Scalable and Robust Management of Dynamic Graph Data

Alan G. Labouseur, Paul W. Olsen Jr., and Jeong-Hyon Hwang
{alan, polsen, jhh}@cs.albany.edu
Department of Computer Science, University at Albany — State University of New York, USA

ABSTRACT

Most real-world networks evolve over time. This evolution
can be modeled as a series of graphs that represent a net-
work at different points in time. Our G* system enables
efficient storage and querying of these graph snapshots by
taking advantage of the commonalities among them. We
are extending G* for highly scalable and robust operation.

This paper shows that the classic challenges of data distri-
bution and replication are imbued with renewed significance
given continuously generated graph snapshots. Our data
distribution technique adjusts the set of worker servers for
storing each graph snapshot in a manner optimized for pop-
ular queries. Our data replication approach maintains each
snapshot replica on a different number of workers, making
available the most efficient replica configurations for differ-
ent types of queries.

1. INTRODUCTION

Real-world networks, including social networks and the
Web, constantly evolve over time [3]. Periodic snapshots of
such a network can be represented as graphs where vertices
represent entities and edges represent relationships between
entities. These graph snapshots allow us to analyze the evo-
lution of a network over time by examining variations of
certain features, such as the distribution of vertex degrees
and clustering coefficients [17], network density [20], the size
of each connected component [17, 18], the shortest distance
between pairs of vertices [20, 23], and the centrality or eccen-
tricity of vertices [23]. Trends discovered by these analyses
play a crucial role in sociopolitical science, marketing, se-
curity, transportation, epidemiology, and many other areas.
For example, when vertices represent people, credit cards,
and consumer goods, and edges represent ownership and
purchasing relationships, disruptions in degree distribution,
viewed over time, may indicate anomalous behavior, perhaps
even fraud.

Several single-graph systems are available today: Google’s
Pregel [21], Microsoft’s Trinity [29], Stanford’s GPS [24],

*This work is supported by NSF CAREER Award
11S-1149372.

the open source Neodj [22], and others [2, 5, 6, 7, 12, 14].
They, however, lack support for efficiently managing large
graph snapshots. Our G* system [13, 27] efficiently stores
and queries graph snapshots on multiple worker servers by
taking advantage of the commonalities among snapshots.
DeltaGraph [16] achieves a similar goal. Our work is com-
plementary to DeltaGraph in that it focuses on new chal-
lenges in data distribution and robustness in the context of
continuously creating large graph snapshots.

Single-graph systems typically distribute the entirety of
a single graph over all workers to maximize the benefits of
parallelism. When there are multiple graph snapshots, how-
ever, distributing each snapshot on all workers may slow
down query execution. In particular, if multiple snapshots
are usually queried together, it is more advantageous to
store each snapshot on fewer workers as long as the over-
all queried data are balanced over all workers. In this way,
the system can reduce network overhead (i.e., improve query
speed) while benefiting from high degrees of parallelism. We
present a technique that automatically adjusts the number
of workers in a manner optimized for popular queries.

As implied above, there are vast differences in execution
time depending on the distribution configurations and the
number of snapshots queried together. Replication gives us,
in addition to enhanced system reliability, the opportunity
to utilize as many distribution configurations as there are
replicas. G* constructs r replicas for each snapshot to toler-
ate up to r — 1 simultaneous worker failures. Our technique
classifies queries into r categories and optimizes the distri-
bution of each replica for one of the query categories.

In this paper, we make the following contributions:

e We define the problem of distributing graph snapshots
and present a solution that expedites queries by ad-
justing the set of workers for storing each snapshot.

e We provide a technique for adaptively determining
replica placement to improve system performance and
reliability.

e We present preliminary evaluation results that show
the effectiveness of the above techniques.

e We discuss our research plans to complete the con-
struction of a highly scalable and reliable system for
managing large graph snapshots.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the research context and provides formal
definitions of the problems studied in the paper. Sections 3
and 4 describe our new techniques for distributing and repli-
cating graph snapshots. Section 5 presents our preliminary
evaluation results. Section 6 discusses related work. Sec-
tion 7 concludes this paper.

