
An API Honeypot for DDoS and XSS Analysis

G Leaden, Marcus Zimmermann, Casimer DeCusatis, Fellow, IEEE, and Alan G. Labouseur
Marist College

School of Computer Science and Mathematics
Poughkeepsie, NY 12601

{G.Leaden1, Marcus.Zimmermann1, Casimer.DeCusatis, Alan.Labouseur}@Marist.edu

Abstract—Honeypots are servers or systems built to mimic
critical parts of a network, distracting attackers while logging
their information to develop attack profiles. This paper discusses
the design and implementation of a honeypot disguised as a REp-
resentational State Transfer (REST) Application Programming
Interface (API). We discuss the motivation for this work, design
features of the honeypot, and experimental performance results
under various traffic conditions. We also present analyses of both
a distributed denial of service (DDoS) attack and a cross-site
scripting (XSS) malware insertion attempt against this honeypot.

I. INTRODUCTION

The number and severity of cyber attacks has grown signif-
icantly in recent years [1], [2]. Cyber attackers have managed
to pull off virtual bank heists, distributed denial of service
(DDoS) attacks powered by botnets and Internet of Things
(IoT) devices, and power outages caused by malware [2]. Our
National Science Foundation (NSF)–sponsored SecureCloud
test environment aims to combat the growing number of cyber
attacks against cloud networks using autonomic, zero trust
techniques [3].

Our recent SecureCloud test environment implementation
utilizes new software developed for testing cybersecurity tech-
niques on cloud networks. Part of this system uses G-star,
the Dynamic Graph Database [4] to organize, visualize, and
analyze cyber attack data. G-star, interoperating with the Post-
greSQL object relational database through G-star Studio [5],
allows us to perform graph theoretical analysis and relational
queries on cyber-attack data.

Key contributions of this work include the following:

• introduces the idea of an API honeypot
• describes our implementation of an API honeypot
• demonstrates DDoS and malware API attack analysis
• discusses performance characteristics of our honeypot
• shows how we enable security experts to analyze data

and develop remedies for emerging API attacks

The remainder of this paper is organized as follows:
Section II introduces the idea of an API honeypot. Section III
describes the software design and features of our API honey-
pot, Pasithea. Section IV presents an analysis of data received
from both the initial G-star REST API logs and current data
collected by Pasithea. Section V explains results from Pasithea
performance testing. Finally, Section VI ends this paper with a
discussion of our initial conclusions and plans for future work.

II. BACKGROUND

Not long after making G-Star Studio available online, we
observed a number of unauthorized connection attempts to
its Application Programming Interface (API). These attacks
specifically targeted G-star Studio’s REpresentational State
Transfer (REST) API.

A REST API is among the most commonly used API
architectures today [6]. There are many examples of recent
attacks against REST APIs, including well-publicized attacks
on the Nissan Leaf smart car [7] and the U.S. Internal Revenue
Service database. Existing APIs do not always follow security
best practices, and developers might be lulled into a false sense
of security by believing that their API will not be an attack
target. In an effort to improve the security of our SecureCloud
system and other REST APIs, we felt it would be advantageous
to create a profile of these attacks, so we developed a low-
interaction API honeypot.

Honeypots are servers or systems that mimic critical parts
of a network, effectively distracting attackers and logging
attack information in the process [8]. Disguising a honeypot
as an API allows us to analyze and understand API attack
patterns. Since our defensive responses improve as we collect
more data, we can effectively use the attackers’ strengths
against them; the more our honeypot is attacked, the better
our defense posture can become.

Because our original REST API was not designed to
comprehensively log attack data, we only captured timestamp,
command type, and command text from the initial attacks.
Addressing these shortcomings, we created a new API honey-
pot, named Pasithea (the Greek goddess of rest), capable of
creating an attack profile that includes the user agent, the IP
address, and other information extracted from the G-star API.
Data gathered by Pasithea helps us determine where attacks
are coming from, how they can be classified, and what can
be done to defend against such attacks. Pasithea has been
deployed online and the data it collects (as well as data from
other sources) have been integrated into our NSF SecureCloud
test environment.1

1It is important to note a potential source of confusion regarding the terms
“API” and “ honeypot”. Honeypot APIs, though similar in name, are not to
be confused with Pasithea, which is an API honeypot. A honeypot API is an
API made to interface with a specific honeypot (like an SSH honeypot or an
SDN honeypot), returning useful data or executing certain methods specified
by the request [9]. An API honeypot (such as Pasithea) on the other hand, is
entirely different; it functions as a proper honeypot itself by gathering data
on unauthorized API requests. This type of API honeypot represents a novel
approach to attack analysis that will hopefully lead to the development of
more secure and robust APIs for cloud-based applications.

