
1 23

����	�
���������	����������
����
������	
����������
���
�
��������������
�
����
�����
���	���������	�
����������� ���������!���!��"

�����	�
�������������������������
����
��
����
����������������������
����

�����	
(��������������������������
������
(�������������
(���������
���������� �!���������"�#���#$��"
%��&��'���#��

1 23

Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

Distrib Parallel Databases
DOI 10.1007/s10619-014-7140-3

The G* graph database: efficiently managing large
distributed dynamic graphs

Alan G. Labouseur · Jeremy Birnbaum ·
Paul W. Olsen Jr. · Sean R. Spillane ·
Jayadevan Vijayan · Jeong-Hyon Hwang ·
Wook-Shin Han

© Springer Science+Business Media New York 2014

Abstract From sensor networks to transportation infrastructure to social networks, we
are awash in data. Many of these real-world networks tend to be large (“big data”) and
dynamic, evolving over time. Their evolution can be modeled as a series of graphs.
Traditional systems that store and analyze one graph at a time cannot effectively
handle the complexity and subtlety inherent in dynamic graphs. Modern analytics

Communicated by Haixun Wang and Jeffrey Xu Yu.

A. G. Labouseur (B) · J. Birnbaum · P. W. Olsen Jr. · S. R. Spillane · J. Vijayan · J.-H. Hwang
Department of Computer Science, State University of New York, Albany, NY, USA
e-mail: alan@cs.albany.edu

J. Birnbaum
e-mail: jbirn@cs.albany.edu

P. W. Olsen Jr.
e-mail: polsen@cs.albany.edu

S. R. Spillane
e-mail: seans@cs.albany.edu

J. Vijayan
e-mail: appu@cs.albany.edu

J.-H. Hwang
e-mail: jhh@cs.albany.edu

W.-S. Han
Department of Creative IT Engineering, Pohang University of Science and Technology,
Pohang, Korea
e-mail: wshan@postech.ac.kr

W.-S. Han
Department of Computer Science and Engineering, Pohang University of Science
and Technology, Pohang, Korea

123

Author's personal copy

Distrib Parallel Databases

require systems capable of storing and processing series of graphs. We present such
a system. G* compresses dynamic graph data based on commonalities among the
graphs in the series for deduplicated storage on multiple servers. In addition to the
obvious space-saving advantage, large-scale graph processing tends to be I/O bound,
so faster reads from and writes to stable storage enable faster results. Unlike traditional
database and graph processing systems, G* executes complex queries on large graphs
using distributed operators to process graph data in parallel. It speeds up queries on
multiple graphs by processing graph commonalities only once and sharing the results
across relevant graphs. This architecture not only provides scalability, but since G*
is not limited to processing only what is available in RAM, its analysis capabilities
are far greater than other systems which are limited to what they can hold in memory.
This paper presents G*’s design and implementation principles along with evaluation
results that document its unique benefits over traditional graph processing systems.

Keywords Graphs · Queries · Distributed databases · Parallel computing · Big data

1 Introduction

Modern advancements in technology enable access to huge amounts of data from
various complex networks including social networks [42,49], transportation net-
works [42], wireless networks [31], and many others. These networks can be expressed
naturally as graphs in which vertices represent entities and edges represent relation-
ships between entities.

Most real-world networks change over time. For example, while today’s LinkedIn
is substantially similar to yesterday’s LinkedIn, they are not identical due to the addi-
tion of new users, connections between users, and jobs offered. Social networks,
financial networks, citation networks, and road networks all evolve over time. There-
fore, there is significant interest in understanding their evolution by extracting cer-
tain features from a series of graphs that represent a network at different points in
time. These features include the distribution of vertex degrees and clustering coeffi-
cients [21], network density [27], triadic closure [26], the size of each connected com-
ponent [21,23,33], the shortest distance between pairs of vertices [8,27,38], subgraphs
representing congested regions [6], the centrality or eccentricity of vertices [38,39],
and others [9,25,34,45]. Understanding dynamic graph evolution enables applications
in social media analysis [39,44,45], national security, marketing, transportation [6],
network management [8,31], epidemiology [34], pharmacology, and more. All of
these applications require “connecting the dots” among a great many data points, one
of the main challenges in large dynamic graph management.

There are many challenges in managing collections of graphs that represent bil-
lions of entities and connections. First, a cluster of servers such as a public/private
cloud must be effectively used to store and process the massive amounts of graph
data. Second, graphs that represent different times in a dynamically evolving net-
work (e.g., cumulative snapshots of a friendship or sensor network) may be substan-
tially similar to each other. It is therefore crucial to take advantage of those similar-
ities to avoid redundant storage and enable shared processing. Third, finding trends
in network evolution requires a combination of graph processing (e.g., finding the

123

Author's personal copy

Distrib Parallel Databases

shortest distance between vertices in each graph), aggregation (e.g., computing, for
each pair of vertices, the variance of the shortest distance across graphs over time),
filtering, and other operations. Thus, we require a framework that can conveniently
and efficiently run complex analytic queries to “connect the dots” on collections of
large graphs.

Existing systems do not effectively address the above challenges. For example, rela-
tional database systems require breaking down graph structures into edges recorded in
a relation [52]. Therefore, graph analysis, using relational databases, involves costly
join operations [16,52]. On the other hand, current graph processing systems such as
Google’s Pregel [29], Giraph [4], GraphLab [28], GraphChi [24], Microsoft’s Trin-
ity [48], the open source Neo4j [32], and others [10,11,14,19] can perform only one
operation on one graph at a time. Thus, these systems cannot readily support complex
queries on evolving graphs. Furthermore, neither relational database systems nor most
previous graph processing systems take advantage of the commonalities among graphs
in the storage and processing of data.1 These limitations are analytically explained in
Sect. 3.3 of this paper and experimentally demonstrated in Sect. 5.2.

We present a new parallel system, G*, that conveniently and efficiently manages
collections of large graphs by enabling scalable and distributed storage of graph data
on multiple servers [41]. Each server is assigned a subset of vertices and their outgoing
edges from multiple graphs for high data locality, which allows the server to access all
of a vertex’s edges without contacting other servers. Since multiple graphs represent
a network at different points in time, these graphs may contain a large number of
common vertices and edges. Therefore, each G* server tracks the variation of each
vertex and its edges while saving one version of them on disk for all of the graphs in
which they do not vary.

To quickly access disk-resident data about a vertex and its edges, each G* server
maintains an index that contains (vertex ID, disk location) pairs. This index also takes
advantage of the commonalities among graphs to reduce its footprint. Specifically,
this index stores only one (vertex ID, disk location) pair for each vertex version in a
collection for the combination of graphs that contain that version. Due to its small size,
the index can be kept fully or mostly in memory, enabling fast lookups and updates
(Sect. 3.3). To prevent the graph index from managing too many combinations of
graphs, each G* server also automatically groups graphs and separately indexes each
group of graphs (Sect. 3.4).

Like traditional database systems, G* supports sophisticated queries using a
dataflow approach where operators process data in parallel. In contrast to other data-
base systems, G* provides simple yet powerful processing primitives for solving graph
problems. These primitives effectively hide the complexity of distributed data manage-
ment and permit easy and succinct implementation of graph operators. Furthermore,

1 These systems cannot readily take advantage of commonalities among graphs and thereby suffer high
space overhead. For example, one may consider using a relation to store edges of a series of graphs. In this
case, for an edge contained in 100 snapshots, there will be 100 tuples for that edge, each differentiated by
snapshot ID. This incurs high space overhead compared to our system, which supports deduplicated storage
as described throughout this paper.

123

Author's personal copy

Distrib Parallel Databases

G* operators process a vertex and its edges once and then associate the result with all
relevant graphs. This type of sharing accelerates queries on multiple graphs.

To the best of our knowledge, G* is the first system that provides all of the above
features, in contrast with previous database and graph processing systems. Our con-
tributions are as follows: We

– provide an architectural design for a parallel system that conveniently and quickly
runs complex queries on collections of large graphs.

– develop techniques for efficiently storing and indexing large graphs on many
servers.

– present a new parallel dataflow framework that can accelerate queries on multiple
graphs by sharing computations across graphs.

– demonstrate the benefits of the above features with experimental results.

The rest of this paper is organized as follows: Sect. 2 provides an overview of the
G* system. Sections 3 and 4 present G*’s storage and query processing frameworks,
respectively. Section 5 shows evaluation results and Sect. 6 summarizes related work.
Section 7 concludes this paper.

2 Background

This section describes G*’s system architecture (Sect. 2.1), data model (Sect. 2.2),
and query languages (Sect. 2.3).