(3/4,{G1}), (4/5,{G2}), (5/6,{G3})
avg
(1,2,{G1, G2, G3}), (I, 1,{G1, G2, G3}), (2,0,{G1}), (3, |, {G2} (4, 2, {G3})
union

(1,2,{G1.G2,G3}) (1, 1,{G1,G2,G3}) 2,0,{G1}), (3, ,{G2}), (4,2,{G
| [munt_s:mz 3)({G2}), (4.2,{G3})

(2.2,{G,G2,G3}) = |(b, 1,{G1,G2,G3}) (c,0,{G1}),(d, 0,{G1,G2}), (c, ,{G2, G3}), ...
[degree] [degree

(, ... {G1,G2,G3}) (b, ... {G1,G2,G3}) (.. {G1}), (d, ..., {G1, G2}), (c, ...{G2, G3}), ...
[vertex | [vertex |

I3}

O
9 B © o “9Cgeo

{G1,G2,G3} {G1,G2,Gs} {Gi} {G,Ga} {G2,G3} {G3}

Figure 1: Parallel Calculation of Average Degree

2. BACKGROUND

2.1 Summary of G*

G* is a distributed system for managing large graph snap-
shots that represent an evolving network at different points
in time [13, 27]. As Figure 1 shows, these graph snapshots
(e.g., G1, G2, and G3) are distributed over workers (e.g., a,
B, and v) that both store and query the graph data assigned
to them. The master of the system (not shown in Figure 1)
transforms each submitted query into a network of opera-
tors that process graph data on workers in a parallel fashion.
Our previous work on G* can be summarized as follows:

Graph Storage. In G*, each worker efficiently stores its
data by taking advantage of commonalities among graph
snapshots. Figure 2 shows how worker v from Figure 1 in-
crementally stores its portion of snapshots G1, G2, and G3
on disk. The worker stores ¢; and di, the first versions of
c and d, when it stores G;. When vertex ¢ obtains a new
edge to e in (G2, the worker stores c2, the second version of
¢, which shares commonalities with the previous version and
also contains a new edge to e. When vertex d obtains a new
edge to f in Gz, the worker stores d2, the second version of d
which contains a new edge to f. All of these vertex versions
are stored on disk only once regardless of how many graph
snapshots they belong to.

To track all of these vertex versions, each worker main-
tains a Compact Graph Index (CGI) that maps each com-
bination of vertex ID and graph ID onto the disk location
that stores the corresponding vertex version. For each vertex
version (e.g., c2), the CGI stores only one (vertex ID, disk
location) pair in a collection for the combination of snap-
shots that contain that vertex version (e.g., {G2,Gs}). In
this manner, the CGI handles only vertex IDs and disk lo-
cations while all of the vertex and edge attributes are stored
on disk. Therefore, the CGI can be kept fully or mostly in
memory, enabling fast lookups and updates. To prevent the
CGI from becoming overburdened by managing too many
snapshot combinations, each worker automatically groups
snapshots and then separately indexes each group of snap-
shots [13, 27].

Query Processing. Like traditional database systems, G*
supports sophisticated queries using a dataflow approach
where operators process data in parallel. To quickly process
queries on multiple graph snapshots, however, G* supports
special operators that share computations across snapshots.

@
©)

Gz

Cim C‘gi/ e dim d‘g,-/ f1m
Gs A

|:> @_xe @ @—w f

Figure 2: Storage of Snapshots G1, G2, G3 and CGI

8998

PageRank Query Shared-Nothing Shared-Everything

285 seconds
285 seconds

22 seconds
2,205 seconds

One snapshot
All snapshots

Table 1: Impact of Graph Snapshot Configuration

Figure 1 shows how the average degree calculation takes
place in parallel over three workers. The vertex and degree
operators in Figure 1 compute the degree of each vertex
only once while associating the result with all of the rele-
vant graph snapshots (e.g., the degree of vertex a is shared
across G1, G2, and G3). In the example, the count_sum oper-
ators aggregate the degree data, the union operator merges
these data, and the avg operator produces the final result.
Details of our graph processing operators and programming
primitives for easy implementation of custom operators are
provided in our earlier papers [13, 27].