Our honeypot enables security experts to analyze attacks
and develop remedies for emerging threats, to avoid falling into
framework-complacency. While various types of honeypots
have existed for some time [10], [11], and many security
projects use APIs to make their data more easily consumable,
the use of a REST API itself to attract malicious traffic and
collect attack data does not appear to have been previously
studied.

III. CONSTRUCTION PRINCIPLES

We developed Pasithea using Java, a common server-side
programming language, and NanoHTTPD [12], a lightweight
HTTP library written in Java that receives HTTP requests
and returns responses. Implementing this kind of functionality
enables Pasithea to simulate a real application server in a
lightweight and independent manner. It accepts any kind
of request, regardless of the HTTP method, URI requested,
or request body. Pasithea then logs the current time, the
HTTP method, the path the client attempted to access (e.g.
/index.html), the client’s IP address, and the user agent data.
Clients always receive a

<h1>404 Not Found</h1>

response, regardless of which resource they attempt to access.

In order to ensure attackers do not fingerprint Pasithea as a
honeypot, we modeled our API honeypot after G-star Studio’s
“real” API.2 But Pasithea always returns a 404 error, while
G-star Studio, when prompted with a valid request, will return
JSON-formatted data. The consistent 404 response is what
makes Pasithea an unidentifiable, low-interaction honeypot. It
is indistinguishable from a normal HTTP server whose valid
URIs attackers do not know.

We are hosting our honeypot on an Amazon Web Services
Elastic Compute Cloud (AWS EC2) instance using its “free
micro” tier. We chose AWS both because of its appealing free
tier model and because we were familiar with the security
policies and standards that Amazon sets in place. We modified
those default security policies within our AWS instance to
enable access to the port hosting our API honeypot. Pasithea
is currently indexed on Shodan [13], a web search engine that
indexes internetconnected devices. Shodan is known for being
frequented by the hacker community, making it likely that we
will be able to collect additional attack data.

IV. ATTACK ANALYSIS

Pasithea is intended to help investigate multiple types of
attacks. In particular, we observed and analyzed a distributed
denial of service (DDoS) flood and the attempted use of cross-
site scripting (XSS) commands. In a DDoS attack, an attacker
floods a network or service with information or requests in
an attempt to exhaust some finite system resource such as
memory [14]. The goal of a DDoS attack varies, but it is most
commonly intended to disrupt legitimate users from accessing
information or services provided by the network.

The DDoS attack on G-star lasted from May 25, 2017 until
June 1, 2017, creating over 275,000,000 log entries. During

2Please refer to the ACM Inroads article on G-star Studio [5] for technical
details about developing a Java-based REST API.

this time, the requests per second (R/s) steadily rose, starting
at 500R/s and peaking at over 6000R/s. As an unintended
side effect, the log file grew to over 18 GB in size until G-
star ran out of storage on its 20 GB cloud-hosted server. The
requests received during the DDoS attack all contained the
command type HEAD and the command text “home”.

We gathered a simple random sample of 150 requests
collected by the G-star logs between February 6, 2017 and May
25, 2017 (a period covering normal operations and the attack).
This data was then rendered into a Hive plot [15] to interpret
the attack. Hive plots are a perceptually uniform, scalable
visualization for network analytics. We used a four-axis graph
to reflect the relationships among timestamp, data source,
command type, and response message (Fig. 1). The timestamp
axis is the most heavily populated, containing distinct plotted
points for each second during which a log entry was created.
The source and message axes are closely related because there
is only one plotted point on each axis. Source is the source of
the response message returned by G-Star, and message is the
response itself. In the context of the log file we analyzed, the
source is always “back-end” (meaning the web server in this
case) and message is always “Unknown command:”. Lastly,
the plotted points on the command type axis delineate unique
HTTP request methods such as GET, POST, HEAD, PUT,
DELETE, etc.

Fig. 1 displays all 150 requests, while Fig. 2 highlights the
outlying requests that did not use the command type GET.
Rather, these requests used the command types POST and
HEAD. The POST requests are shown as the plotted point
second closest to the center of the axis, while the HEAD
requests are the farthest plotted point from the center of
the axis. Fig. 2 represents requests that used methods not
commonly employed by web browsers or web crawlers, two
of the most frequent sources of unwanted requests found in
data gathered by Pasithea. This suggests these requests were
deliberate and potentially malicious in nature.

Cross-site scripting attacks aim to inject malicious scripts

Fig. 1. Hive plot displaying a random sample of 150 points from G-star
logs. Data sampled is from February 6, 2017 – May 25, 2017.