2.1 G* system architecture

As Fig. 1 shows, G* is a distributed system that consists of multiple servers. A server
that manages the whole system is called the master. A query submitted to the master
is first transformed by the query parser into a network of operators, which is then

Fig. 1 G* architecture

123

Author's personal copy

Distrib Parallel Databases

Fig. 2 Average degree query plan—(PGQL). Each line specifies (a) the type of operator to create (e.g.,
VertexOperator on line 1) as well as arguments including the operators to connect to in order to obtain
input data (e.g., vertex@local on line 2 refers to an operator labeled vertex on the same server), (b)
the servers to create the operator (e.g., @* on lines 1–3 and @alpha on lines 4–5 indicate operator creation
on all servers and on server alpha, respectively), and (c) the label assigned to the operator to create (e.g.,
vertex on line 1)

Fig. 3 Operator network for distributed computation of average degree

converted by the query optimizer into an optimized query execution plan (Fig. 2). Based
on the execution plan, the query coordinator instantiates and executes operators on
other servers (Fig. 3) by controlling their query execution engines. The graph manager
on each server stores and retrieves graph data using the server’s memory and disk. The
communication layer enables reliable communication with remote servers. Finally,
the high availability module performs tasks for masking server and network failures,
which is not further discussed in this paper. The above components are currently
implemented in approximately 30,000 lines of Java code.

2.2 Data model

2.2.1 Limitations of the relational model

G* manages three types of entities: graphs, vertices and edges. G* could adopt the
relational data model, using a separate relation for each entity type. In this scenario,

123

Author's personal copy

Distrib Parallel Databases

however, graph queries would be very expensive because of the number and size of
the joins required. For example, to retrieve all of the vertices and edges that belong to
certain types of graphs, we would need join operations among the graph, vertex, and
edge relations. Furthermore, for a graph traversal query, we would need another join
with the edge relation whenever the distance from the source of a traversal increases. It
has been shown that for the traversal-type queries, relational databases can be an order
of magnitude or more slower than others based on non-relational technologies [50].

2.2.2 Our nested data model

To avoid the complications mentioned in Sect. 2.2.1, G* uses a nested data model to
capture the inherent relationships among graphs, vertices, and edges in the following
logical schema:

graph(id,att1,att2, . . . , {vertex})

The absolute path to each graph on G*’s distributed file system is used as the primary
key, id. Each atti is a graph attribute and {vertex} is the set of vertices contained
in the graph.

For the vertices in the same graph, we use the following logical schema:

vertex(id,att1, . . . , {edge}),

where id is an identifier that distinguishes among the vertices in the same graph,
each atti is a vertex attribute, {edge} is the set of edges emanating from the ver-
tex identified by id. Given multiple graphs and their vertices, the primary key for
uniquely identifying a vertex is graph.id, vertex.id, where graph.id and
vertex.id are the graph and vertex IDs mentioned above. For example, when
graph.id is ‘/twitter/1’ and vertex.id is ‘a’, vertex.address
refers to the attribute named address of the vertex whose ID is ‘a’ in a graph
whose ID is ‘/twitter/1’.

For the edges that emanate from the same vertex, we use the following logical
schema:

edge(id,att1, . . .)

where id is an identifier that distinguishes among the edges based on the IDs of the
vertices that the edges are incident to, and each atti is an edge attribute. The primary
key for uniquely identifying each edge is thus graph.id, vertex.id, edge.id,
where graph.id, vertex.id and edge.id are the graph, vertex, and edge IDs
mentioned above.

2.3 Query languages

G* currently supports two query language that are summarized in Sects. 2.3.1 and
2.3.2.

123

Author's personal copy

Distrib Parallel Databases

2.3.1 Procedural graph query language

The procedural graph query language (PGQL) can directly define a network of opera-
tors that the master server constructs on G* servers. PGQL operators fall into two
categories: those that operate on graphs such as the VertexOperator which
retrieves relevant vertices and their edges from disk, and non-graph operators such
as the AggregateOperator which conducts aggregation operations like count,
sum, min, max, and avg. Other non-graph operators include UnionOperator,
ProjectionOperator, JoinOperator, SortOperator andTopKOpera-
tor. For details and examples about all operators, please see our G* Operator Refer-
ence [13].

The commands for creating operators have the following form:

<op_name>@<server_id|∗ >=< op_type > ([< input_op_names>],
< param_1 >,< param_2 >, . . .)

Each operator creation command constructs a new <op_type>-type opera-
tor called <op_name> on server <server_id> or all servers (*). Here,
<input_op_names> is a list of operators that provide data to the operator(s) to
create and each <param_i> is parameter needed during operator creation. For exam-
ple, in Fig. 2, vertex@local on line 2 refers to the operator named vertex on the
server on which the operator is constructed, where as count_sum@* on line 3 refers
to all operators namedcount_sum on all servers. On the other hand,union@alpha
on line 5 refers to the operator named union on server alpha.

Given such a command, the G* master instructs each relevant server (as denoted
in <op_name>@<server_id | *>) to instantiate an operator of the speci-
fied type (<op_type>) which is implemented in advance as a Java class (e.g.,
UnionOperator). Then, each server creates an operator using the constructor that
matches the specified operator type and parameters (found through Java reflection)
and connects this operator to other operators according to the <input_op_names>
phrase of the command.

Figure 2 shows an example which computes the average vertex degree for each
graph located in the ‘/twitter/’ directory on G*’s distributed file system. The
VertexOperator retrieves all of the vertices from graphs from a given input
specifier that match a supplied condition (in Fig. 2, all of the graphs located in
‘/twitter/’). The DegreeOperator computes the vertex degree for the given
input. The AggregateOperator and PartialAggregateOperator take
input from a specified source (e.g., from degree on line 3 in Fig. 2) and execute
the specified functions on that input based on the specified attributes and then stores
the results in the specified output attributes.

Figure 3 illustrates a network of operators constructed according to the example in
Fig. 2. Figure 3 assumes that graphs G1, G2, and G3 are located in the‘/twitter/’
directory, and further that each server has grouped its vertices and edges based on the
graphs that have them in common. The vertex and degree operators on each
server compute the degree of each vertex while associating the result with the IDs of

123

Author's personal copy

Distrib Parallel Databases

the related graphs. For example, the output of degree on server α indicates that the
degree of a is 2 in graphs G1, G2, and G3. The count_sum operator on each server
then computes the count and sum of the received vertex degrees with grouping on
graph.id (see also lines 3–4 in Fig. 2). These partial aggregate values computed
on each server are merged by the union operator on server α and then processed by
the avg operator, which computes the final result. Conceptually, G* can support any
query language that can be translated into PGQL. Further details of query processing,
including development of graph processing operators and shared computation across
graphs, are discussed in Sect. 4.

2.3.2 Declarative graph query language

The second language that G* provides is called declarative graph query language
(DGQL). DGQL is similar to SQL, but closer to OQL [3] in that it enables queries
defined upon sets of complex objects (e.g., vertices referencing edges to other vertices).
We have an early version of a translator, built in ANTLR [35], that turns DGQL into
PGQL.

Figure 4 shows example queries that are based on the representative applications
mentioned in Sect. 1. These queries are also used in Sect. 5 to measure the performance
of G*. These queries compute, for each graph of interest, the average vertex degree
(Q1), as well as the distribution of clustering coefficients (Q2), the shortest distances
to vertices from vertex ‘1’ (Q3), and the sizes of connected components (Q4).

In Fig. 4, degree() on line 2 and c_coeff() on line 7 compute the degree and
clustering coefficient of each vertex, respectively. min_dist() on line 12 computes
the shortest distance from vertex ‘1’ to each vertex for every graph in the ‘/tree/’
directory. min_dist() outputs objects that contain the ID of a vertex v and the
min_dist value (i.e., the shortest distance from vertex ‘1’ tov).comp_id() on line

Fig. 4 Dynamic graph queries—DGQL

123

Author's personal copy

Distrib Parallel Databases

17 finds the connected components for each graph in the ‘/twitter/’ directory.
comp_ id() assigns the same component ID to all of the vertices that are within the
same component. comp_id() outputs objects which contain the ID of a vertex and
the comp_id value (the ID of the component that contains the vertex).

3 Efficient storage of graphs

A key requirement in G*’s design and implementation is to succinctly store large
graphs by taking advantage of their commonalities. Another important requirement
is to effectively utilize both the relatively large storage capacity of disks and the high
speed of memory. It is crucial to minimize the number of disk accesses in both data
storage and retrieval. For example, if each graph edge is accessed with a 10 ms disk
seek time, it would take 116 days to access 1 billion edges. This section presents a
solution that meets these requirements.

3.1 Overview of graph data storage

G* manages directed graphs using multiple servers. It handles undirected graphs
by using directed graphs that contain, for each undirected edge, two corresponding
directed edges, one in each direction. G* can receive data from external sources such
as Twitter’s Garden hose [49] or it can import data files. According to such input data,
it adds, deletes, and updates vertices and edges and their attributes. G* can also create
a series of cumulative graphs by periodically cloning the current graph (Sect. 3.3.3)
and then updating only the newly created graph according to the new data.2 G* assigns
a vertex and its outgoing edges to the same server for high data locality.3 For example,
in Fig. 5a, server α can access every edge of vertex a without contacting others. An
update of an edge is therefore handled by the server that stores the source vertex of that
edge.