2.2 Problem Statements

Our previous work [13, 27] focused on efficiently storing
and querying graph snapshots. We now take up the chal-
lenge of doing so in a highly scalable and robust manner.

2.2.1 Multiple Snapshot Distribution

Accelerating computation by distributing data over mul-
tiple servers has been a popular approach in parallel
databases [10] and distributed systems [9]. Furthermore,
techniques for partitioning graphs to facilitate parallel com-
putation have also been developed [15, 24, 25, 26]. How-
ever, distributing large graph snapshots over multiple work-
ers raises new challenges. In particular, it is not desirable
to use traditional graph partitioning techniques which con-
sider only one graph at a time and incur high overhead
given a large number of vertices and edges. Solutions to
this problem must (re)distribute with low overhead graph
snapshots that are continuously generated and take advan-
tage of the property that query execution time depends on
both the number of snapshots queried and the distribution
of the graph snapshots as illustrated below.

Example. Consider a scenario where each of 100 similarly-
sized graph snapshots contains approximately 1 million ver-
tices and 100 million edges. Assume also that the system
consists of one master and 100 workers. Table 1 compares
two snapshot distribution configurations: Shared-Nothing,
where each of the 100 snapshots is stored on one dis-
tinct worker, and Shared-FEverything, where each snapshot
is evenly distributed over all of the 100 workers. For each of
these configurations, two types of queries for computing the
PageRank of each vertex are executed: Query One Snap-

shot, and Query All Snapshots. The explanations below are
based on our evaluation results (see Section 5 for details).

In the case of Shared-Nothing, querying one snapshot us-
ing only one worker takes 285 seconds (205 seconds to con-
struct the snapshot from disk and 80 seconds to run 20 iter-
ations of PageRank). Querying all snapshots on all workers
in parallel takes the same amount of time. When the Shared-
Everything configuration is used, querying one snapshot on
all workers takes approximately 22 seconds, mainly due to
network communications for the edges that cross worker
boundaries (the disk I/O and CPU costs correspond to only
205/100 seconds and 80/100 seconds, respectively, due to
the distribution of the snapshot over 100 workers). In this
configuration, querying 100 snapshots takes 2,205 seconds as
the PageRank of each vertex varies across graph snapshots,
thereby causing 100 times more message transmissions than
the previous case. This example shows the benefits of dif-
ferent snapshot distribution approaches for different types
of queries (e.g., Shared-Nothing for queries on all snapshots
and Shared-Everything for queries on one snapshot).

Formal Definition. Our ultimate goal is to keep track
of the popularity of graph snapshots and to optimize the
storage/distribution of unpopular snapshots for space effi-
ciency (Section 2.1) and popular snapshots for query speed.
In this paper, we focus on the problem of distributing pop-
ular snapshots over workers in a manner that minimizes the
execution time of queries on these snapshots. This problem
can be formally defined as follows:

PROBLEM 1. (Snapshot Distribution) Given a series
of graph snapshots {G;(Vi, E;) : i = 1,2,---}, n workers,
and a set of queries Q on some or all of the snapshots, find
a distribution {Viw 11 =1,2,--- A w=1,2,--- n} that
minimizes o time(q, {Viw}) where Vi denotes the set
of wvertices that are from snapshot G;(V;, E;) and that are
assigned to worker w, and time(q,{Vi,w}) represents the ex-
ecution time of query q € Q on the distributed snapshots
{Viw} satisfying (1) Up=1Viw = Vi (i.e., the parts of a
snapshot on all workers cover the original snapshot) and (2)
Vi NVir =0 if w # w' (i.e., workers are assigned disjoint
parts of a snapshot).

Our solution to the above problem is presented in Section 3.

