
G*

Graph Placement and Query Performance in a Data Center

Alan G. Labouseur, Alan.Labouseur@Marist.edu
School of Computer Science and Mathematics, Marist College, Poughkeepsie, NY 12601

Justin Svegliato, Justin.Svegliato1@Marist.edu
School of Computer Science and Mathematics, Marist College, Poughkeepsie, NY 12601

Jeong-Hyon Hwang, jhh@cs.albany.edu
Department of Computer Science, State University of New York, Albany, NY 12222

Most real-world networks (including financial, health, transportation, social, citation, and sensor networks) evolve over time.
Their evolution can be modeled as a series of graph snapshots that represent those networks at different points in time.
Our distributed dynamic graph database, G*, provided efficient cluster-based storage and querying of graph snapshots by
taking advantage of their commonalities. With the modern Internet of Things, however, the environment of continuously
generated graph snapshots imbues classic challenges of data distribution with renewed significance. In response to this, we
have extended G* to address these new challenges. In this paper we examine two snapshot placement schemes and their
effects on query performance in a cloud / data center environment.

Additional Key Words and Phrases: Evolving Networks, Graph Analytics, Graph Databases, Distributed and Parallel Systems

1. INTRODUCTION
We are surrounded by continuously evolving financial, health, transportation, social, citation, and
sensor networks [Bahmani et al. 2012]. By modeling these networks as graphs whose vertices rep-
resent entities and edges represent relationships between entities, network evolution can be captured
and harnessed for analytic purposes by recording periodic snapshots of these graphs. Data scientists
using these graph snapshots can analyze network evolution to discover trends and insights cru-
cial to many fields within the Internet of Things, including networks of electronic health records,
geolocation trackers, diagnostic data from connected devices (e.g., smart watches), and more.

While there are several single-graph systems available today (Google’s Pregel [Malewicz et al.
2010], Microsoft’s Trinity [Trinity], Stanford’s GPS [Salihoglu and Widom 2013], the open source
Neo4j [Neo4j The Graph Database], and others [Apache Hama ; Cassovary ; Chan et al. 2005;
Chen et al. 2010; ?; ?]), they lack support for efficiently managing the continuously generated
graph snapshots inherent in today’s Internet of Things. We built G* [Labouseur et al. 2015; Spillane
et al. 2013], our distributed system for managing series of graph snapshots, to efficiently store and
manage graph snapshots on multiple servers by taking advantage of commonalities among them.
We have enhanced G* [Labouseur et al. 2014; Labouseur et al. 2013] with today’s environment in
mind to more efficiently support queries on evolving networks by carefully distributing the data.

Accelerating queries by distributing data over multiple workers has been a popular approach
in parallel databases [DeWitt et al. 1986] and distributed systems [Dean and Ghemawat 2004].
Techniques for partitioning individual graphs to facilitate parallel computation have also been de-
veloped [Salihoglu and Widom 2013; Karypis and Kumar 1995; Schloegel et al. 2000; Shang and
Yu 2013]. However, distributing a series of graph snapshots over multiple workers raises new chal-
lenges. In particular, it is not desirable to use traditional graph partitioning techniques that consider
only one graph at a time and incur high overhead given a large number of vertices and edges. Fur-
thermore, simply distributing each snapshot on all workers may not be appropriate either. This is the
problem of snapshot distribution: How do we distribute snapshots of an evolving network among
our available workers in order to efficiently process various types of queries?

In this paper we examine two approaches to the snapshot distribution problem: Shared Noth-
ing placement, where the vertices comprising each snapshot are stored on a single worker, and
Shared Everything placement, where the vertices comprising each snapshot are shared among all
workers. We show that approaching the snapshot distribution problem in this manner results in a

ACM Journal Name, Vol. Working Paper, No. 42, Article G*, Publication date: .

G*:2 Labouseur et al.

n1 2 3
. . .

1"1

. . .
. . .

. . .
. . .

1"2

1"n

2"1

2"2

3"1

3"2

2"n 3"n

m"1

m"2

m"n

m$snapshots$andnworkers

n1 2 3
. . .