Each G* server strives to efficiently manage data by taking advantage of common-
alities among the graphs. For example, server α in Fig. 5a is assigned vertex a and
its outgoing edges which remain the same in graphs G1, G2 and G3. Thus, server α

stores vertex a and its edges only once on disk. On the other hand, vertex d obtains a
new edge to f in graph G3 (Fig. 5b). In response to this update, server γ stores d2, a
new version of d, which shares commonalities with the previous version, d1, for space
efficiency. As this example shows, if a vertex’s attributes or outgoing edges change in
a graph, the corresponding server saves a new version of the vertex on disk. If a vertex
and its edges are updated multiple times in a graph, only the most recent version is
kept. Section 3.2 discusses the details of efficiently storing these versions.

2 In this paper, we focus on managing graphs that correspond to periodic snapshots of an evolving network.
Logging the input data allows G* to reconstruct graphs as of any points in the past by using periodic
snapshots and log data. This feature is not further discussed in this paper.
3 The current G* implementation assigns each vertex to a server based on the hash value of the vertex ID.
We are developing data distribution techniques that can reduce the edges whose end points are assigned to
different servers.

123

Author's personal copy

Distrib Parallel Databases

(a)

(b)

Fig. 5 Overview of G*: efficient storage and indexing for sequential graph snapshots. a Initial creation
of graph G1 at time 1, when each vertex and its edges are assigned to a server. In this example, servers α
and β are unchanged at times 2 and 3, b Server γ at time 3. Vertex e and edge (c, e) having been added in
graph G2 at time 2, server γ now stores two versions of c (c1 in G1 and c2 with an edge to e in G2) in a
deduplicated manner. Now at time 3, with the addition of vertex f and egde (d, f) in graph G3, server γ
stores two versions of d (d1 in both G1 and G2, and d2 with an edge to f in G3)

Each G* server maintains an index to quickly find the disk location of a vertex
and its edges, given relevant vertex and graph IDs. This index also takes advantage of
commonalities among the graphs to reduce its footprint. For this reason, we call this
index the Compact Graph Index (CGI). Specifically, this index stores only one (vertex
ID, disk location) pair for each vertex version in a collection for the combination of
graphs that contain that version. We call this collection a VL map (“Vertex Location”
map) since it associates a vertex ID with a disk location. We call a (vertex ID, disk
location) pair a VL pair. In Fig. 5b, vertex version c2 on server γ represents vertex c
and its outgoing edges which remain the same in graphs G2 and G3. For c2, γ ’s CGI
stores (c, location(c2)) only once in a VL map for the combination of G2 and G3
rather than redundantly storing it for each of G2 and G3. This CGI efficiently stores
vertex IDs and disk locations whereas all of the attribute values of vertices and edges
are saved on disk. Due to its small size, the CGI can be kept fully or mostly in memory,

123

Author's personal copy

Distrib Parallel Databases

Fig. 6 Organization of a disk block. Objects are allocated from the end of the block while data about these
objects is stored from the beginning of the block

enabling fast lookups and updates (Sect. 3.3). To prevent the CGI from managing too
many combinations of graphs, each G* server also automatically groups graphs and
separately indexes each group of graphs (Sect. 3.4).

3.2 Disk storage of graph data

In a variety of graph applications, the edges of a vertex must be processed together
(Sect. 4). To minimize the number of disk accesses, G* stores each vertex and its
edges within the same logical disk block. All of the data within a disk block is loaded
and saved together and the logical disk block size is configurable. (The default size
is 256 KB in the current implementation.) For each vertex, the vertex ID, attribute
values, and all of the outgoing edges are stored on disk (Fig. 6). For each edge, the
ID of the destination vertex and the attribute values of the edge are saved on disk. In
Fig. 6, two versions c1 and c2 of vertex c are stored within disk block 10 at indices 0
and 3, respectively. For space efficiency, c1 and c2 share commonalities. This type of
deduplicated storage of complex objects is supported by Java serialization. The above
disk locations are represented as “10:0” and “10:3”, respectively. To quickly access
disk-resident data, each G* server uses a memory buffer pool that keeps a memory
cache of disk blocks (Fig. 1).

3.3 Compact graph index

As Fig. 7 shows, the CGI maintains VL pairs in a deduplicated fashion by using VL
maps. In the current CGI implementation, VL maps use B+ trees. The size of each VL
pair (e.g., 16 bytes for the ID and disk location of a vertex) is in general much smaller
than that of the disk resident graph data (e.g., 10 KB of data storing all of the attribute
values of a vertex and its edges). Each G* server therefore can usually maintain all or
most of its CGI in memory, thus achieving fast data lookup.

The CGI needs to maintain multiple VL maps, one per combination of stored graphs.
To iterate over all of the vertices in each graph, the CGI has a root map that associates

123

Author's personal copy

Distrib Parallel Databases

(a) (b) (c) (d)

Fig. 7 CGI update examples (a shows server γ ’s CGI in Fig. 5a). (a) Adding G1, (b) G2 as a clone of G1,
(c) addition of e in G2, (d) update of vertex c in G2

Table 1 Symbols for CGI cost analysis

Symbol Description

N Number of graphs (graphs: G1, G2, . . . , G N)

N (v) Number of graphs in {Gi }N
i=1 that contain vertex v

N (v,Q) Number of graphs, among those in Q, that contain v

V Set of all distinct vertex IDs in {Gi }N
i=1 (i.e., size of the set)

M(v) Number of VL maps that contain vertex v (i.e., number of versions of v)

M(v,Q) Number of VL maps that contain v and are related to a graph in Q (i.e.,
number of distinct versions of v in graphs Q)

M(Gi) Number of VL maps related to graph Gi

s(Gi) The size of the ID of graph Gi

p(v) The size of VL pair for vertex v

each graph ID with all of the relevant VL maps (see the shaded triangle in Fig. 7d that
associates G1 with VL maps for {G1} and {G1, G2}).

While the CGI has benefits in terms of storage, the update overhead of the CGI
increases with more VL maps (Sects. 3.3.1, 3.3.3). As experimentally demonstrated
in Sect. 5.2, the number of VL maps managed by the CGI usually does not increase
exponentially with the number of graphs. In particular, given a series of cumulative
graphs, the number of VL maps increases at most quadratically. The reason behind this
phenomenon is that in graphs {Gi }N

i=1, each vertex version is created in some graph Gα

and remains the same in the subsequent graphs until it is superseded by a new version
in graph Gω. This means that common vertices and edges always belong to graph
combinations of the form {Gi }ω−1

i=α . Section 3.4 presents a technique for controlling
the overhead of the CGI. This technique groups graphs and constructs a separate CGI
for each group.

3.3.1 Space cost analysis

Table 1 shows the symbols used in the CGI cost analysis. The results are summarized
in Table 2 and experimentally verified in Sect. 5.

123

Author's personal copy

Distrib Parallel Databases

Table 2 Graph indexing cost analysis: CGI and PGI

CGI PGI

Space
∑

v∈V M(v)p(v) + ∑N
i=1 M(Gi)s(Gi)

∑
v∈V N (v)p(v) + ∑N

i=1 s(Gi)

put(v, d, g) O(N + log V) O(log V)

clone(g’, g) O(N M(g)) O(V)

getLocations(v,Q)
Index O(M(v)N + M(v,Q) log V) O(|Q| log V)

Data O(M(v,Q)) O(N (v,Q))

Given vertex v and each version vi of v, the CGI contains only one VL pair in
the VL map for the graphs that contain vi . Therefore, the total amount of space for
storing all of the VL pairs can be expressed as

∑
v∈V M(v)p(v) where V, M(v) and

p(v) are as defined in Table 1. The space overhead expression for the CGI in Table 2
includes an additional term,

∑N
i=1 M(Gi)s(Gi), to account for the space used for the

graph IDs contained in the CGI.
In contrast with the CGI, consider a naive index structure that maintains a separate

VL map for each graph, which is called the Per-Graph Index (PGI) in Table 2. In the
PGI, the space required for storing all of the VL pairs is

∑
v∈V N (v)p(v) since the

PGI contains one VL pair for every graph that contains v. In this case, the amount of
space required for storing graph IDs is

∑N
i=1 s(Gi).

The above analysis shows that the CGI becomes more compact than the PGI as each
vertex has fewer versions and membership in more graphs. For example, if there were
100 graphs and 5 distinct versions of vertex v in these graphs, the CGI will contain
only 5 VL pairs for v whereas the PGI will contain 100 pairs for v. In the unlikely
situation where every vertex and its edges are updated in each graph (perhaps, if every
Twitter user sends a message to a new user every hour), the CGI converges to the PGI
because there is no commonality among graph versions and therefore one VL map is
required for each vertex in each graph.

3.3.2 Compact graph index creation and updates

The CGI starts with an empty root map. When the first graph G1 is registered into the
CGI, the root map adds an entry that contains G1’s ID. G1’s vertices and edges are
saved to disk as explained in Sect. 3.2 while only the vertex IDs and disk locations
are inserted into the CGI. Since all or most of the CGI can be kept in memory, the
cost of this update is negligible compared to the overhead of storing the graph data on
disk.

The put(VID v, DLOC d, GID g) method in Figure 8 relates the specified
vertex ID (VID) v, disk location (DLOC) d of the vertex data, and graph ID (GID) g
to each other. This sequence of events is illustrated in Fig. 7.

