunity’ Is Unlikely in the U.S., Experts Now Believe.
New York Times, May 3, 2021; https://www.nytimes.com/2021/05/03/health/covid-
herd-immunity-vaccine.html. Accessed 2021 May 6.

Alan G. Labouseur
Marist College
School of Computer Science and Mathematics
3399 North Road, Poughkeepsie, NY 12601 USA
Alan.Labouseur@Marist.edu

DOI: 10.1145/3477055 ©2021 ACM 2153-2184/21/09 $15.00

This material, presented throughout the Algorithms class,
addressed many areas of the “AL. Algorithms and Complexity
Core-Tier1” component of the ACM Computer Science Curric-
ula 2013 Body of Knowledge.

CONCLUSION AND FUTURE ACTIVITIES
It is no surprise that circumstances affecting all of us around
the world should be well suited to motivate various topics and
assignments in our computer science classes. After only two
semesters, my experience bears this out, and it aligns with the
opinions of my students. This quote from a student at the end
of the Fall 2020 semester puts it nicely.

I wanted to thank you for an interesting and academical-
ly engaging semester. This class really sharpened a lot of
my core software development skills that I felt I had been
missing. But most of all I really appreciated how you con-
nected the material in the course to the pandemic instead
of just pretending it was a regular semester. The connec-
tion of CS courses to the real world has been something I
have wanted to see more of in my classes so I really enjoyed
that factor of the semester project. - Maria

SOURCE CODE
Much of the SQL and PL/pgSQL source code (but none of
the data) for the database is available on GitHub at https://
github.com/Labouseur/CovidInTheClassroom, as is the en-
tirety of my C++ code for the pooled testing simulation as well
as a Java version from one of my students. You are welcome and
encouraged to use it… and to improve it.

FUTURE ACTIVITIES
In the near-term it makes sense to analyze vaccination distribu-
tion plans using graph analytics like clustering coefficient and
maximum cliques so that those who are most connected—the
“social butterfly super-spreaders”—are among those with the
easiest access to vaccines. Looking further into the future, the
wide-spread and long-lasting effects of the COVID-19 pan-
demic will be with us throughout its long tail. This unfortunate
fact means that the pandemic will remain useful as “real world”
common ground motivation for teaching subjects in computer
science for quite some time. In addition to the topics in op-
erating systems, database systems, and algorithms mentioned
here, there are many other areas to consider: teaching graph
analytics with examples from disease spread models or network
density; illustrating pathfinding for protective equipment dis-
tribution with the algorithms of Dijkstra, Kruskal, Prim, and
those of Bellman-Ford; reasoning about statistics by modeling
transmission and infection, and more. While this “silver lining”
is not worth the exorbitant cost of the COVID “cloud,” we can
make the best of it.

It is no surprise that circumstances
affecting all of us around

the world should be well suited to
motivate various topics

and assignments in our computer
science classes. After only

two semesters, my experience
bears this out, and it aligns with the

opinions of my students.

