
Reviewed Papers

 inroads — SIGCSE Bulletin - 71 - Volume 41, Number 4 — 2009 December

A Browser-based Operating Systems Project
JavaScript Adventures in Dinosaur Slaying

Alan G. Labouseur
School of Computer Science and Mathematics

Marist College
Poughkeepsie, New York 12601 USA

Alan.Labouseur@Marist.edu

Abstract: This paper presents one educator�’s experience with a browser-based project for an upper-level/graduate
Operating Systems course. The author explains the project goals, why the browser in general and JavaScriptin
particular are so well suited for this task, challenges andtheir solutions, the incremental assignments that ultimately
result in a fairly complex OS simulation by the end of the semester, the response to the project, and some ideas about
where to go next.

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Information Science

Education; D.4. [Operating Systems]
General Terms: Theory, Practice
Keywords: Operating Systems project, Browser-based software, JavaScript programming

1. INTRODUCTION
The Operating Systems project is a tough nut to crack.
There are many OS concepts and constructsto cover before
students can actually write one, yet we cannot delay the
project too long lest they run out of time. These concepts
are hard enough when handled individually, and their
complexity builds as we combine them. We must attack
this complexity if class work and project work are to
compliment each other. Our weapon: an incremental
project that�’s done in a modern, friendly and immediate
environment.
 Friendly and immediate means that our students can
concentrate on what we�’re teaching and avoid the
exasperating nonsensearound infrastructure. I don�’t care
what version of the JVM is installed. I�’m not worried about
whether or not the IT staff loaded GCC libraries in exactly
the right place. I do not want to hear that student logins
don�’t have the privileges to alter process priority or
overwrite a device driver. And I could not care less about
the �“group policy editor�” that IT uses1 to change these
things. I want to get down and dirty in the first class,
playing with interrupts and screen I/O. But how?
 I got to thinking about web browsers. They are
friendly: everybody in our target audience uses them. They
are immediate: you change some code or markup, press
refresh, and experience the result. They are also
increasingly ubiquitous as they find their way into mobile
devices, consumer electronics, appliances, game consoles,
and more. So as a practical matter, experience with this

1 but only on Tuesdays under a full moon

most modern of platformswould be beneficial for Computer
Science majors who may not have had the benefit of web
programming courses in their curriculum.
 Can we do a browser-based OS project? If so,with
what language? All browsers run JavaScript. But
JavaScript is a toy, right?So I asked myself, �“An OS
written in JavaScript . . . Seriously?�”

2. JAVASCRIPT?
Upon further review: Yes, seriously.I realized that the web
is full of Rich Internet Applications (�“RIA�” to us geeks)
such as GMail, Yahoo Maps, LinkedIn, Facebook, Twitter,
and more. They are all heavily JavaScript-based, at least on
the client side. Microsoft is releasing Office Web Apps
written in standards-compliant JavaScript and CSS.You�’d
think they might have used Silverlight since it�’s their own
technology, but they chose JavaScript for their cross-
browser RIA. Since there are browsers for every platform,
JavaScriptapplications run anywhere, with no software to
install or configure.Friendly and immediate.

But even as the ubiquitous programming language of
browsers, can JavaScript provide the tools we need for
systems programming?

JavaScript smells like Java and C#, but it�’s weakly
typed. It is very (but not purely) Object-oriented,
supporting prototypical inheritance, polymorphism, and
some degree of encapsulation, but probably not enough.
JavaScript is also somewhat Functional, supporting higher
order functions and lambda expressions.

Reviewed Papers

 inroads — SIGCSE Bulletin - 72 - Volume 41, Number 4 — 2009 December

It seemed possible that we�’d have enough in there to

build an OS. But I wasn�’t sure. So I experimented, on my
students of course.

3. PLANNING THE WORK
I anticipated a few of the dinosaurs thatwe�’d need to slay in
advance. (I missed a few others. More on those later.)

3.1 Issue: JavaScript Might be New to Some
Browser-based programming might be new to CS students
unfamiliar with �“webby�” issues like event handling, style
sheets, and the HTML5 Canvas element. That there is no
Eclipse or Visual Studio-like tool1 for JavaScript
development to ease this pain further exacerbates this
issue.This being an OS class, and not one on web
programming, I did not want to spend significant time on
the subject.

Solution: Initial project and external support
I wrote a tiny initial project2 that I distributed on the first
day of class wherein I handled some ofthose �“webby�”
issues. It includedJavaScript example code cross-

1 although Aptana (based on Eclipse) is promising
2 available at www.3nfconsulting.com/students-os.aspx

referenced to pages in our textbook3 for the keyboard
interrupt and canvas drawing. (I also included an �“Easter
egg�” to reward close reading of my code. More on this
later.) My code showedJavaScript�’s class/prototype pattern
in use and served as a reference for the entire
semester.Figure 1 contains a few OS constructs in
JavaScript.