2.2.2 Snapshot Replication

There have been various techniques for replicating data to
improve availability and access speed [8, 11, 28]. A central
data replication challenge in G* is to distribute each replica
of a snapshot over a possibly different number of workers
to maximize both performance and availability. For each
query, the most beneficial replica also needs to be found
according to the characteristics of the query (e.g., the num-
ber of snapshots queried). If two replicas of a graph snap-
shot are distributed using the Shared-Nothing and Shared-
FEverything approaches, queries on a single snapshot should
use the Shared-FEverything replica configuration rather than
the other. In practice, however, each query can access an
arbitrary number of graph snapshots (not necessarily one or
all), thereby complicating the above challenges. The prob-
lem of replicating graph snapshots can be defined as follows:

PROBLEM 2. (Snapshot Replication) Given a series
of graph snapshots {G;(Vi, E;) : i = 1,2,---}, the degree of
replication v, n workers, and a set of queries Q on some

Gy, G G, Gsp
Ga,i Gs,l Gl G

G2 G2 Gip
(b) After Exchange

Figure 3: Exchanging Segments. If snapshots G; and
G2 are queried together frequently, workers a and f in Fig-
ure 3(a) can better balance the workload and reduce the
network overhead by swapping G1,1 and G3 ;.

(a) Before Exchange

or all of the snapshots, find a replica distribution {V; jw :
=12+ AN j=12-,r AN w=12,--- n} that
minimizes 3 . time(q, {Vijw}) where Vi ;. denotes the
set of vertices that are from the jth replica G; ;(Vij, E;i ;)
of snapshot G;(V;, E;) and that are assigned to worker w,
and time(q, {Vi,jw}) denotes the execution time of query q
on the distributed snapshot replicas {V; jw} satisfying (1)
Un=1Vijw =Vi; =V; forj=1,2,---,r, (i.e., the parts of
a snapshot replica on all workers cover the original replica),
(2) VijwNVijw =0 if w#w" (ie., workers are assigned
disjoint parts of a snapshot replica), and (3) Vi j w0V jr0 =
0 if 5 # 7 (i-e., no worker w contains multiple copies of
a verter and its edges, which tolerates r — 1 simultaneous
worker failures).

Section 4 presents our solution to the above problem.

3. GRAPH SNAPSHOT DISTRIBUTION

As mentioned in Section 2.2.1, G* needs to store each
graph snapshot on an appropriate number of workers while
balancing the utilization of network and CPU resources.
In contrast to traditional methods for partitioning a static
graph [15, 25], G* must determine the location of each ver-
tex and its edges on the fly in response to a continuous influx
of data from external sources.

Our dynamic data distribution approach meets the above
requirements. In this approach, each G* worker partitions
its graph data into segments with a certain maximum size
(e.g., 10GB) so that it can control its load by migrating
some segments to other workers (Section 3.1). Our ap-
proach continuously routes incoming messages for updating
vertices and edges to appropriate workers with low latency
(Section 3.2). When a segment becomes full, G* splits that
segment into two that are similar in size while maintaining
data locality by keeping data accessed together within the
same segment (Section 3.3). It does all of the above while
supporting G*’s graph processing operators (Section 3.4).

3.1 Load Balancing

In G*, each worker periodically communicates with a ran-
domly chosen worker to balance graph data. Our key prin-
ciples in load balancing are to (1) mazimize the benefits of
parallelism by uniformly distributing data that are queried
together and (2) minimize network overhead by co-locating
data from the same snapshot. Consider Figure 3(a) where
three snapshots are partitioned into a total of 6 similarly-
sized segments. In this example, each of workers a and
are assigned a segment from snapshot G1, « is assigned two
segments from G2, and (is assigned two segments from
G's. If snapshots G1 and G2 are frequently queried together

(see those shaded in Figure 3(a)), this snapshot distribu-
tion leads to inefficient query execution due to imbalanced
workload between the workers and network communications
for the edges between G1,1 and G1,2. This problem can be
remedied by exchanging GG1,1 and G3,1 between the workers,
which results in a balanced distribution of the data queried
together (i.e., G1 and G2) and localized processing of G on
B and G2 on «, respectively.