Fig. 2. Prominent nodes denote “injections” into G-star that differ from
normal traffic. Data sampled is from February 6, 2017 – May 25, 2017

into an otherwise benign or trusted website [16]. Further
investigation of the specific commands being attempted as an
XSS attack revealed the following:

GET cgi
POST command.php
GET ;rm$IFS-f$IFS’
GET ;wget$IFS-O$IFS’
GET ;chmod$IFS’777’$IFS’
GET ;sh$IFS-c$IFS’

Fig. 3 displays a selected sample of entries collected by the
G-star logs between March 11, 2017 and March 16, 2017. The
highlighted requests have a span of 25 seconds where the XSS
commands were attempted. This shows both the short amount
of time it took to run this malware insertion attempt and the
use of GET and POST request methods for one attack.

We determined that a very similar attack sequence was
also recently documented by a Finnish cyber-security com-
pany F-Secure [17]. The commands attempted with the XSS
attack are intended to upload a PHP: Hypertext Preprocessor
(PHP) file, then send a series of commands that, if executed,
would remove a file using the $IFS variable found in PHP.
Afterwards, it would attempt to download a file with the same
variable name and change the permissions on said file so that it
can be executed by any user. Then the attacker would execute
the file. Researchers from F-Secure attribute this attack profile
to a Peer to Peer (P2P) botnet named TheMoon [18]. This
example illustrates how we can use data collected from attack
attempts to isolate and attribute the attack, provided that we
can determine what types of attacks are taking place.

Pasithea was subsequently deployed and is currently active
on our AWS EC2 instance in Ashburn, Virginia. Our log files
indicate cursory web crawls from Baidu, a Chinese search en-
gine, and some attempts at exploiting a known vulnerability in
Apache Tomcat web servers using “GET /manager/html” [19].
We continue to monitor this instance and additional results will
be reported in future papers.

Fig. 3. Prominent nodes display the XSS attempt on G-star. Data sampled
is from March 11, 2017 – March 16, 2017

V. PERFORMANCE TESTS

Performance testing is a critical part of development, so
it is important to demonstrate Pasithea’s performance under
different loads and its ability to log many – potentially thou-
sands – of incoming requests in a short amount of time. In
other words, it must respond fast enough to keep malicious
users interested while also being stable enough to receive high
volumes of incoming requests. To test this, we ran a series
of benchmarks using the Apache Bench (ab) tool [20]. This
tool allows us to designate a number of completed requests
to be sent to our API honeypot while varying the number of
simulated concurrent users. The results from these tests are
displayed in Fig. 4 and Fig. 5.

We researched a baseline response time for a RESTful
API to give this data appropriate context. In doing so, we
discovered two separate internal tests from software devel-
opment and web monitoring companies, 3PillarGlobal [21]
and Site24x7 [22]. Paired with some research on the human
perception of performance [23], we concluded that a 300-ms
response time is expected under normal traffic conditions in
order for the API honeypot to appear realistic. Data collected
on Pasithea indicates that we fall well within this range given a
concurrency level of 500 simultaneous users. In addition, we
continued tests at much higher concurrency levels to assess

Fig. 4. Requests processed per second at varying concurrency levels

Fig. 5. Mean time to complete a single request at varying concurrency levels

how well Pasithea would perform under extreme stress, like
the attempts we saw on the G-star API. Pasithea can, with
time, handle a concurrency level of over 9000 simultaneous
requests while still logging more than 90% of the requests
received.

Since our implementation of request/response for Pasithea
was deliberately kept very simple (only responding with 404
errors), we have thus far been unsuccessful in driving Pasithea
hard enough during performance testing to reach a point where
it is unable to handle a significant amount of requests. Pasithea
hits a R/s plateau at a concurrency level of 1000 (see Fig. 4),
but continues to perform well at 9000. With enough storage
space, we believe that Pasithea could withstand a substantial
attack, such as the one seen on G-star, and be able to log
information about the attack for analysis.

VI. CONCLUSIONS AND FUTURE WORK

Today’s API security landscape is more like a “wild
west” of conflicting standards than a safe, civilized, city of
consistency. This has led to an influx of attacks directed at
APIs on many fronts. Based on the attacks targeting G-star and
our research into related attacks, we have constructed an API
honeypot, Pasithea, with Java and NanoHTTPD to help combat
and detail future attacks on the API landscape. Using hive plots
and other graph and relational tools, we have analyzed a real-
world attack on G-star, demonstrating how DDoS and XSS
attacks can be uncovered and attributed so that an appropriate
defense may be deployed. Our performance data suggests that
Pasithea should be able to keep a malicious user interested
with fast response times while also maintaining composure
and stability under high traffic loads. This allows us to develop
accurate API attack profiles that will help shape the future of
API security.

Our next steps include extending Pasithea’s REST interface
to extract more data from attackers while still maintaining its
cover as an unidentifiable API honeypot, reporting additional
results as Pasithea spends more time in the “wild west” of the
Internet collecting more data, and exploring higher interaction
versions of an API honeypot where we would be able to
respond with artifical data.