1"1

. . .
. . .

. . .
. . .

2"1

m"1

1"2

2"2

1"3

2"3

m"2 m"3

1"m

2"m

m"n

Shared$Nothing Shared$Everything

(a) Shared Nothing

n1 2 3
. . .

1"1

. . .
. . .

. . .
. . .

1"2

1"n

2"1

2"2

3"1

3"2

2"n 3"n

m"1

m"2

m"n

m$snapshots$andnworkers

n1 2 3
. . .

1"1

. . .
. . .

. . .
. . .

2"1

m"1

1"2

2"2

1"3

2"3

m"2 m"3

1"m

2"m

m"n

Shared$Nothing Shared$Everything

(b) Shared Everything
Fig. 1. Vertex Placement. Given m snapshots in the evolution of graph ↵ stored over n workers, 1(a) shows the “column-
oriented” Shared Nothing vertex placement where all of the vertices for each of the m snapshots (e.g., graph 2) are stored
on a single worker. 1(b) shows the “row-oriented” Shared Everything vertex placement where the vertices comprising each
snapshot (e.g., graph 2) are shared among the n workers.

system where, for queries involving significant communication among vertices (e.g., PageRank),
when multiple evolutionary snapshots are queried together it is more advantageous to store each
snapshot on fewer workers. At the same time, we show that for queries involving little communi-
cation among vertices (e.g., average degree), when multiple snapshots are queried together, queries
on both placements perform consistently.

Key contributions of this work include the following:

— design and implementation of techniques supporting custom-partitioned graphs in distributed en-
vironments

— experimental results showing consistent average degree query execution across placements
— experimental results showing PageRank query execution speedup in Shared Nothing placements

2. BACKGROUND
2.1. The G* Database Before
G* is a distributed graph database consisting of one master server directing many worker servers
with one or more client systems that exchange messages with the master to make it go. Individual
vertices and their incident edges (collections of which comprise snapshots) are distributed over the
workers in a manner controlled by a hash function. For every vertex stored in G*, a hash on its ver-
tex ID computes the ID of the worker on which it is stored. Each worker efficiently stores its data by
taking advantage of commonalities among graph snapshots so that all distinct versions of each vertex
are stored on disk only once regardless of how many snapshots they belong to. To track these vertex
versions, each worker maintains a Compact Graph Index that maps each combination of graph ID
and vertex ID to the disk location storing the corresponding vertex version. To process queries, the
master constructs a network of query operators among the workers, who process their data in par-
allel using a Bulk Synchronous Parallel [Malewicz et al. 2010] (BSP) superstep strategy. Further
details of our storage and query techniques can be found in our prior publications [Labouseur et al.
2015; Spillane et al. 2013].

2.2. The Snapshot Distribution Problem
Definition: Given a series of graph snapshots {Gi(Vi, Ei) : i = 1, 2, · · · }, n workers, and a set
of queries Q on some or all of the snapshots, find a distribution {Vi,w : i = 1, 2, · · · ^ w =
1, 2, · · · , n} that minimizes

P
q2Q time(q, {Vi,w}) where Vi,w denotes the set of vertices that are

from snapshot Gi(Vi, Ei) and that are assigned to worker w, and time(q, {Vi,w}) represents the
execution time of query q 2 Q on the distributed snapshots {Vi,w} satisfying (1) [n

w=1Vi,w = Vi

ACM Journal Name, Vol. Working Paper, No. 42, Article G*, Publication date: .

Graph Placement and Query Performance in a Data Center G*:3

(i.e., the parts of a snapshot on all workers cover the original snapshot) and (2) Vi,w \ Vi,w0 = ; if
w 6= w0 (i.e., workers are assigned disjoint parts of a snapshot).

In this paper we consider an instance of this problem where the set of queries Q contains two
elements: PageRank and average degree for all vertices of one or all snapshots. We examine the
execution time for these queries in two vertex placement configurations: Shared Nothing and Shared
Everything. Shared Nothing vertex placement stores all of the vertices comprising each snapshot on
one of the n workers. See 1(a). Shared Everything vertex placement stores the vertices comprising
each snapshot so that they are shared among all of the n workers. See 1(b).