The method first determines whether or not vertexv is already contained in an exist-
ing VL map (lines 2–3). If there is no such VL map (line 4), a VL map which is related
only to the target graph g is found by using getVLMap(g) (line 5). getVLMap(g)
creates a new VL map if none existed before. Then, (v,d) is stored in this VL map

123

Author's personal copy

Distrib Parallel Databases

Fig. 8 CGI update method

(line 5). For example, in Fig. 7b, information about vertex e is not contained in any
VL map. Therefore, when vertex e is added in graph G2, the VL map for {G2} stores
e’s ID and disk location (Fig. 7c).

On the other hand, if the (v,d) pair is contained in a previous VL map m1 (lines
2 and 6 in Fig. 8), the method determines whether or not m1 is related to the target
graph g, using m1.related(g) on line 6. If so (i.e., (v,d) is already contained
in the VL map related to g), no further action is needed. Otherwise, (v,d) must be
moved from m1 (line 7) to a VL map that is related to graph g as well as all the graphs
related to m1. This map is found using common(m1,g) on line 8.

Suppose that a vertex v in graph g is updated. In this case, the new version of the
vertex is stored at a different disk location d rather than the previous disk location
prevD which preserves v’s previous version. Next, a VL map m2, which is related to
graph g and contains information about v, is found (lines 3 and 10). For example, in
Fig. 7c, if c is updated in graph G2, the VL map for {G1, G2} corresponds to m2 since
it contains information about c. Then, (v,prevD) is removed from m2 (line 13) and
stored in the VL map related to all of the graphs that contain (v,prevD), but not
graph g. The VL map needed to store (v,prevD) can be found by diff(m2,g)
on line 16. For this reason, in Fig. 7c, d, data about c1 (i.e., the previous version of
c) is moved from the VL map for {G1, G2} to the VL map for {G1}. Furthermore,
(v,d) needs to be stored in the VL map related to graph g as well as all the other
graphs that contain that version of v at disk location d. That VL map is found using
common(m1,g) on line 14. In Fig. 7c, d, information about the new version, c2, of
c is stored in the VL map for {G2}.

Cost analysis The put(v,d,g) method runs in O(N + log V) time. This is
because all of the VL maps that contain vertex v (lines 2–3 in Fig. 8) can be found in
O(M(v)) time using an inverted list forv (maps(v)) that points to the VL maps which
contain v. Given a list of graph IDs, the VL map related to all of the corresponding
graphs (lines 5, 8, 14, 16) can be found in O(N) time using a hash-map that associates

123

Author's personal copy

Distrib Parallel Databases

a sorted list of graph IDs with each relevant VL map. Other operations that insert (or
remove) a VL pair into (or out of) a VL map (lines 5, 7, 13, 14, 16) and that find
the disk location of v (line 11) can be completed in O(log V) time since a B+ tree is
used for each VL map. Also, M(v) ≤ N , therefore, all of the above operations can be
completed in O(N + log V) time.

In contrast to the CGI, the PGI can complete put(v,d,g) in O(log V) time
by inserting the (v,d) pair into the VL map for g. This indicates that the CGI has
a relatively higher update cost as more graphs are indexed together. However, this
extra overhead is negligible in practice when compared to the cost of writing data to
disk. Furthermore, Sect. 3.4 presents a solution that can trade space for a faster update
speed.

3.3.3 Graph cloning

We can obtain a series of cumulative graphs by iteratively cloning the last graph and
then adding vertices and edges to the new graph. As Fig. 7a, b show, the CGI can
quickly create a new clone g’ of graph g by updating the root map and the VL maps
related to g so that they are also related to g’.

Cost analysis The clone operation can be completed in O(N M(g)) time since
M(g) VL maps are related to g and each of these VL maps needs to be related to
g’. Associating a VL map with g’ takes O(N) time since it requires updating the
hash-map that associates a sorted list of graph IDs with relevant VL maps (explained
in Sect. 3.3.2). In contrast to the CGI, the PGI takes the substantially longer O(V)

time because it must replicate the entirety of the VL map for g.

3.3.4 Graph data retrieval

To efficiently process queries on multiple graphs, the CGI supports the
getLocations (v,Q) method in Fig. 9. Given a vertex ID (VID) v and a set
of graph IDs (Set<GID>) Q, the method returns a collection of pairs represent-
ing the disk location that stores a version of v in Q and the IDs of all of the
graphs which contain that version. For example, in Fig. 7d, if the disk locations
in Fig. 6 are assumed, a call to getLocations passing in vertex d and graphs
G1 and G2 (i.e., getLocations(d, G1, G2)) would return {(10:1, {G1, G2})}

Fig. 9 CGI lookup method

123

Author's personal copy

Distrib Parallel Databases

and getLocations(c, {G1, G2}) would return {(10:0, {G1}), (10:3, {G2})}. This
getLocations(v,Q) method allows G* operators to process each vertex version
once and then use the result across all of the graphs which contain that vertex version
(Sect. 4.2). This substantially speeds up queries on multiple graphs (Sect. 5.1).

Cost analysis The getLocations(v,Q) method iterates over the VL maps
which contain information about vertex v, using the inverted list forv (line 3 in Fig. 9).
This inverted list, maps(v), which contains M(v) VM maps is explained in the cost
analysis of the put(v, d, g) method. The getLocations(v, Q) method
then finds, for each VL map m in maps(v), the set of graphs R that are contained in
Q and related to m (line 4). Finding R takes O(N) time since it requires finding the
intersection of two sorted lists of graph IDs. This set R of graphs, if it is non-empty,
is added to the result set in conjunction with the disk location that stores the state of
vertex v when v belongs to the graphs in R (lines 6–7). The disk location of v can be
found in O(log V) time using the B+ tree for VL map m. Therefore, the overall time
complexity of the getLocations(v,Q) method is O(M(v)N + M(v,Q) log V)

where M(v,Q) denotes the number of VL maps that contain information about vertex
v and that are related to a graph in Q (i.e., the number of distinct versions of v in graphs
Q). Reading the M(v,Q) versions of v from disk via the buffer pool may require up
to M(v,Q) disk accesses (Table 2) since we never need more than one disk access
to read each version of v. On the other hand, accessing a vertex once for each graph
using the PGI would cause up to G(v,Q) disk accesses, where G(v,Q) denotes the
number of graphs, among those in Q, that contain v.

Example Suppose that there are 100 graphs and 5 versions of vertex v in these
graphs. Suppose further that the CGI is kept in memory due to its small size. In this
case, a query on these graphs requires up to 5 disk accesses for vertex v, one for
each version of v. If the PGI were used, the same query would require up to 100 disk
accesses for vertex v, one for each graph. In this example, the CGI would be much
faster than the PGI.

3.4 Compact graph index splitting

The CGI has low space overhead, enables the sharing of computations across graphs,
and may substantially reduce the data retrieval overhead. However, as more graphs are
added to the CGI, the number of VL maps may grow superlinearly, thereby noticeably
increasing lookup and update overhead. Our solution to this problem groups graphs
and then constructs a separate CGI for each group of graphs in order to limit the
number of VL maps managed by each CGI. In other words, this approach trades space
for speed by ignoring the commonalities among graphs in different groups. Figure 10
shows an example where one CGI is constructed for every three graphs. The root
collection in the example associates each graph (e.g., G1) with the CGI which covers
that graph (e.g., the CGI for G1, G2 and G3).

One important challenge in implementing this approach is to effectively determine
the number of graphs to be covered by each CGI. Figure 11 shows our solution to
determine whether or not to split the current CGI into two: one that covers the previous
graphs and another one to cover the current and succeeding graphs. The code in Fig. 11

123

Author's personal copy

Distrib Parallel Databases

Fig. 10 CGI splitting example

Fig. 11 CGI splitting code

Fig. 12 Determination of split point. The lookup delay initially decreases because each lookup returns
data relevant to more graphs until too many VL maps are created, causing the lookup delay to increase

is invoked whenever a new graph is added. This method first determines if sufficient
average lookup delays have been entered into a list lookupDelays (line 2).4 If so
(i.e., the size of the lookupDelays list is larger than a threshold windowSize),
the method determines whether or not there has been a substantial increase in the
lookup delay when compared to the minimum delay observed in the past (line 3). To
compute the average lookup delay for each graph, each CGI maintains two variables
that keep track of the sum and count of lookup delays for each graph.

To capture the general trend in the lookup delay despite measurement inaccuracies
(see Fig. 12), our approach uses a sliding window on the series of average lookup
delays while selecting the median whenever the window advances in response to the
addition of a new graph. curDelay on line 3 refers to the median delay selected from
the current window (the dotted line in Fig. 12) and minDelay refers to the minimum
among all of the previous median delays. In the current implementation, threshold
is set to 0.1 to detect any 10 % increase in the lookup delay and windowSize
is set to 10 by default. Experimental results in Sect. 5.2 will show that our CGI

4 As mentioned in the cost analysis of the put(v, d, g) method, updating the CGI for a version of
vertex v also requires a lookup via maps(v).

123

Author's personal copy

Distrib Parallel Databases

splitting approach makes reliable decisions while keeping the lookup delay near the
minimum.