Given a pair of workers, our technique estimates, for each
segment, the benefit of migrating that segment to the other
worker, and then performs the most beneficial migration.
This process is repeated a maximum number of times or un-
til the migration benefit falls below a predefined threshold.
The benefit of migrating a segment is calculated by multi-
plying the probability that the segment is queried with the
expected reduction in query time (i.e., the difference be-
tween expected query time before and after migration).

For a set S; of segments on worker ¢ and another set S; of
segments on worker j, the expected query time is computed
as > co, P(q) - time(q, Si, S;) where Qy is a collection of k
popular query patterns, p(q) is the probability that query
pattern ¢ is executed, and time(q, Si, S;) denotes the esti-
mated duration of ¢ given segment placements S; and S;.

Our technique obtains Qy, (equivalently, k popular combi-
nations of segments queried together) as follows: Sort seg-
ments from S; U S; in order of decreasing popularity. Ini-
tialize Qy (for storing k popular query patterns) with the
first segment. Then, for each of the remaining segments,
combine it with each element from Qp and insert the result
back into Q. Whenever |Q| > k, remove its least popular
element. We estimate the popularity of each combination
of segments by consolidating the counting synopses [4] for
those segments. Whenever a query accesses a segment, the
associated synopsis is updated using the ID of the query.

We compute time(q, Si,S;) as max(c(q,S;),c(q,S;)) +
c'(q,S:,S;) where c(q,S;) is the estimated duration of pro-
cessing the segments from S; for query ¢, and c'(q,S;,S;)
represents the estimated time for exchanging messages be-
tween workers i and j for query q.

3.2 Updates of Vertices and Edges

Each new vertex (or any edge that emanates from the ver-
tex) is first routed to a worker chosen according to the hash
value of the vertex ID. That worker assigns such a vertex to
one of its data segments while saving the (vertex ID, segment
ID) pair in an index similar to the CGI (Section 2.1). If a
worker receives an edge that emanates from an existing ver-
tex v, it assigns that edge to the segment that contains v. If
a worker w has created a segment S and then migrated it to
another worker w’ for load balancing reasons (Section 3.1),
worker w forwards the data bound to S to w’. To support
such data forwarding, each worker keeps track of the worker
location of each data segment that it has created before.
Updates of vertices and edges, including changes in their at-
tribute values, are handled as in the case of edge additions.
This assignment of graph data to workers is scalable because
it distributes the overhead of managing data over workers.
It also proceeds in a parallel, pipelined fashion without any
blocking operations.

3.3 Splitting a Full Segment

If the size of a data segment reaches the maximum (e.g.,
10GB), the worker that manages the segment creates a new

segment and then moves a half of the data from the previ-
ous segment to the new segment. To minimize the number
of edges that cross segment boundaries, we use a traditional
graph partitioning method [15]. Whenever a segment is split
as above, the worker also updates the (vertez ID, segment
ID) pairs for all of the vertices migrated to the new segment.
This update process incurs relatively low overhead since the
index can usually be kept in memory as in the case of the
CGI (Section 2.1). If a worker splits a segment which was
obtained from another worker, it sends the update infor-
mation to the worker that originally created it in order to
enable data forwarding as mentioned in Section 3.2.

3.4 Supporting Graph Processing Operators

G*’s graph processing operators, such as those for com-
puting clustering coefficients, PageRank, or the shortest dis-
tance between vertices, are usually instantiated on every
worker that stores relevant graph data [13]. These opera-
tors may exchange messages to compute a value for each
vertex (e.g., the current shortest distance from a source ver-
tex). If an operator needs to send a message to a vertex, the
message is first sent to the worker whose ID corresponds to
the hash value of the vertex ID. This worker then forwards
the message to the worker that currently stores the vertex.
This forwarding mechanism is similar to that for handing
updates of vertices and edges (Section 3.2).