To empower my students to help themselves and each
other, I set up some external support via our class web site3,
including JavaScript syntax and Canvas resources,
Software Engineering Radio podcast links, our project
blog, and more.

Lastly, I distributed information about JavaScript
development tools for interactive debugging (FireBug),
documentation (JSDoc), static code analysis (JSLint,
JSMeter), unit testing (FireUnit, YUI Test, JsUnit), and
acceptance testing (Selenium).

3.2 Issue: This is a HUGE development project
While certainly a good thing, I didn�’t want to overwhelm
the students. But I did want the class work and project
work to complement each other as we went along.

Solution: Incremental projects
We did five incremental projects (�“iProjects�”) spread over
the semester in sync with our class material.
1. Add some fun kernel-level shell commands.
2. Load and run one user program.
3. Load and run many user programs (round-robin).
4. Disk I/O with MS-DOS4.
5. Load and run many user programs, support disk-based

virtual memory,FCFS and Priority scheduling.

 This allowed us to divide and conquer the OS such that
each part lead into the next. Of course, mistakes made or
shortcuts taken in earlier parts continued to haunt students
in their subsequent projects, just like in real life.

3.3 Issue: CPU Instruction Set
What instruction set should we use?

Solution: 6502 with a tweak
I learned to program on a Commodore PET 4016 and an
Apple //+, both of which ran on the classic 6502
microprocessor. So I indulged my sense of nostalgia and
used the 6502 instruction set. This was particularly nice
because it�’s quite straightforward and there�’s a �“Virtual
6502�” for testing already available on the web5 (as a
JavaScript application, naturally).The tweak: a new op-
code (FF) to support system calls.

3 Operating System Concepts, 8th edition by Silberschatz, Galvin, and

Gagne
4 No, not that one! The Marist Student Database-backed Operating System
5 www.e-tradition.net/bytes/6502

Clock simulation via JavaScript�’s setInterval and callback:
_hardwareClockId = setInterval(
 krnOnCPUClockPulse, CLOCK_INTERVAL);

Keyboard interrupt via JavaScript�’s event listener and callback:
functionsimEnableKeyboardInterrupt()
{
 document.addEventListener("keydown",
 simOnKeypress, false);
}

Device driver �“base�” class:
functionDeviceDriverBase()
{
 // Base Attributes
 this.version = "0.07";
 this.status = "unloaded";
 // Base Method pointers to override
 this.driverEntry = null;
 this.isr = null;
}

Keyboard device driver subclass with prototypical inheritance:
DeviceDriverKeyboard.prototype =
 new DeviceDriverBase;
functionDeviceDriverKeyboard()
{
 // Override the base method pointers.
 this.driverEntry = krnKbdDriverEntry;
 this.isr = krnKbdDispatchKeyPress;
}

Fi 1 J S i d f OS

Reviewed Papers

 inroads — SIGCSE Bulletin - 73 - Volume 41, Number 4 — 2009 December

4. WORKING THE PLAN
Let�’s see how things went and the pitfalls for which I was
not prepared.

4.1 iProject 1
Up first: practice JavaScriptand get intimate with my initial
code. Students were asked to add some simple kernel-level
commands to the OS, some of which I specified and some
that they could invent. They had to modify shell objects
and talk to standard out, which I had accidentally named
StdIn1. (The students quickly discovered this and corrected
me, which I loved.) I also encouraged them to add scrolling
to the console display. It turns out that�’s harder than it
sounds, though several students handled it nicely, one
building an entire TTY abstraction.
 Everyone did quite well, which was the idea for the
first project. The (30 student) average grade was 91%.
Some added creative and unusual commandssuch as
�“WhatsForDinner�” which printed a random menu from a
predefined collection, �“BondJamesBond�” which listed all
of the 007 films, and �“Dungeon�” which was essentially a
�“lite�” version of the first few locales of Zork.

A few students found my Easter egg, discovering that
if they typed insome �“more colorful metaphors�”2 the OS
entered sarcastic mode until they apologized by typing

1 I really didn�’t intend to do that. Both StdOut and StdIn pointed to the

Canvas, so I didn�’t catch the mistake.
2 I stored these in rot-13 form so that the source code remained family-

friendly.

�“sorry�”.Error messages in sarcastic mode were a little more
abrasive than one might normally encounter.Those who
took a real close look at the codediscovered this and a
few�… um�… enhanced it.