4 Graph query processing

Traditional database systems transform queries into a network of operators that process
data in a pipelined fashion. A central challenge in applying this approach to G* is to
develop a new query processing framework that meets the following requirements:

1. The query processing framework must be able to execute operators on multiple
servers to efficiently process distributed graphs.

2. G*’s indexing mechanism associates each vertex with all of the graphs that contain
that vertex (Sect. 3.3). The query processing framework must use this feature to
share computations across relevant graphs.

3. G* requires operators for solving graph problems. The framework must permit
easy and succinct implementation of these operators.

Sections 4.1, 4.2 and 4.3 describe how we address the above issues.

4.1 Query processing framework

Given a query plan (Fig. 2), the G* master server constructs a network of operators
(Fig. 3) according to that plan. Each G* server, including the master, interacts with the
others using remote method invocations (RMIs) [17]. For example, given the command

vertex@∗ = VertexOperator([], ‘/twitter/ ∗ ’)

(line 1 in Fig. 2), the master invokes the createOperator() method on each G*
server while passing in (1) the label to assign to that operator (vertex), (2) the type
of the operator (VertexOperator), (3) the operators to connect to for input data
([], meaning none in this case), and (4) arguments (the pattern that expresses the
graphs to process, ‘/twitter/*’ in this case).

A G* operator, such as degree in Fig. 3, can obtain data from another operator
by receiving an iterator from that operator and then repeatedly calling next() on
that iterator. Just like traditional database management systems, this iterator-based
approach is for pipelined transmission and processing of data. Since the native Java
RMI [17] does not directly support methods that return an iterator, we constructed
our own RMI framework to overcome this limitation. Furtheremore, G* utilizes Java
externalization to speed up data storage and transmission (i.e., whenever possible,
it writes and reads primitive data values using custom code instead of incurring the
higher overhead of serializing/deserializing objects).

Using our RMI service, the union operator on server α in Fig. 3 obtains an iterator
for getting data from the remote operator count_sum on server β. In this case,
the union operator is given a proxy iterator constructed on server α on behalf of
the original iterator that the count_sum operator provides on server β. To help the

123

Author's personal copy

Distrib Parallel Databases

union operator on server α efficiently process data, server β proactively retrieves
data using the original iterator from count_sum and sends the data to server α. This
approach enables pipelined processing.

The current G* implementation supports the graph processing operators discussed
below in addition to other operators that are analogous to traditional relational opera-
tors, such as selection, projection, aggregation, and join. These operators may directly
read disk-resident graph data (e.g., the vertex operator in Fig. 3), receive data
streams from other operators (e.g., degree, count_sum, union, avg opera-
tors), or exchange special summary values with each other to solve a graph problem
(Sect. 4.3). Each operator produces a stream of data objects that represent the result
(e.g., the ID and degree of each vertex in the case of the degree operator).

4.2 Sharing of computations across graphs

Each vertex operator in Fig. 3 obtains an iterator from the set of CGIs (Sect. 3.4)
that cover the graphs being queried (e.g., {G1, G2, G3}). Each invocation of next()
on this iterator provides the disk location that stores a vertex and its edges, as well as
the IDs of the graphs that contain them. Based on this input data, the vertex operator
reads relevant data from disk and produces data objects, each of which represents a ver-
tex, its edges, and the IDs of the graphs that contain them (e.g., (a, . . . , {G1, G2, G3})
on server α in Fig. 3). In G*, the Vertex type is used for these objects. In summary,
if a vertex and its edges do not change across multiple graphs, the vertex operator
loads them only once from disk and then associate them with the IDs of the graphs
that contain them.

G* operators that consume the output stream of the vertex operator can naturally
share computations across relevant graphs. For example, the degree operator on
server α in Fig. 3 computes the degree of vertex a only once and then incorporates the
result (i.e., degree of 2) into the Vertex object that represents a in graphs G1, G2,
and G3. This change affects only the Vertex object in memory and has no influence
on the base data on disk. It should be noted that the above operation involves only
one disk access to load vertex a and its edges, as well as one single computation of
a’s degree while sharing the result across graphs G1, G2, and G3. In other systems
that can process only one graph at a time, the same result would require three series
of disk access and degree computation, one for each of the three graphs. Our shared
computation is more beneficial when vertices and edges remain the same across a
larger number of graphs. The utility of this shared computation is experimentally
demonstrated in Sect. 5.

Fig. 13 Vertex degree computation

123

Author's personal copy

Distrib Parallel Databases

Figure 13 shows the actual implementation of the degree operator. In this imple-
mentation, the complexity of dealing with multiple graphs is completely hidden. The
reason behind this benefit is that the actual code for computing the degree of a vertex
(i.e., counting the number of outgoing edges) does not require any information about
the graphs which contain that vertex.

4.3 Primitives for graph processing

To facilitate the implementation of graph processing operators, G* provides three types
of primitives: summaries, combiners, and bulk synchronous parallel (BSP) operators.

4.3.1 Summaries

Graph algorithms typically maintain certain types of values (e.g., the shortest distance
from a chosen vertex) for each vertex [10,14,29]. A summary is a container that keeps
aggregate data (e.g., count, sum) to support operators for solving graph problems.
One can implement a custom summary type by implementing the Summary<V,F>

interface, whereV is the type of the values for updating aggregate data, andF is the type
of the value to generate from the aggregate data. Each summary type must implement
the following methods:

– boolean update(V v): updates the aggregate data using value v (e.g., sum
+= v; count++;) and then returns true if the aggregate data is changed; false
otherwise.

– boolean update(Summary < V,F > s): updates the aggregate data using
other summary s (e.g., sum += s.sum; count += s.count;) and returns true
if the aggregate data is changed; false otherwise.

– F value(): returns a value computed using the current aggregate data (e.g.,
return sum/count;).

Figure 14 shows a portion of the actual implementation of a summary which com-
putes the clustering coefficient of a vertex. Clustering coefficients can be used to
determine whether or not a given graph represents a small-world network [22]. The

Fig. 14 Implementation of CCoeffSummary

123

Author's personal copy

Distrib Parallel Databases

Fig. 15 Clustering coefficient example

clustering coefficient of a vertex v is defined as the ratio of the number of edges
between neighbors of the vertex (i.e., the number of triangles that involve v) to the
maximum number of edges that could exist between neighbors of v. For instance, ver-
tex v in Fig. 15 has three neighbors (a, b, c). Vertex a has one edge to a neighbor of v
(b). Vertex b has two such edges (b–a and b–c). Vertex c has one such edge (c–b).
Therefore, the clustering coefficient of vertex v is (1 + 2 + 1)/(3 · 2) = 4/6 = 2/3.

The summary CCoeffSummary in Fig. 14 has two variables: (i) neighbors, a
collection that contains the IDs of the neighbors of a vertex, and (ii) triangles, an
int variable for counting the number of edges between the neighbors.

Figure 15 shows an example where the clustering coefficient of vertexv is computed
using three CCoeffSummary instances whose neighbors and triangles are
initialized in step (1) to {a,b,c} and 0, respectively. In step (2), a summary is updated
based on vertex a using the update(Vertex v) method in Fig. 14. In this case,
triangles is incremented once due to the edge from a to b, which is another
neighbor of v. Two other summaries are updated similarly in steps (3) and (4). In
step (5), these summaries are combined using the update(Summary <Vertex,
Double> s) method (omitted in Fig. 14). In step (6), the clustering coefficient of v
is computed using the value() method in Fig. 14.

4.3.2 Combiner

The example in Fig. 15 updates summaries based on vertices. It also combines all of
the summaries that have the same target vertex (i.e., the vertex for which the clustering
coefficient is computed) to compute the final value. Our combiner primitive allows
operators to perform the above operations while ignoring the low-level details of
distributed data management. It also abstracts away the complexity of maintaining
summaries for collections of graphs that are queried together. Thecombinerprovides
the following methods:

– void update(VID t, Summary< V,F> s, Set< GID> g): associates
summary s with vertex t and a set of graphs g. If a summary is already associated
with t, that summary is updated using s.

– void update(VID t, Summary<V,F>s, VID i, Set<GID> g):
updates summary s based on vertex i and then performs update(t,s,g).

– boolean hasNext(): returns true if the combiner can compute a new final
value (e.g., the clustering coefficient of a vertex) since it has received all of the
needed summaries. This method returns false if no further new values can be

123

Author's personal copy

Distrib Parallel Databases

Fig. 16 Clustering coefficient computation

computed (i.e., the summaries for all of the vertices are completely processed).
This method blocks if the above is not yet known.

– Vertex next(): returns a Vertex object after inserting a new final value into
that object (e.g., inserting the clustering coefficient of v into an object representing
v). This method blocks in situations where hasNext() blocks.

Figure 16 shows the actual implementation of an operator that computes the clus-
tering coefficient of each vertex. As the initial task, the operator processes a stream of
Vertex objects (lines 2–6). For each Vertex object v (line 3), the operator uses a
combiner cmbr to route a summary to each neighbor n of v as in step (1) in Fig. 15
(lines 4–5 in Fig. 16). In this case, the underlying G* server sends that summary to
the server that manages vertex n. When summaries return from their trip to a neighbor
of v, the G* server combines these summaries using update(Summary < V,F >

s). By calling value() on the resulting summary, the server computes the cluster-
ing coefficient of v and adds it to the Vertex object that represents v. Whenever a
Vertex object becomes available, the next() method of cmbr returns the object
(lines 9–11 in Fig. 16).