3. THE G* DATABASE NOW
3.1. Vertex Placement Modes
Recall from Section 2.1 that worker IDs are computed as a hash of vertex ID. This makes determining
which worker stores a given vertex fast and easy. There are, however, drawbacks to this approach
because the hash determining worker ID is based solely on vertex ID. One drawback is that the same
worker will store all versions of a given vertex for all snapshots, regardless of graph ID. This may
lead to unbalanced storage, limiting G*’s ability to make efficient use of its workers’ CPU, storage,
and bandwidth resources. Another drawback is that we have no explicit control over what worker
stores a given vertex for a given graph snapshot. This prevents us from addressing the snapshot
distribution problem because we must be able to explicitly specify on which worker to place a
given vertex for a given graph in order to support custom partitioning.

Our solution to the drawbacks mentioned above was to implement two global Vertex Placement
Modes (VPM) in G*: VPM-Hash and VPM-Custom. The entire system (master, workers, clients)
runs in either VPM-Hash or VPM-Custom. VPM-Hash is the default wherein G* works as noted in
Section 2.1.

While operating in VPM-Custom, G* does not compute worker IDs as a hash of vertex ID. Rather,
G* keeps a (graph ID, vertex ID)!worker ID map in each client. We enhanced the master to ac-
cept vertex update messages from clients specifying the worker ID on which to store any given
(graph ID, vertex ID) pair. All vertex create and update messages come from a client and go through
the master, thus enabling system-wide storage and management in VPM-Custom without impacting
our underlying infrastructure.

We have written our own graph partitioner to support the Shared Nothing and Shared Everything
partitions used in this paper. Because of the precise control over vertex placement enabled by VPM-
Custom operation, G* can take advantage of other graph partitioners like METIS [Karypis and
Kumar 1995] and new graph partitioning utilities as needs arise.

It is important to note two complications introduced by VPM-Custom. First, there is now overhead
when launching a client because it has to load (graph ID ,vertex ID)!worker ID maps from all
workers. Second, recall from Section 2.1 that queries are submitted by a client and processed by the
workers in parallel. The workers do not have access to the clients’ (graph ID, vertex ID)!worker ID
maps. This impacts queries like PageRank because of the need to exchange messages among many
vertices (e.g., to calculate the impact of back-links) in order to compute a value for each individual
vertex. Queries like average degree are unaffected because they need only look at each vertex by
itself (e.g., to count the degree).

3.2. Exclusion Cache
We modified our message passing mechanism to address the problem of workers being unable
to determine what vertices other workers store in VPM-Custom. Recall from Section 2.1 that G*
workers execute queries using the BSP model wherein workers exchange messages in supersteps. In
VPM-Custom operation, when a worker needs data about a vertex it does not store, it sends requests
to all other workers because it can neither compute the appropriate worker ID nor look it up (because
those maps are stored in the client). This results in a message passing explosion.

ACM Journal Name, Vol. Working Paper, No. 42, Article G*, Publication date: .

G*:4 Labouseur et al.

We address the message passing explosion by having each worker keep a cache of messages
it receives from other workers requesting updates for a given (graph ID, vertex ID) pair. We call
this the exclusion cache. This cache accumulates a list of workers to avoid asking about various
(graph ID, vertex ID) pairs. For example, if worker 1 receives a message from worker 2 asking for
data about (graph ID ↵, vertex ID 2 � 3) (which is stored on worker 3 in Figure 1(b)) then worker
1 knows that worker 2 does not store (graph ID ↵, vertex ID 2 � 3) because if it did, it would not
have asked. Later, when worker 1 needs data about (graph ID ↵, vertex ID 2 � 3) it knows not to
request it from worker 2 or any of the other workers who had previously asked about it.

In this manner, after a few supersteps, each worker has a set of other workers not to ask about
many of the (graph ID, vertex ID) pairs it does not store itself, thus reducing overhead.