4. GRAPH SNAPSHOT REPLICATION

G* masks up to r — 1 simultaneous worker failures by cre-
ating r copies of each graph data segment. As discussed in
Sections 2.2 and 3, the optimal distribution of each graph
snapshot over workers may vary with the number of snap-
shots frequently queried together. Based on this observa-
tion, we developed a new data replication technique that
speeds up queries by configuring the storage of replicas to
benefit different categories of queries. This approach uses
an online clustering algorithm [1] to classify queries into r
categories based on the number of graphs that they access.
It then assigns the j-th replica of each data segment to a
worker in a manner optimized for the j-th query category.
The master and workers support this approach as follows:

4.1 Updates of Vertices and Edges

Updates of vertices and edges are handled as described in
Section 3.2 except that they are routed to r data segment
replicas on different workers. For this reason, each worker
keeps a mapping that associates each segment ID with the
r workers that store a replica of the segment. Our approach
protects this mapping on worker w by replicating it on work-
ers (w+1)%n, (w+2)%n, - -, (w+r—1)%n where n denotes
the number of workers. If a worker fails, the master assigns
another worker to take over.

4.2 Splitting a Full Segment

The replicas of a data segment are split in the same way
due to the use of a deterministic partition method. For each
vertex migrated from one data segment to another, the r
workers that keep track of that vertex update their (vertex
ID, segment ID) pairs accordingly.

4.3 Query-Aware Replica Selection

For each query, the master identifies the worker locations
of the data segment replicas to process. To this end, the

1M messages/sec
200 Mbytes/sec
200 seconds

4 seconds

Message passing (12-bytes/message)
Disk I/O bandwidth

Snapshot construction in memory
PageRank iteration per snapshot

Table 2: Speed and Bandwidth Observations

Cores 1 2 4 8 16 24 48
1.9 3.7 59 97 125 147

Speedup 1.0

Table 3: Actual Speedup Result

master keeps track of the mapping between graph snapshots
and the data segments that constitute them. The master
also maintains the mapping between data segment replicas
and the workers that store them. Using these mappings, the
master selects one replica for each data segment such that
the overall processing load is uniformly distributed over a
large number of workers and the expected network overhead
is low. Next, as Figure 1 shows, the master instantiates
operators on these workers and starts executing the query.

4.4 Load Balancing

Each worker balances its graph data as explained in Sec-
tion 3. The only difference is that whenever a query of cat-
egory j accesses a replica of a data segment, the counting
synopsis of the j-th replica of the data segment is updated
using the ID of the query (Section 3.1). In this way, the j-th
replica of each segment is assigned to a worker in a manner
optimized for query category j.

S. PRELIMINARY EVALUATION

This section presents our preliminary results obtained by
running G* on a six-node, 48-core cluster. In this cluster,
each machine has two Quad-Core Xeon E5430 2.67 GHz
CPUs, 16GB RAM, and a 2TB hard drive. We plan to
extend these experiments with more queries on larger data
sets in a bigger cluster (Section 7).

To construct a realistic example in Section 2.2.1, we mea-
sured the overhead of key operations summarized in Table 2.
In our evaluation, a worker was able to transmit up to 1 mil-
lion messages to other workers within a second, although a
1Gbps connection may enable 10 million transmissions of
12-byte messages in theory. The reason behind this result
is that there is inherent overhead when writing and creating
message objects to and from TCP sockets in Java. Further-
more, reading approximately 1Gbytes of data from disk to
construct a graph snapshot took 5 seconds. However, con-
structing a snapshot in memory by creating 100 million edge
objects and registering them in an internal data structure
took approximately 200 seconds.

In the next set of experiments, we created a series of 500
graph snapshots using a binary tree generator. Each snap-
shot in the series was constructed by first cloning the pre-
vious snapshot and then inserting 20,000 additional vertices
and edges to the new graph. Therefore, the last graph in
the series contained 10 million vertices. We ran a query
that computes, for each graph, the distribution of the short-
est distances from the root to all other vertices. Table 3
shows, for the shortest distance query, the speedup achieved
by distributing the snapshots over more workers. The high-
est speedup was achieved with 48 workers. This table also

All Workers

8.2 seconds
80.5 seconds

Subset of Workers

19.2 seconds
53.2 seconds

SSSP Query

One snapshot
All snapshots

Table 4: Impact of Graph Data Distribution

shows that the relative benefit of data distribution (i.e., the
speedup relative to the number of workers) tends to decrease
with more workers. This is mainly due to increased network
traffic, which shows the importance of balancing CPU and
network resources in the context of continuously creating
large graph snapshots.