ACKNOWLEDGMENTS

The authors would like to thank the IBM/Marist Joint
Study as well as Dayna Eidle, Thomas Famularo, Jonathan
Heiles, Mary Ann Hoffmann, and Thomas Magnusson for their
contributions to this paper. It is better because of them.

REFERENCES

[1] Symantec, “Internet Security Threat Report (ISTR),” Symantec Corpo-
ration, Tech. Rep. 22, 2017.

[2] IBM Security, “IBM X-Force Threat Intelligence Index 2017,” Interna-
tional Buisness Machines, Tech. Rep., 2017.

[3] C. DeCusatis, P. Liengtiraphan, A. Sager, and M. Pinelli, “Implementing
zero trust cloud networks with transport access control and first packet
authentication,” in 2016 IEEE International Conference on Smart Cloud
(SmartCloud), Nov 2016, pp. 5–10.

[4] A. G. Labouseur, J. Birnbaum, P. W. Olsen, S. R. Spillane, J. Vijayan,
J. Hwang, and W. Han, “The g* graph database: efficiently managing
large distributed dynamic graphs,” Distributed and Parallel Databases,
vol. 33, no. 4, pp. 479–514, 2015.

[5] A. Labouseur, “G* studio: an adventure in graph databases, distributed
systems, and software development,” Inroads, vol. 7, no. 2, pp. 58–66,
2016. [Online]. Available: http://dl.acm.org/citation.cfm?id=2896823

[6] Daniel R. Cogan, “”REpresentational State Transfer in the Modern In-
ternet”,” http://scholarship.claremont.edu/cmc theses/1387, 2016, cMC
Senior Theses. 1387.

[7] Troy Hunt, “Controlling vehicle features of Nissan LEAFs
across the globe via vulnerable APIs,” https://www.troyhunt.com/
controlling-vehicle-features-of-nissan/, Feb 2016, online, Accessed
7/15/2017.

[8] William W. Martin, “Honey Pots and Honey Nets - Security through
Deception,” May 2001.

[9] “Http:BL API Specification,” online, Accessed 7/25/2017.
[10] C. Stoll, The Cuckoo’s Egg: Tracking a Spy Through the Maze of

Computer Espionage. New York, NY, USA: Doubleday, 1989.
[11] N. Provos, “A virtual honeypot framework,” in Proceedings of the

13th Conference on USENIX Security Symposium - Volume 13, ser.
SSYM’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 1–1.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251375.1251376

[12] “NanoHttpd,” https://github.com/NanoHttpd/nanohttpd, 2017, online,
Accessed 7/15/2017.

[13] Lawrence Fernandes, “Shodan: The Hackers Search Engine,” https:
//www.cybrary.it/0p3n/intro-shodan-search-engine-hackers/, Mar 2016,
online, Accessed 7/19/2017.

[14] “Security Tip (ST04-015) Understanding Denial-of-Service Attacks,”
https://www.us-cert.gov/ncas/tips/ST04-015, 2013, online, Accessed
7/15/2017.

[15] M. Krzywinski, I. Birol, S. J. JM, and M. A. Marra, “Hive
plots, a rational approach to visualizing networks,” Briefings in
Bioinformatics, vol. 13, no. 5, pp. 627–644, 2012. [Online]. Available:
+http://dx.doi.org/10.1093/bib/bbr069

[16] “Cross-site Scripting (XSS),” 2016, online, Accessed 7/15/2017.
[17] Mikko Hypponen. and Tomi Tuominen., “F-Secure State of

Cyber Security,” http://branden.biz/wp-content/uploads/2017/02/
cyber-security-report-2017.pdf, Feb 2017, online, Accessed 7/15/2017.

[18] Bing Liu, “TheMoon - A P2P botnet targeting
Home Routers,” https://blog.fortinet.com/2016/10/20/
themoon-a-p2p-botnet-targeting-home-routers, Oct 2016, online,
Accessed 7/19/2017.

[19] Tony Lee, “Manually Exploiting Tomcat Man-
ager,” http://blog.opensecurityresearch.com/2012/09/
manually-exploiting-tomcat-manager.html, Sep 2012, online, Accessed
7/19/2017.

[20] “ab - Apache HTTP server benchmarking tool,” https://httpd.apache.
org/docs/2.4/programs/ab.html, online, Accessed 7/15/2017.

[21] Singh Sukhwinder, “Performance Testing of a REstful
API using JMeter,” https://www.3pillarglobal.com/insights/
performance-testing-of-a-restful-api-using-jmeter, online, Accessed
7/12/2017.

[22] “Performance Metrics of Rest API Monitor,” https://www.site24x7.
com/help/performance-metrics/rest-api.html, Jul 2015, online, Accessed
7/12/2017.

[23] Denys Mishunov, “Why Perceived Performance Matters, Part 1: The
Perception Of Time,” Smashing Magazine, Sep 2015, online, Accessed
7/12/2017.