4.3.3 BSP operator

The BSP model has been frequently used in various parallel graph algorithm imple-
mentations [11,14,29]. This model uses a number of iterations called supersteps during
which a user-defined custom function is applied to each vertex in parallel. This custom
function changes the state variables of a vertex based on the their current values and the
messages received during the previous superstep. The overall computation completes
when a certain termination condition is met (e.g., no state variable changes for any of
the vertices).

In G*, operators that support the BSP model can be implemented by extending the
BSPOperator class and implementing the following method:

– void compute(Vertex v, Summary < V, F >s): carries out a certain
task based on vertex v and summary s for v. This method is invoked only when
a summary bound to v has arrived for the first time, or the summary already
associated with v is updated with the summaries received during the previous
superstep.

123

Author's personal copy

Distrib Parallel Databases

Fig. 17 Shortest distance computation

Fig. 18 Connected components computation

Figure 17 shows an operator implementation that finds, in each graph that satisfies
predicate graphPred, the shortest distance from a single source vertex to every
other vertex. The presented code is equivalent to the Pregel counterpart by Malewicz
et al. [29]. In Fig. 17, a summary Min< V> is used to keep track of the shortest
distance to each vertex.

In Fig. 17, the init() method assigns a summary containing 0.0 to the source
vertex (src). Since this summary is newly associated with src, the compute()
method is invoked on the src object during the next superstep. For each edge e of
the current vertex v (line 6), this method computes the distance to the neighbor vertex
(e.target()) and sends the distance in the form of a Min< Double> summary
(line 7), which will later be combined with all of the other summaries sent to the
same vertex. The compute() method is invoked on a vertex only when a shorter
distance to the vertex is found in the previous superstep. If no summaries in the system
are updated (i.e., no shorter distance is found for any of the vertices), the whole BSP
process completes. In this case, cmbr.next() returns one Vertex object at a time,
which contains the shortest distance from the source vertex.

Figure 18 shows another operator implementation that finds all of the connected
components in each undirected graph that matches predicate graphPred. Initially,
every relevant vertex in the system is assigned a Min< Double > summary which
contains the ID of the vertex (lines 1–7). In each superstep, the compute() method
is invoked only on the vertices to which a smaller ID value is sent. These vertices send
the received ID to their neighbor vertices (lines 9–12). In this way, the smallest vertex
ID within a connected component is eventually sent to all of the vertices within the
component. This smallest ID is used as the component ID. The rest of this implemen-

123

Author's personal copy

Distrib Parallel Databases

tation which is omitted in Fig. 18 is the same as that of the shortest distance operator
(Fig. 17).

4.3.4 Discussion

G*’s processing primitives have the following benefits over others’ primitives [10,14,
29]:

1. Summary implementations promote code reuse (e.g., the Min < V> summary is
used in Figs. 17, 18).

2. Summaries allow implementation of graph algorithms at a high level (e.g., simply
use Min < V> rather than writing code that finds the minimum among many
values). For this reason, summary-based operator implementations are succinct.
For example, the compute()method in Fig. 17 has only 5 lines of code whereas
the equivalent code in Pregel [29] is 12 lines.

3. Summaries with the same target vertex are combined into one as they arrive at the
destination server. In contrast, Pregel-like systems incur high space overhead since
they keep all of the input messages until they are consumed by the user-defined
code [10,14,29].

4. G*’s processing primitives effectively hide the complexity of dealing with multiple
graphs. In the 50 lines of code from Figs. 13, 14, 16, 17 and 18, only line 5 in Fig. 16,
line 7 in Fig. 17, and line 11 in Fig. 18 reveal the presence of multiple graphs.

5 Experimental results

This section presents experimental results that we have obtained by running G* on a
64-core server cluster. In this cluster, each of eight nodes has two Quad-Core Xeon
E5430 2.67 GHz CPUs, 16GB RAM and a 2TB hard drive.

Table 3 summarizes the datasets used for the experiments. The Twitter dataset
contains a subset of messages sent between Twitter users during February 2012. This
dataset was collected using Twitter’s Garden hose API [49], which supplied a 10 %
sample of all tweets. In our sample of the data, each Twitter message was typically
delivered to one through three Twitter users. We suspect that these users would cor-
respond to 10–30 users in the actual Twitter system. The Yahoo! dataset contains
communication records between end-users in the Internet and Yahoo! servers [51].
The Tree dataset was obtained by running a binary tree generator. Using each of the
Twitter and Yahoo! data sets, we constructed a series of graphs that are hourly
snapshots of the underlying network. A graph in each series was constructed by first
cloning the previous graph (Sect. 3.3.3) and then adding new vertices and edges to

Table 3 Datasets
Twitter Yahoo! Tree

Of vertices 33 M 112 M 1 B

Of edges 62 M 335 M 1 B

Of records 78 M 1.1 B 1 B

Data size 11 GB 107.9 GB 21 GB

123

Author's personal copy

Distrib Parallel Databases

Fig. 19 Clustering coefficient in SQL. Lines 4–6 find all of the 2-hop paths from src to des via i. The
left outer join on lines 3–7 then finds all of the edges between the neighbor vertices i and des of vertex
src while keeping all of the edges from src. Line 1 computes the ratio of the number of edges between
the neighbors of src (i.e., count(i)) to the maximum number of edges that could exist between the
neighbors (i.e., count(distinct des)/(count(distinct des)-1))

Fig. 20 G* versus PostgreSQL

the new graph. Our data sets did not contain records corresponding to the deletion
of vertices and edges or edge weight updates. On these graphs, we ran the queries
discussed in Sect. 2.3 (Fig. 4).

5.1 Comparison with prior database and graph systems

5.1.1 G* versus PostgreSQL

Figure 20 shows results that highlight the superiority of G* over PostgreSQL [37],
a widely used relational database system. These results were obtained by running
PostgreSQL and G* on identical servers. We used a set of 16 cumulative graphs
constructed from the Twitter dataset. Each graph contained 3,000 additional edges
compared to its previous graph. (Thus, the last graph contained 48,000 edges.) We kept
the number of edges relatively small due to the performance limitations of PostgreSQL.
PostgreSQL used a table edge(graph, src, des) to store data about the edges

123

Author's personal copy

Distrib Parallel Databases

in the graphs. We computed the clustering coefficient of every vertex in these graphs
with the SQL query in Fig. 19.

Figure 20 shows that PostgreSQL has much higher storage overhead than G* (com-
pare “Postgres (data size)” and “G* (data size)”). The reason is that Postgres stores
one record for every combination of an edge and a graph, whereas G* stores each
vertex and its edges only once regardless of the number of graphs that contain them.

In our measurement, the PostgreSQL data size and index size were nearly identical
because the index covered all attributes (i.e., graph, src, des) of the primary key.
By comparing “Postgres (data size)”, which also represents the index size of Postgres,
with “G* (index size)”, we can see that the index size of G* is also much smaller
than that of Postgres. The reason for this is that G*’s index contains (vertex ID, disk
location) pairs in a deduplicated fashion.

In G*, the index size is in general much smaller than the amount of disk-resident
graph data (compare “G* (index size)” with “G* (data size)”). Therefore, the entirety
or a large fraction of the index can be kept in memory, enabling fast data lookup.
Furthermore, G* processes each vertex once and then shares the result across relevant
graphs. The curves labeled “Postgres (query time)” and “G* (query time)” in Fig. 20
clearly show the performance benefit of G* over PostgreSQL.

To study the importance of sharing computations across graphs, we examined
another situation where G* constructed one VL map for each graph, ignoring common-
alities among graphs (see “G* (query time, PGI)”). Figure 20 shows that “G* (query
time)” and “G* (query time, PGI)” are significantly different, whereas “G* (query
time, PGI)” and “Postgres (query time)” are similar. This result shows that G*’s abil-
ity to share computations across graphs is a main contributor to the superiority of G*
over PostgreSQL.

5.1.2 G* versus Phoebus

The next result compares G* with Pheobus [36], an open-source implementation of
Pregel [29]. We used Pheobus because the original Pregel system was not publicly
available. As with previous work on Pregel [29], we performed single-source shortest
distance queries on complete binary trees. One major difference is that we ran queries
on multiple trees (i.e., graphs) rather than a single a tree. This experiment used a
series of 10 cumulative graphs, each of which contained 25,000 more edges than its
predecessor in the series.

Figure 21 shows the result obtained by running Phoebus and G* on identical servers
(refer to Sect. 5.3 for our results on the scalability of G*). In this result, “Phoebus (last
graph)” and “G* (last graph)” represent the amount of time that each system took to
process the largest graph. This result shows that G* substantially outperforms Phoebus
even when it processes a single graph. “Pheobus (all graphs)” and “G* (all graphs)”
demonstrate that the performance difference between Pheobus and G* becomes larger
when they process multiple graphs since G* can share computations across graphs,
whereas Phoebus does not. When we disabled shared computation by using the PGI
(Sect. 3.3.1) instead of the CGI, the overall query time increased significantly (“G*
(all graphs, PGI)”), which again points out the importance of sharing computations
across graphs.