The effectiveness of two different distributions is demon-
strated in Table 4. If most queries access only the largest
snapshot, then it is beneficial to distribute that snapshot
over all workers to maximize query speed. On the other
hand, if all of the snapshots are queried together, our ap-
proach stores each graph on a smaller subset of workers to
reduce network overhead. In this case, all of the workers
can still be used in parallel since the entire graph data is
distributed over all workers. The benefits of distribution
configurations are less pronounced in Table 4 than Table 1
due to a smaller number of message transmissions and fewer
workers. Table 4 also demonstrates the benefit of G* in
executing queries on multiple snapshots. In particular, the
time for processing 500 snapshots (e.g., 80.5 seconds) is only
up to 10 times longer than that for processing the largest
snapshot (e.g., 8.2 seconds) since the computations on the
largest snapshot are shared across smaller snapshots.

6. RELATED WORK

In this section, we briefly summarize related research, fo-
cusing on previous graph systems, data distribution, and
data replication.

Previous Graph Systems. In contrast to systems which
process one graph at a time [2, 5, 6, 7, 12, 14, 21, 22, 24,
29], G* efficiently executes sophisticated queries on multi-
ple graph snapshots. G*’s benefits over previous systems are
experimentally demonstrated in our prior work [13]. Delt-
aGraph [16] and GraphChi [19] are promising systems for
dynamic graphs but do not directly address the data distri-
bution/replication issues considered in this paper.

Data Distribution. Traditional graph partitioning tech-
niques split a static graph into subgraphs in a manner that
minimizes the number of crossing edges [15, 25]. There are
also recent graph repartitioning schemes that observe com-
munication patterns and then move vertices to reduce net-
work overhead [24, 26]. In contrast to them, our technique
dynamically adjusts the number of workers that store each
graph snapshot according to the real-time influx of graph
data and popular types of queries (Section 3).

Data Replication. There has been extensive work on data
replication that focused on improving data availability and
performance [8, 11, 28]. Researchers developed techniques
for ensuring replica consistency [11] and finding most advan-
tageous replica placement [8]. Stonebraker et al. proposed
an approach that stores each database replica differently,
optimized for a different query type [28]. While our repli-
cation approach has some similarity in terms of high-level
ideas, it is substantially different in that it distributes each

graph snapshot over a different number of workers to speed
up different types of queries.

7. CONCLUSIONS AND FUTURE WORK

We presented G*, a scalable and robust system for storing
and querying large graph snapshots. G* tackles new data
distribution and replication challenges that arise in the con-
text of continuously creating large graph snapshots. Our
data distribution technique efficiently stores graph data on
the fly using multiple worker servers in parallel. This tech-
nique also gradually adjusts the number of workers that
store each graph snapshot while balancing network and CPU
overhead to maximize overall performance. Our data repli-
cation technique maintains each graph replica on a different
number of workers, making available the most efficient stor-
age configurations for various combinations of queries.

We are working on full implementations of the techniques
presented in this paper to enable new experiments with ad-
ditional queries on larger data sets. We will analyze these
techniques to classify their complexity. We plan to look
into the challenges of scheduling groups of queries, dealing
with varying degrees of parallelism, resource utilization, and
user-generated performance preferences. We are exploring
failure recovery techniques for long-running queries while
exposing the tradeoff between recovery speed and execution
time. We also want to study opportunities for more granu-
lar splitting, merging, and exchanging of data at the vertex
and edge level rather than in large segments as discussed
in this paper. We intend to seek opportunities for gains in
execution speed at the expense of storage space by segre-
gating recent and popular “hot” data (which we could store
in a less compressed manner) from less popular “cold” data
(which could be highly compressed).

8. REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
Framework for Clustering Evolving Data Streams. In
VLDB, pages 81-92, 2003.