4.2 iProject 2
For their second project, students were asked to enhance
their code from the first project so that a user could enter a
program in 6502 assembly and run it. They were to display
the memory and CPU status (accumulator, registers,
instruction pointer, etc.) in real time. See figure 2.
 I read in the class blog that there were a few speed
bumps around synchronizing the CPU simulation with the
timer interrupt, so I wrote a tiny demonstration of this and
posted it on the blogto clear things up as this was not clear
enough in my initial project.
 Once again the class did quite well, with an average
grade of 91%.

4.3 iProject 3
Project three asked the students to take their second project
and enhance it to run many programs in memory at once in
a round-robin fashion. This meant implementing a ready
queue (easy), a scheduler (hard), and handling context
switches (also hard). See figure 2.

Figure 2 �– A student project after iProjects 2 and 3. (Memory display and log removed for space.)

Reviewed Papers

 inroads — SIGCSE Bulletin - 74 - Volume 41, Number 4 — 2009 December

We were now fairly deep into the OS, and the class average
of 87% reflected this. They handled base and limit registers
with surprising ease, but there was some confusion about
the division of labor between memory management in the
OS and memory access in the CPU. I should have expected
this, since the students were programming both. But once
we cleared it up via in-class discussions, there was little
further trouble.

4.4 iProject 4
This project gave the students a break from CPU and
memory issues and let them focus on implementing a file
system. They were happy about this at first, but it didn�’t
last long once they realized that JavaScriptcan�’t access the
file system. Needingan alternative,we turned to XML web
services and JSONP. (Google Gears1was another option,
and one student took that route.)
 I had already decided that students could use only two
primitive (and asynchronous) operations: GetBlock() and
SetBlock(), and had developed a Web-based API for them:

GET GetBlock?username=str&track=str
§or=str&block=str HTTP/1.1

GET SetBlock?username=str&track=str

§or=str&block=str&data=str HTTP/1.1

 I also wrote a utility service to return the entire �“disk�”
given a username. This was not for use in their OS code,
but as a tool to help in the development process.

GET UserDisk?username=str HTTP/1.1

The backing store was a SQL Server table hosted on my
web site, giving each student 1 disk with 4 tracks of 8
sectors of 8 blocks of 256 bytes; or 65,536 bytes per
student, way more than enough space.
 This worked very well so long as the students ran their
code from my web site. One of the issues I should have
seen but did not was that running from any location other
than my web site caused cross-site scripting (XSS) security
violations in the browser. Not wanting to force my students
to FTP their code to my server for every little change
(because I encouraged testing early and often, after even
the smallest change), I wrote them a JavaScript Object
Notation2 (JSON)implementation of the API.

JSON does not solve the XSS security restriction by
itself, but including within the JSON call the name of a
JavaScript function you want to execute as a callback
does(usingscript tag injection). This is called JSONP, and
with it my students could call the XML web services (well,
technically,JSON services now) from anywhere they cared

1 a browser plug-in for access to local storage
2 a lightweight data interchange format that�’s easy for humans to read and

for JavaScript to parse.

to develop.Figure 3 shows some sample I/O code with
JSONP calls.

 Now that the students had the web service and JSONP
APIs to work with, all they had to do was write device
driver wrappers around GetBlock() and SetBlock(). Easier
said than done.After a long in-class discussion,
conveniently timed to coincide with those chapters in our
textbook, we came up with a scheme for storing directories,
a file allocation table, and system of pointers to block-by-
block file contents (with chaining).
 While conceptually easy to see, this was a complicated
assignment to implement. There are a ton of moving parts
in an I/O device driver. Each piece is fairly simple, but
managing complexity (the heart of programming) is hard.
Also, the asynchronous nature of JSONP calls gummed up
the works a bit, forcing students to sequence the calls and
responses themselves, just like a �“real�” OS.
 The average grade reached only 83% despite my being
relatively forgiving on several issues. By now I could tell I
was pushing the students to their limits and beyond.

4.5 Final Project
The ultimate project challengedmy students to build on
everything they had done before, adding disk-based virtual
memory to the mix. They already had multiprogramming
from project three and disk I/O from project four, so
implementing swapping (not paging)3 was a matter of
creating and using a swap file, enhancing the Process
Control Block data structure to keep track of what�’s in

3 Swapping is a process at a time, paging is more granular.

HardDrive object with function pointers to read and write methods:
functionHardDrive()
{
this.writeBytes = hdWriteBytes;
this.readBytes = hdReadBytes;
}

WriteBytes method using JSONP call (via the �“callback�” variable):
functionhdWriteBytes(track, sector, block,
 DATAS, callback)
{
var getUrl = ".../SetBlock.aspx?" +
"u=" + escape(DISK_USER) +
"&t=" + escape(track) +
"&s=" + escape(sector) +
"&b=" + escape(block) +
"&d=" + escape(DATAS);
 $.getJSON(getUrl +
"&format=json&jsoncallback=?",
 callback
);
}