One implication of the exclusion cache is that the first time a query is run (when the cache is
empty) it will have a longer execution time (due to message passing overhead) than in subsequent
runs when the cache is populated. After the first execution of a given query, and until the workers are
restarted, query performance for that query remains improved. This behavior is shown in Section 5.

4. EXPERIMENTS
We ran our experiments on IBM PureFlex hardware in our data center combining CPU, storage, net-
working, and virtualization into a single system optimized for the cloud. Data center environments
like this are common among the industries of the Internet of Things today.

Hardware: We used three Intel blade servers in our IBM PureFlex. Each blade was equipped
with two Intel 2.9 GHz Xeon E5-2690 CPUs of 8 cores each for 16 cores total, 131GB RAM, and a
dedicated NIC to a 20TB storage area network.

Virtual Machines: We installed an Ubuntu 14.04.2 LTS (GNU/Linux 3.13.0-57-generic x86 64)
virtual machine on each of our three blades. Each was configured with access to all 8 cores, a 70GB
partition of the SAN storage, and had the OpenJDK Runtime Environment (IcedTea 2.5.5) installed.

G* Database: We configured G* with one master and 23 workers, each assigned to a single core
via the taskset command. The VM on the first of our three blades (Gstar-VM-1) ran the master and
workers 0 – 6. Gstar-VM-2 was home to workers 7 – 14, with Gstar-VM-3 running workers 15 –
22.

Data Sets: We experimented on 23 evolutionary snapshots of full, complete, binary tree graphs
with vertex counts of 1K, 2K, 4K, and 8K in two placement configurations each: Shared Nothing
and Shared Everything.

Queries: We experimented with PageRank and average degree queries. PageRank queries require
many vertices to be examined in order to compute the value for any single vertex. Average degree
queries need only examine one vertex at a time. These two queries, therefore, represent both ends
of the query spectrum. See our prior publication [Labouseur et al. 2015] for details of these query
operators and how we implemented them in G*.

5. RESULTS AND DISCUSSION
We executed PageRank and average degree queries on Shared Nothing and Shared Everything place-
ments for each of our test data sets. Each query was executed five times and the resulting execution
times averaged.

In our first experiment we ran PageRank queries on our 1K Shared Nothing data set (23 snapshots
of 1023 vertices and 1022 edges each stored in Shared Nothing placement over 23 workers (i.e., each
snapshot on its own worker)). The execution times, in milliseconds, for those five queries were as
follows: 10645, 7979, 6915, 6906, and 6917, with an average time of 7872.4ms. We can see the
implications of the cache, mentioned in Section 3.2, manifested here. During the first execution of
this query the workers did not have exclusion cache data about other workers. Subsequent queries
with warm exclusion cache executed considerably faster. This pattern of execution time repeated in
PageRank queries for all of our data sets, regardless of size.

For our second experiment we ran PageRank queries on our 1K Shared Everything data set (23
snapshots of 1023 vertices and 1022 edges each stored in Shared Everything placement over 23

ACM Journal Name, Vol. Working Paper, No. 42, Article G*, Publication date: .

Graph Placement and Query Performance in a Data Center G*:5

Table I. Impact of Snapshot Distribution - PageRank Queries

PageRank Shared Shared
Queries Snapshots Everything Nothing Speedup
1K vertices one 7184.8ms 5849.6ms 1.23
1K vertices all 9263.2ms 7872.4ms 1.18

2K vertices one 9267.2ms 7619.6ms 1.22
2K vertices all 11395.8ms 9319.4ms 1.22

4K vertices one 9305.0ms 7938.4ms 1.17
4K vertices all 13637.0ms 9408.8ms 1.45

8K vertices one 9823.8ms 9857.4ms 1.00
8K vertices all 17795.2ms 11091.0ms 1.60

workers (i.e., each snapshot is spread out over 23 workers)). The execution times, in milliseconds,
for those five queries were as follows: 14059, 8157, 8053, 8023, and 8024, with an average time of
9263.2ms. Again we see the effect of warm cache in runs 2 – 5 over the cold cache of run 1.