123

Author's personal copy

Distrib Parallel Databases

Fig. 21 G* versus Phoebus

Fig. 22 Number of VL maps

5.2 Impact of indexing

The CGI associates IDs and disk locations of vertices using VL maps (Sect. 3.3).
Both lookup overhead and update overhead increase with more VL maps. Figure 22
shows how the number of VL maps varies as the index covers more graphs. Using the
Twitter andYahoo! datasets, we generated two series of 64 cumulative graphs that
were hourly snapshots of the underlying network. The number of VL maps increased
modestly on these real-world graphs (see “Yahoo!” and “Twitter”) compared to
the theoretic maximum (2N , which is the number of all possible combinations of N
graphs).

123

Author's personal copy

Distrib Parallel Databases

To carefully examine the impact of similarity between graphs on the number of
VL maps (i.e., the robustness of our indexing technique), we also constructed other
artificial series of graphs, each of which had a certain fraction (e.g., 0, 4, 20, 100 %)
of different edges (introduced by replacing old edges with new edges) compared to
its previous graph. In Fig. 22, “Twitter (100 %)” shows the result when the graphs
had no commonality among them and therefore only one VL map was constructed for
each graph. In Fig. 22, the largest number of VL maps were created when 4 % of the
edges were changed in each graph.

As explained in Sect. 3.4, we can control the cost of managing VL maps by grouping
graphs and constructing a separate index for each group. Figures 23, 24, and 25 show

Fig. 23 Index size

Fig. 24 Query time: average degree

123

Author's personal copy

Distrib Parallel Databases

Fig. 25 Query time: clustering coefficient

how the index size and query time vary as the number of graphs managed by each
index increases. Figure 25 shows that the query execution time tends to decrease and
then increase (compare the query execution times on “Twitter (20 %)” at 16 graphs
per CGI and 64 graphs per CGI) as more graphs are indexed together. The reason is
that the cost of managing VL maps increases with more graphs.

Our index splitting method (Sect. 3.4) can automatically determine the number of
graphs that each CGI needs to cover. In Figs. 24 and 25, the arrows indicate the actual
query execution times that our technique achieved on different sets of graphs. This
result shows that our index splitting technique makes reliable decisions while achieving
near optimal performance. From Figs. 24 and 25 we can also see that, despite its inher-
ent design for shared data storage and computation, G* does not pay any noticeable
penalty when there is no commonality between graphs (see “Twitter (100 %)”).
In this case, the CGI naturally converges to the PGI, which ignores commonalities
among graphs and therefore keeps one VL map for each graph.

5.3 Scalability

This section shows G*’s scalability. These results were obtained by running the first
three queries in Fig. 4 on a varying number of G* servers. Among the three datasets
in Table 3, only the Tree dataset was used for the shortest distance query. In this
case, the root of the tree was selected as the source vertex. When we used other data
sets, it was hard to obtain reliable results since the number of visited vertices varied
significantly depending on the choice of source vertex.

In one group of experiments (Figs. 26, 27, 28), we increased both the number of
servers and the size of the graph at the same rate. When 64 servers were used, the
largest graph for each dataset was created using the entirety of the dataset. Figures 26,
27, and 28 show that G* achieved the highest level of scalability when it executed the

123

Author's personal copy

Distrib Parallel Databases

Fig. 26 Twitter scale up

Fig. 27 Yahoo! scale up

Fig. 28 Tree scale up

123

Author's personal copy

Distrib Parallel Databases

vertex degree query. A main reason is that vertex degrees can be computed locally on
each server without incurring any network overhead. Further, the number of distinct
vertices tends to increase slowly compared to the number of distinct edges. Therefore,
each server is assigned a relatively small number of vertices as the number of edges
increases in proportion to the number of servers.

When G* executed the clustering coefficient query, the query time increased grad-
ually as both the number of servers and the amount of data increased. We conjecture
that this phenomenon was mainly caused by the increase in the network traffic. We
plan to address this issue (i.e., further improve the scalability of G*) by developing a
data distribution technique that can reduce the edges whose end points are on different
servers. The result on the shortest distance query is similar to that on the clustering
coefficient query.

Figures 29, 30, and 31 show results obtained by creating a graph that contains one
million edges and then distributing the graph over an increasing number of servers.

Fig. 29 Twitter speed up

Fig. 30 Yahoo! speed up

123

Author's personal copy

Distrib Parallel Databases

Fig. 31 Tree speed up

In this case, the execution time of each query decreased as more servers were used.
The impact of each query on the query execution time is consistent with that in the
previous (scale up) experiment.

6 Related work

Google’s Pregel is a recent parallel graph processing system [29]. A Pregel program
includes a user-defined function that specifies superstep-based tasks for each vertex.
Using this function, Pregel can execute a graph algorithm such as PageRank or short-
est paths algorithms on a server cluster. Pregel achieves a higher level of scalability
compared to previous graph processing systems such as Parallel BGL [14] and CGM-
Graph [10]. Several open-source versions of Pregel are under active development,
one of which, Phoebus [36], is compared with G* in Sect. 5. Many open-source sys-
tems, like Pegasus [19] are based on Hadoop [1], an open-source implementation of
Google’s MapReduce [12]. Carnegie Mellon’s HADI system [20], is based on Hadoop
and capable of analyzing very large graphs but it is specifically designed to compute
the radii and the diameter of those graphs, whereas G* is far more general.

Other recent parallel graph processing systems include Trinity [48], Surfer [11], and
Angrapa [47]. In contrast to these systems which process one graph at a time, G* can
efficiently execute sophisticated queries on multiple graphs. The performance benefits
of G* over the traditional graph processing systems were experimentally demonstrated
in Sect. 5.1.

Researchers are working on using multi-core hardware for graph processing.
Ligra [40] is a lightweight graph processing framework specifically for shared-memory
multi-core machines. Like Trinity, it’s a memory-only system and therefore limited
by memory size, which G* is not. Acolyte [46] is a similar in-memory graph system
(on a smaller parallel scale) from Tsinghua University.

Graph compression techniques typically store a single graph by either assigning
short encodings to popular vertices [43] or using reference compression. Reference

123

Author's personal copy

Distrib Parallel Databases

compression refers to an approach that represents an adjacency list i using a bit vector
which references a similar adjacency list j and a separate collection of elements
needed to construct i from j [2,7]. These techniques and other previous techniques
for compressing graphs [30] and binary relations [5] are not well suited for G*’s
target applications. In particular, these compression techniques require reconstructing
the original vertices and edges, which would slow down the system operation. G*’s
storage and indexing mechanisms do not have these limitations but rather expedite
queries on multiple graphs.

Researchers have developed various types of graph indexing techniques. Han et al.
provided a comprehensive survey and evaluation studies on indexing techniques for
pattern matching queries [15]. Jin et al. have recently presented an efficient indexing
technique for reachability queries [18] with detailed comparison to other related tech-
niques. In contrast to these techniques, G*’s indexing approach strives to minimize,
with low update overhead, the size of the mapping from the vertex and graph IDs to
the corresponding graph data on disk. This technique also enables fast cloning of large
graphs and allows G* to process each vertex and its edges once and then share the
result across relevant graphs to speed up queries on multiple graphs. A demonstration
of this work was given at ICDE 2013 [41].

Previous studies on the evolution of dynamic networks were discussed in Sect. 1
of this paper.

7 Conclusion

G* is a new parallel system for managing a series of large graphs that represent
dynamic evolving networks at different points in time. This system achieves scalable,
efficient storage of graphs by taking advantage of their commonalities. In G*, each
server is assigned a subset of vertices and their outgoing edges. Each G* server keeps
track of the variation of each vertex and its edges over time through commonality-
compressed, deduplicated versioning on disk. Each server also maintains an index for
quickly finding the disk location of a vertex and its edges given relevant vertex and
graph IDs. Thanks to its space efficiency, this index generally fits in the memory and
therefore enables fast lookups.

G* supports sophisticated queries on graphs using operators that process data in
parallel. It provides processing primitives that enable succinct implementation of these
operators for solving graph problems. G* operators process each vertex and its edges
once and use the result across all relevant graphs to accelerate queries on multiple
graphs. We have experimentally demonstrated the above benefits of G* over traditional
database systems and current graph processing systems.

Acknowledgments This research was supported by NSF CAREER award IIS-1149372 and also supported
by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the “IT Consilience Creative
Program” (NIPA-2013-H0203-13-1001) supervised by the NIPA (National IT Industry Promotion Agency).

