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Think Different

There are two ways of  constructing a software design: One way is to make it 
so simple that there are obviously no deficiencies, and the other way is to 
make it so complicated that there are no obvious deficiencies. The first 
method is far more difficult. - C.A.R. Hoare, From his 1980 Turing Award Lecture 

Every truth passes through three stages before it is recognized. In the first, it is 
ridiculed, in the second it is opposed, in the third it is regarded as self-evident. 
- Arthur Schopenhauer

It don’t mean a thing if  it ain’t got that swing. - Duke Ellington



Thousands of  years ago Lao Tzu wrote, in the Tao Te Ching, 
“The people themselves need to learn simplicity.” In fact, ele-
gant simplicity the core of  Lao Tzu’s teachings and of  Tao-
ism itself.

Simple means not complex.

Years later, the great Fred Brooks wrote about essential and 
accidental complexity in software, basing his ideas of  the es-
sential and the accidental on Aristotle’s “Categories”. Com-
plexity can be pruned to its bare essentials for easy compre-
hension.

Elegant simplicity is not-complex and easy-comprehension in 
balance, as yin and yang.

Complexity in software development is well understood and 
there are many means to measure it. Comprehension, the sec-
ond component of  elegant simplicity, is not very well under-
stood and there are few means of  measure here. This is 
where we’ll spend our time in this report.
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Elegant Simplicity



Chapter 1

BACKGROUND



I have been a professional software developer since 1990. In that 
time I have owned three consulting companies, all service busi-
nesses built around custom database and software development. 

I have written software for . . .

• large companies such as Scholastic, GE Capital, IBM, Pear-
son, East New York Savings Bank, Pricewaterhouse Coo-
pers, Lincoln Medical and Mental Health Center, and Vi-
acom;

• specialized firms like Keymark Financial Services, Dick 
Clark Corporate Productions and the Co-Ed Uniform Com-
pany;

• and startups like Classroom Authors, GotSchool, and Direct 
Response Marketing.

In the public sector I've consulted to the New York State Office 
of  Mental Health, New York University, New York Institute of  
Finance, and the Department of  Child Welfare. 

Internationally I helped the Global Association of  Risk Profes-
sionals deal with information issues in the US and Europe and 
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provided strategic counseling and implementation services to 
BioPharma Greenhouse, a biotech firm operating in the US 
and the People's Republic of  China

These projects were spread over many industries, including 
but not limited to the following:

• Finance and Banking 
• Risk Management 
• Biotech and Pharmaceutical 
• Commercial Real Estate 
• International Trade 
• Event Management
• Healthcare Administration 
• Publishing 
• Higher Education
• Marketing

In all this time I’ve personally designed, developed, de-
bugged, and documented a lot of  source code in a lot of  sys-
tems for a lot of  companies. Some, though certainly not all, 
of  the details are shown in table 1.

I’ve also seen and modified a lot of  other people’s code on 
my journeyman’s path... code of  all types: the good, the bad, 
and the ugly. I’ve developed a good “feel” for what quality 
code looks and smells like. 

I’ve spent the past nine years teaching software development 
in addition to my consulting. In that time I’ve noticed that I 
can look at my students’ source code and make a fast intui-
tive judgement about its quality (whatever that is) that turns 

out to be right more often than not. My “feel” for how com-
prehendible source code looks is quite good. But “feel” 
doesn’t scale, and it’s too subjective to be scientific.
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Company Application Approx. 
Lines of Code

Approx. 
Dates in use

IBM MMS - the Meeting Management 
System 10 K 1990 - 1994+

New York Institute of 
Finance

SMS - the Student Management 
System 24 K 1993 - 2001

Simon & Schuster ISBN Generator and Sales Catalog 
database publisher 4 K 1993 - 1995+

Viacom AMPS - the Advanced Manuscript 
Processing System 4 K 1994 - 1997

GE 
Capital Quick Quote 5 K 1997 - 2000

PriceWaterhouse 
Coopers Risk Perceptions 6.5 K 1999 - 2000

NYS Office of Mental 
Health PSMS 5.2 K 1996 - 2000

Co-Ed Uniform 
Company OpMan and WebMan 11.5 K 1994 - present

Scholastic Teacher’s Store E-commerce 
database 2 K 2006 - 2009+

Approximate total designed, developed, 
debugged, and documented lines of code: 
Approximate total designed, developed, 
debugged, and documented lines of code: ~ 72.2 K

Table 1



More Than Complexity

My view of  source code quality is more than (and also other 
than) complexity alone. Source code complexity is well-
understood and not terribly interesting to me in this context. 
There’s more to it than that. My experience tells me that 
code feel and comprehendability -- the amount of  effort required 
to understand a piece of  code -- also relate to measures of  
code quality; the yang to complexity’s yin.

More Than Feel

“Feel” doesn’t scale. My goal is to enhance my own under-
standing of  why I feel certain ways about source code. I hope 
to note some objective, measurable, and detectable traits of  
source code quality and “comprehendability” along the way.

Measurable and Detectable Quality Traits

To this end, I’ll look at some important (and directed) read-
ings in software development and computer science with an 
eye towards identifying measurable and detectable traits of  
source code quality outside of  complexity. 