Of particular interest is the relative speedup we observe for the PageRank query on all snap-
shots in Shared Nothing placement (7872.4ms average) compared to Shared Everything placement
(9263.2ms average).

Let us define relative speedup as average query execution time in Shared Everything placement
(⌧se) divided by average query execution time in Shared Nothing placement (⌧sn). I.e., ⌧se ÷ ⌧sn =
1.18 in this case. (There are no units because this is a relative measure.) Table I summarizes our
findings for PageRank queries. Note the speedup we observed for PageRank queries on all snapshots
in Shared Nothing placement compared to Shared Everything placement.

In our third experiment we ran average degree queries on our 1K Shared Nothing data set. The
execution times, in milliseconds, for those five queries were as follows: 5007, 5008, 4011, 5006, and
5015, with an average of 4809.4ms. Note that we do not observe any cache effects in these query
times because computing the average degree for a vertex does not require exchanging messages
with other vertices.

For our fourth experiment we ran average degree queries on our 1K Shared Everything data set.
The execution times, in milliseconds, for those five queries were as follows: 5087, 5090, 4043, 5087,
and 5081, with an average of 4877.6ms. Once again we see no cache effects, as vertex placement
does not alter the nature of queries (just their execution time).

Of particular interest in these two experiments is the observation that average degree queries per-
form consistently in three out of four of our scenarios. Average degree queries take approximately
the same amount of time in Shared Everything placement regardless of whether we query one snap-
shot or all snapshots. This shows the benefits of parallelism when there is little message passing
overhead. The single case where we see significant speedup (of 1.56) is when computing the av-
erage degree for all vertices of a single snapshot in Shared Nothing placement. In this case there
is no message passing because the vertices to be examined all reside on the same worker. Table II
summarizes our findings for average degree queries.

We observe that results from our 2K, 4K, and 8K data sets follow a similar pattern to those
discussed and observed in our 1K data set. The performance of average degree queries on all snap-
shots is strikingly consistent across placements. We do see some variation, in the form of speedup,
in PageRank queries on all snapshots. These experimental results, along with the techniques for
supporting custom-partition graphs discussed in Section 3, form the contributions of this paper.

6. CONCLUSIONS
Even in a data center environment with high-end resources combining multiple CPUs, large amounts
of RAM, massive storage, and fast networking in powerful systems optimized for the cloud, we still
see significant benefits of careful snapshot placement for certain types of queries. Specifically, we
have shown that, for queries involving significant communication among vertices (e.g., PageRank),

ACM Journal Name, Vol. Working Paper, No. 42, Article G*, Publication date: .

G*:6 Labouseur et al.

Table II. Impact of Snapshot Distribution - Avg. Degree Queries

Avg. Degree Shared Shared
Queries Snapshots Everything Nothing Speedup
1K vertices one 4640.6ms 2977.2ms 1.56
1K vertices all 4877.6ms 4809.4ms 1.01

2K vertices one 5892.4ms 4308.8ms 1.37
2K vertices all 6343.6ms 6291.2ms 1.01

4K vertices one 5497.4ms 4617.0ms 1.19
4K vertices all 6369.8ms 6284.4ms 1.01

8K vertices one 5787.6ms 4721.4ms 1.23
8K vertices all 6605.4ms 6636.6ms 1.00

when multiple snapshots are queried together it is more advantageous to store each snapshot on
fewer servers, as long as the overall queried data are balanced over all servers to avoid hurting the
performance of queries that do not involve significant communication among workers (e.g., average
degree).

7. FUTURE WORK
In our next paper we will be experimenting with larger and different data sets, including “long-tail”
Barabasi-Albert graphs and social graphs generated by the Linked Data Benchmark Council [Linked
Data Benchmark Council] benchmark tool. We are also looking at increasing the resolution of our
execution time measurements to record data at the superstep level. This could reveal insights into
the effectiveness of exclusion cache compared to JVM caching. We are developing techniques for
finding hybrid placements that, for certain graphs, might perform better than strictly Shared Nothing
or strictly Shared Everything placements. Finally, further research comparing our data center results
with those obtained from experimenting on the 64-core server cluster we used in our prior work may
suggest insight into graph query performance on clusters of connected computers with no shared
resources as compared to data center environments with many shared resources.