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.: HadoopDB: an archi-
tectural hybrid of MapReduce and DBMS technologies for analytical workloads. Proc. VLDB Endow.
(PVLDB) 2(1), 922–933 (2009)

123

Author's personal copy

Distrib Parallel Databases

2. Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: Proceedings of the 2001 Data
Compression Conference (DCC), pp. 203–212 (2001)

3. Alashqur, A.M., Su, S., Lam, H.: OQL: a query language for manipulating object-oriented databases.
In: Proceedings of the 15th International Conference on Very Large Data Bases (VLDB), pp. 433–442
(1989)

4. Apache Giraph: http://incubator.apache.org/giraph/. Accessed 23 Feb 2014
5. Barbay, J., He, M., Munro, I., Rao, S.: Succinct indexes for strings, binary relations and multi-labeled

trees. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 680–689 (2007)

6. Bogdanov, P., Mongiovì, M., Singh, A.K.: Mining heavy subgraphs in time-evolving networks. In:
Proceedings of the 11th IEEE International Conference on Data Mining (ICDM), pp. 81–90 (2011)

7. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: Proceedings of the 13th
International Conference on World Wide Web (WWW), pp. 595–602 (2004)

8. Bui-Xuan, B.M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic
networks. Int. J. Found. Comput. Sci. 14(2), 267–267 (2003)

9. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic net-
works. In: Proceedings of the 10th International Conference on Ad-hoc, Mobile, and Wireless Networks
(ADHOC-NOW), pp. 346–359 (2011)

10. Chan, A., Dehne, F.K.H.A., Taylor, R.: CGMGRAPH/CGMLIB: implementing and testing CGM
graph algorithms on PC clusters and shared memory machines. Int. J. High Perform. Comput. Appl.
(IJHPCA) 19(1), 81–97 (2005)

11. Chen, R., Weng, X., He, B., Yang, M.: Large graph processing in the cloud. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 1123–1126
(2010)

12. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (OSDI), pp. 137–150 (2004)

13. G* Operator Reference Guide: http://www.cs.albany.edu/~gstar/operator-reference. Accessed 23 Feb
2014

14. Gregor, D., Lumsdaine, A.: The parallel BGL: a generic library for distributed graph computations. In:
Proceedings of the 4th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing
(POOSC) (2005)

15. Han, W.S., Lee, J., Pham, M.D., Yu, J.X.: iGraph: a framework for comparisons of disk-based graph
indexing techniques. Proc. VLDB Endow. (PVLDB) 3(1), 449–459 (2010)

16. He, H., Singh, A.: Graphs-at-a-time: query language and access methods for graph databases. In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD),
pp. 405–418 (2008)

17. Java Remote Method Invocation (RMI): http://download.oracle.com/javase/tutorial/rmi/index.html.
Accessed 23 Feb 2014

18. Jin, R., Ruan, N., Dey, S., Yu, J.X.: SCARAB: scaling reachability computation on large graphs. In:
Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD),
pp. 169–180 (2012)

19. Kang, U., Tsourakakis, C., Faloutsos, C.: PEGASUS: a peta-scale graph mining system. In: Proceedings
of the 9th IEEE International Conference on Data Mining (ICDM), pp. 229–238 (2009)

20. Kang, U., Tsourakakis, C., Appel, A.P., Faloutsos, C., Leskovec, J.: HADI: mining radii of large graphs.
ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 8.1–8.24 (2011)

21. Kossinets, G., Watts, D.: Empirical analysis of an evolving social network. Science 311(5757), 88–90
(2006)

22. Kuhlman, C., Kumar, A., Marathe, M., Ravi, S.S., Rosenkrantz, D.: Finding critical nodes for inhibiting
diffusion of complex contagions in social networks. In: Proceedings of the European Conference on
European Conference on Machine Learning and Principles of Knowledge Discovery in Databases
(ECML PKDD), pp. 111–127 (2010)

23. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pp. 611–617 (2006)

24. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph computation on just a PC. In:
Proceedings of the 10th USENIX conference on Operating Systems Design and Implementation
(USENIX), pp. 31–46 (2012)

123

Author's personal copy

http://incubator.apache.org/giraph/
http://www.cs.albany.edu/~gstar/operator-reference
http://download.oracle.com/javase/tutorial/rmi/index.html

Distrib Parallel Databases

25. Lahiri, M., Berger-Wolf, T.Y.: Structure prediction in temporal networks using frequent subgraphs. In:
Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp.
35–42 (2007)

26. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pp. 462–470 (2008)

27. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over Time: densification laws, shrinking diameters
and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 177–187 (2005)

28. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: GraphLab: a new
framework for parallel machine learning. In: Proceedings of the 26th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 340–349 (2010)

29. Malewicz, G., Austern, M., Bik, A., Dehnert, J., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system
for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data (SIGMOD), pp. 135–146 (2010)

30. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 419–432
(2008)

31. Neely, M.J., Modiano, E., Rohrs, C.E.: Dynamic power allocation and routing for time varying wireless
networks. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Commu-
nications IEEE Societies (INFOCOM) (2003)

32. Neo4j: http://neo4j.org/. Accessed 23 Feb 2014
33. Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components in time-varying

graphs. CoRR abs/1106.2134 (2011)
34. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. CoRR

abs/1101.5913 (2011)
35. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages. Pragmatic Book-

shelf, Raleigh (2008)
36. Phoebus: https://github.com/xslogic/phoebus. Accessed 23 Feb 2014
37. PostgreSQL 9.0: http://www.postgresql.org/. Accessed 23 Feb 2014
38. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph sequences. Proc.

VLDB Endow. (PVLDB) 4(11), 726–737 (2011)
39. Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-varying graphs and

social network analysis: temporal indicators and metrics. CoRR abs/1102.0629 (2011)
40. Shun, J., Blelloch, G.: Ligra: a lightweight graph processing framework for shared memory. In: Pro-

ceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp. 135–146 (2013)

41. Spillane, S., Birnbaum, J., Bokser, D., Kemp, D., Labouseur, A., Olsen Jr., P., Vijayan, J., Hwang, J.H.:
A demonstration of the G* graph database system. In: Proceedings of the 29th International Conference
on Data Engineering (ICDE), pp. 1356–1359 (2013)

42. Stanford Large Network Dataset Collection: http://snap.stanford.edu/data/. Accessed 23 Feb 2014
43. Suel, T., Yuan, J.: Compressing the graph structure of the web. In: Proceedings of the 2001 Data

Compression Conference (DCC), pp. 213–222 (2001)
44. Tan, C., Tang, J., Sun, J., Lin, Q., Wang, F.: Social action tracking via noise tolerant time-varying factor

graphs. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 1049–1058 (2010)

45. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for social network analysis.
In: Proceedings of the 2nd ACM Workshop on Online Social Networks (WOSN), pp. 31–36 (2009)

46. Tang, Z., Lin, H., Li, K., Han, W., Chen, W.: Acolyte: an in-memory social network query system. In:
Proceedings of the 13th International Conference on Web Information Systems Engineering (WISE),
pp. 755–763 (2012)

47. The Angrapa package: http://people.apache.org/~edwardyoon/site/hama_graph_tutorial.html.
Accessed 23 Feb 2014

48. Trinity: http://research.microsoft.com/en-us/projects/trinity/. Accessed 23 Feb 2014
49. Twitter Streaming API: https://dev.twitter.com/docs/streaming-apis/streams/public. Accessed 23 Feb

2014

123

Author's personal copy

http://neo4j.org/
https://github.com/xslogic/phoebus
http://www.postgresql.org/
http://snap.stanford.edu/data/
http://people.apache.org/~edwardyoon/site/hama_graph_tutorial.html
http://research.microsoft.com/en-us/projects/trinity/
https://dev.twitter.com/docs/streaming-apis/streams/public

Distrib Parallel Databases

50. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison of a graph database
and a relational database: a data provenance perspective. In: Proceedings of the 48th Annual Southeast
Regional Conference (SE), pp. 42.1–42.6 (2010)

51. Yahoo! Network Flows Data: http://webscope.sandbox.yahoo.com/catalog.php?datatype=g. Accessed
23 Feb 2014

52. Zhao, P., Han, J.: On graph query optimization in large networks. Proc. VLDB Endow. (PVLDB) 3(1),
340–351 (2010)

123

Author's personal copy

http://webscope.sandbox.yahoo.com/catalog.php?datatype=g

	The G* graph database: efficiently managing large distributed dynamic graphs
	Abstract
	1 Introduction
	2 Background
	2.1 G* system architecture
	2.2 Data model
	2.2.1 Limitations of the relational model
	2.2.2 Our nested data model

	2.3 Query languages
	2.3.1 Procedural graph query language
	2.3.2 Declarative graph query language

	3 Efficient storage of graphs
	3.1 Overview of graph data storage
	3.2 Disk storage of graph data
	3.3 Compact graph index
	3.3.1 Space cost analysis
	3.3.2 Compact graph index creation and updates
	3.3.3 Graph cloning
	3.3.4 Graph data retrieval

	3.4 Compact graph index splitting

	4 Graph query processing
	4.1 Query processing framework
	4.2 Sharing of computations across graphs
	4.3 Primitives for graph processing
	4.3.1 Summaries
	4.3.2 Combiner
	4.3.3 BSP operator
	4.3.4 Discussion

	5 Experimental results
	5.1 Comparison with prior database and graph systems
	5.1.1 G* versus PostgreSQL
	5.1.2 G* versus Phoebus

	5.2 Impact of indexing
	5.3 Scalability

	6 Related work
	7 Conclusion
	Acknowledgments
	References