One (common) usage in the file system device driver code:
_krnFSDriver.writeBytes(0, 0, dirBlockNum,
newDirectoryEntry, dirCreateMsg);

Figure 3 I/O code featuring JSONP

Reviewed Papers

 inroads — SIGCSE Bulletin - 75 - Volume 41, Number 4 — 2009 December

memory and what�’s not, and modifying the context
switching code to handle swaps. Again, easier said than
done, but very doable. I also asked the students to add first-
come first-served (FCFS) and priority scheduling.
 While many students were successful at adding FCFS
scheduling (most realizing that FCFS can be implemented
as round-robin with a huge quantum) and turning the ready
queue into a priority queue, virtual memory �– even at the
level of swapping andnot paging �– is really hard, as the
average grade of 61% shows. Those who never got project
four in good shape did poorly here.

5. DISCUSSION
This was a fun experiment; the class being a highlight of
my academic year. The material is interesting, detailed,
interrelated, and naturally makes for a large-scale software
development project.It was a real pleasure.

5.1 Grades
As you can see from the decreasing project grades, the
programming gets harder as we get further into
implementingOS internals. This seems right, especially
when you consider that each project relies on the one
before it. The test grades, however, were very consistent,
with averages of 83% for the first test and 82% for the
second. The tests were based on in-class material only and
independent, not cumulative.

5.2 Student Comments
Here are some (unedited) comments I received as part of
the school�’s official student feedback survey:

�“Managed to make OS fun�”
�“Very cool class�”
�“JSON proved frustrating�”
�“Building this OS has been very satisfying�”
�“Use of JavaScript was an innovative approach�”

5.3 Anecdotal Responses
Many students expressed tremendous satisfaction at the end
of the semester for having written such a large project.
Several told me that they were grateful to (finally) get some
web programming experience in a CS class.

5.4 My Assessment
The experiment was a success. While not perfect,
JavaScript can provide the tools we need for systems
programming. Seeing the results, I am convinced that we
can do a browser-based OS project.
 I�’m pleased that my students could jump right in
duringthe first class.This project presenteda low barrier to
entry, unlike many other types of OS projects wheretoo
much of the semester goes by before students can get
going, or the infrastructure requirements cause delays in
getting their feet wet. The modularized and interactive
structure meant students couldbegin immediately and code
as they go, receiving immediate feedback. Most found this
both helpful and encouraging.

 I�’m also pleased this project developed modern
webskills within the structure of a traditional CS class,
unlike many other types of OS projects.
 Lastly, I�’m very proud of what they accomplished:
writing OS simulationsthat implemented a file system with
character and disk I/O that could load and run many
programs simultaneously viaprocess scheduling and device
drivers, all while being platform independent.Not bad for a
single semester.

6. FUTURE WORK
This is only the beginning. Here are a few areas that I�’d
like to explore.

6.1 Browser-based Systems Programming Stack
This OS simulation is pretty thin when considered in a
larger context. It�’s a middle tier, needing at least a compiler
above it and a more detailed CPU below it.

While it�’s fine to have our students program in
assembly language1, it would be nice to have a compiler
supporting a higher-level language and generating code for
the simulated CPU within the OS2.Given this compiler and
our OS, several opportunities arise to explore larger
systems programming topics such as Software Isolated
Processes and many others.

The current CPU simulation is very primitive in that
it�’s too high-level. A sophisticated CPU simulation would
expose more low-level primitives (signaling, timing, etc.),
the types of things we�’d find in a Computer Architecture
course.

6.2 Transactional Memory
This is another topic that works nicely with a friendly and
immediate compiler and OS. Students would enhance
theirmemory manager, memory accessor, CPU objects, and
file systemto support ACID properties via TM compiler
semantics.

6.3 Concurrent Programming
The CPU simulation is a JavaScript object. So far we�’ve
been using only a single CPU, but we could easily create as
many instances as we like and address advanced topics
such as processor affinity (asymmetric), load balancing
(symmetric), and more. This is easier said than done, but
the point is that it provides afriendly and immediate
environment in which to explore multi-core programming
on many levels.

ACKNOWLEDGEMENTS
I�’d like to give special thanks to my OS students, who inspired me
as much as I (hope to have) inspired them. I also want to thank the
following people for their insight and suggestions, all of which
improved this work: Ron Coleman, Eitel Lauria, Anne Matheus,
and Roger Norton.

1 because for learning there must be pain
2 I have since done this in my Compiler Design course.