Acknowledgments
This research was conducted in part on equipment funded by the New York State Regional Eco-
nomic Development Initiative, CFA 18180, 2012. Earlier work was supported by NSF CAREER
Award IIS-1149372.

REFERENCES
Apache Hama. http://hama.apache.org. (????).
Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal. 2012. PageRank on an Evolving Graph. In KDD.

24–32.
Cassovary. Open Sourced from Twitter https://github.com/twitter/cassovary. (????).
Albert Chan, Frank K. H. A. Dehne, and Ryan Taylor. 2005. CGMGRAPH/CGMLIB: Implementing and Testing CGM

Graph Algorithms on PC Clusters and Shared Memory Machines. 19, 1 (2005), 81–97.
Rishan Chen, Xuetian Weng, Bingsheng He, and Mao Yang. 2010. Large Graph Processing in the Cloud. In Proceedings

of the 2010 ACM SIGMOD International Conference on Management of Data (SIGMOD ’10). ACM, New York, NY,
USA, 1123–1126. DOI:http://dx.doi.org/10.1145/1807167.1807297

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing on Large Clusters. 137–150.
D.J. DeWitt, R.H. Gerber, G. Graefe, M.L. Heytens, K.B. Kumar, and M. Muralikrishna. 1986. Gamma - A High Perfor-

mance Dataflow Database Machine. In VLDB. 228–237.
G. Karypis and V. Kumar. 1995. Analysis of Multilevel Graph Partitioning. In SC. 29.
AlanG. Labouseur, Jeremy Birnbaum, Jr. Olsen, PaulW., SeanR. Spillane, Jayadevan Vijayan, Jeong-Hyon Hwang, and

Wook-Shin Han. 2015. The G* graph database: efficiently managing large distributed dynamic graphs. Distributed and
Parallel Databases 33, 4 (2015), 479–514.

ACM Journal Name, Vol. Working Paper, No. 42, Article G*, Publication date: .

Graph Placement and Query Performance in a Data Center G*:7

Alan G. Labouseur, Paul W. Olsen, and Jeong-Hyon Hwang. 2013. Scalable and Robust Management of Dynamic Graph
Data. In Proceedings of the First International Workshop on Big Dynamic Distributed Data, Riva del Garda, Italy,
August 30, 2013. 43–48.

Alan G. Labouseur, Paul W. Olsen, Kyuseo Park, and Jeong-Hyon Hwang. 2014. A demonstration of query-oriented distri-
bution and replication techniques for dynamic graph data. In 23rd International World Wide Web Conference, WWW
’14, Seoul, Republic of Korea, April 7-11, 2014, Companion Volume. 127–130.

Linked Data Benchmark Council. http://ldbcouncil.org/benchmarks/snb. (????).
Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Cza-

jkowski. 2010. Pregel: A System for Large-Scale Graph Processing. 135–146.
Neo4j The Graph Database. http://neo4j.org/. (????).
Semih Salihoglu and Jennifer Widom. 2013. GPS: A Graph Processing System. In SSDBM.
Kirk Schloegel, George Karypis, and Vipin Kumar. 2000. Graph Partitioning for High Performance Scientific Simulations.

Technical Report TR 00-018. Computer Science and Engineering, U. of Minnesota.
Zechao Shang and Jeffrey Xu Yu. 2013. Catch the Wind: Graph Workload Balancing on Cloud. In ICDE. 553–564.
Sean R. Spillane, Jeremy Birnbaum, Daniel Bokser, Daniel Kemp, Alan Labouseur, P. W. Olsen Jr., Jayadevan Vijayan, and

Jeong-Hyon Hwang. 2013. A Demonstration of the G* Graph Database System. In ICDE. 1356–1359.
Trinity. http://research.microsoft.com/en-us/projects/trinity/. (????).

ACM Journal Name, Vol. Working Paper, No. 42, Article G*, Publication date: .