[2] Apache Hama. http://hama.apache.ory.

[3] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal.
PageRank on an Evolving Graph. In KDD, pages
24-32, 2012.

[4] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On Synopses for Distinct-Value
Estimation Under Multiset Operations. In SIGMOD,
pages 199-210, 2007.

[5] Cassovary. Open Sourced from Twitter
https://github.com /twitter/cassovary.

[6] A. Chan, F. K. H. A. Dehne, and R. Taylor.
CGMGRAPH/CGMLIB: Implementing and Testing
CGM Graph Algorithms on PC Clusters and Shared
Memory Machines. IJHPCA, 19(1):81-97, 2005.

[7] R. Chen, X. Weng, B. He, and M. Yang. Large Graph
Processing in the Cloud. In SIGMOD, pages
1123-1126, 2010.

[8] Y. Chen, R. H. Katz, and J. Kubiatowicz. Dynamic
Replica Placement for Scalable Content Delivery. In
IPTPS, pages 306-318, 2002.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, pages
137-150, 2004.

(10]

(1]

(12]

(18]

(19]

20]

D. DeWitt, R. Gerber, G. Graefe, M. Heytens,

K. Kumar, and M. Muralikrishna. Gamma - A High
Performance Dataflow Database Machine. In VLDB,
pages 228-237, 1986.

J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The
Dangers of Replication and a Solution. In SIGMOD,
pages 173-182, 1996.

D. Gregor and A. Lumsdaine. The Parallel BGL: A
Generic Library for Distributed Graph Computations.
In POOSC, 2005.

J.-H. Hwang, J. Birnbaum, A. Labouseur, P. W. Olsen
Jr., S. R. Spillane, J. Vijayan, and W.-S. Han. G*: A
System for Efficiently Managing Large Graphs.
Technical Report SUNYA-CS-12-04, CS Department,
University at Albany — SUNY, 2012.

U. Kang, C. E. Tsourakakis, and C. Faloutsos.
PEGASUS: A Peta-Scale Graph Mining System. In
ICDM, pages 229-238, 2009.

G. Karypis and V. Kumar. Analysis of Multilevel
Graph Partitioning. In SC, page 29, 1995.

U. Khurana and A. Deshpande. Efficient Snapshot
Retrieval over Historical Graph Data. CoRR,
abs/1207.5777, 2012.

G. Kossinets and D. J. Watts. Empirical Analysis of
an Evolving Social Network. Science, 311(5757):88-90,
2006.

R. Kumar, J. Novak, and A. Tomkins. Structure and
Evolution of Online Social Networks. In KDD, pages
611-617, 2006.

A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
large-scale graph computation on just a pc. In OSDI,
pages 31-46, 2012.

J. Leskovec, J. M. Kleinberg, and C. Faloutsos.
Graphs over Time: Densification Laws, Shrinking
diameters and Possible Explanations. In KDD, pages
177-187, 2005.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: A System for Large-Scale Graph Processing.
In SIGMOD, pages 135-146, 2010.

Neo4j The Graph Database. http://neoj.org/.

C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On
Querying Historical Evolving Graph Sequences.
PVLDB, 4(11):726-737, 2011.

S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In SSDBM, 2013.

K. Schloegel, G. Karypis, and V. Kumar. Graph
Partitioning for High Performance Scientific
Simulations. Technical Report TR 00-018, Computer
Science and Engineering, U. of Minnesota, 2000.

Z. Shang and J. X. Yu. Catch the Wind: Graph
Workload Balancing on Cloud. In ICDE, pages
553-564, 2013.

S. R. Spillane, J. Birnbaum, D. Bokser, D. Kemp,

A. Labouseur, P. W. Olsen Jr., J. Vijayan, and J.-H.
Hwang. A Demonstration of the G* Graph Database
System. In ICDE, pages 1356-1359, 2013.

M. Stonebraker et al. C-Store: A Column-oriented
DBMS. In VLDB, pages 553564, 2005.

Trinity.
http://research.microsoft.com/en-us/projects/trinity,/.