In addition to identifying these measurable and detectable 
traits, I’ll describe some possible ways one might implement 
these measures and detections in a compiler, profiler, or some 
supplemental analysis system.

Finally, I’ll note other ideas that come to me along this jour-
ney. These may point towards additional or other directions 
for future investigation.
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Chapter 2

An Empirical Study on Object-oriented Metrics

by Mei-Huei Tang,  Ming-Hung Kao, Mei-Hwa Chen 
[meitang, kao, mhc]@cs.albany.edu

Computer Science Department,  SUNY at Albany, 
Albany, NY 12222 

This study, conducted on three industrial real-time 
systems that contained a number of  natural faults, 
identified object-oriented faults, object management 
faults, and traditional faults. 

After validating CK metrics with those faults, the authors 
propose a set of  new metrics to measure how strongly 
object-oriented a program is.

AN EMPIRICAL STUDY 
ON OBJECT-ORIENTED 

METRICS



EXISTING METRICS

Background

• “Software metrics are the quantitative measurement of  the 
complexity of  the software or its design.” Actually, there 
are many other varieties of  software metrics beyond com-
plexity. That’s my main point in these readings and this re-
port.

• Thomas McCabe’s 1976 cyclomatic complexity metric [2] 
is a popular measure of  complexity based on program 
structure. (A similar set of  textual measures created by Hal-
sted in 1977 are popular as well.) Cyclomatic complexity is 
based on analysis of  a program’s CFG (control flow graph, 
not context-free grammar). Note my suggestions for other 
uses of  the control flow graph in calculating non-
complexity measures of  source code quality. 

CK Metrics

• Chidamber and Kemerer’s complexity CK metrics [3] 
have been validated in this and other works (Basili, Briand, 
and Melo; Li and Henry; others).

• CK metrics, in summary:

‣ Weighted Methods per Class (WMC)

‣ Class Inheritance Tree Depth

‣ Number of  Child Classes

‣ Coupling Between Objects (this should read “among” ob-
jects since it could involve three or more.)

‣ Response for a class (RFC)

Experiment

• The authors analyzed three years worth of  trouble reports 
to classify the faults into object-oriented and non-object-
oriented faults. (Of  the object-oriented faults, the second 
of  the two categories they noted was memory-related. Most 
of  these memory-related faults disappear in a garbage-
collected language/environment.) 

• They conclude that among the CK metrics noted here, 
only WMC and RFC turn out to be significant.

❖ IDEA: 
I wonder what the outcome would have been if  the WMC 
metric had excluded private classes by assigning them a 
weight of  0 instead of  counting them (with weight of  1) 
along with everything else.

8



NEW METRICS

Background

• The authors invent some new metrics to try out on the 
same software and measure against CK metrics.

‣ Inheritance Coupling: the number of  parent classes to 
which a given subclass is coupled via variables or meth-
ods.

‣ Coupling Between Methods: the number of  functional 
dependancies among inherited methods and new or rede-
fined methods. (This seems a lot like Coupling Between 
Objects, since an object is data plus some methods de-
fined on it.)

‣ Number of  Object / Memory Allocations: a count of  the 
statements that allocate new objects in a class.

‣ Average Method Complexity: the average method size 
for each class (as a count of  source lines, sum of  bytecode 
size, character count, what?).

Results

• Average Method Complexity is shown to be a significant 
predictor of  fault-prone classes. This makes a lot of  sense 
because the simplest source code measure, the size of  the 
code (in number of  functional lines) is widely accepted as a 
fault indicator. (We’ll see this elsewhere in this report.)

❖ Traits We Can Measure or Detect, and How
• All of  the metrics noted in this paper can be calculated by 

various kinds of  source code analysis. Most can be done in 
the front-end of  a compiler (lex, parse, semantic analysis). 
Others can be done in the back-end via data flow analysis 
of  the control-flow graph. Many IDEs do a lot of  these al-
ready. Eclipse, Visual Studio, IntelliJ, NetBeans, and others.
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Chapter 3

A Semantic Entropy Metric

by Letha H. Etzkorn, Sampson Gholston, and William 
Hughes, Jr.

University of  Alamaba in Hunstville, AL 

This 2002 paper introduces a semantically-based metric 
for Object-oriented systems called the Semantic Class 
Definition Entropy (SCDE) Metric. It seeks to go beyond 
traditional complexity metrics that look only at the 
structure and/or text of  the code (e.g., the work of  
McCabe, Halsted and that crew) and incorporate domain 
content through considering internal-documentation-
related information from comments and identifiers in the 
source code. The idea is to get at the human-level 
complexity (“comprehendability”) of  the task the 
program is performing as described by the programs own 
internal documentation (comments and identifiers).

A SEMANTIC ENTROPY 
METRIC



BACKGROUND

Problems with Syntactic Metrics

• Herraiz and Hassan [8] note that . . .

Syntactic complexity metrics cannot capture the whole 
picture of  software complexity. Complexity metrics 
that are exclusively based on the structure of  the pro-
gram or the properties of  the text (for example, redun-
dancy, as Halstad’s metrics do), do not provide informa-
tion about the amount of  effort that is needed to un-
derstand a piece of  code.

This idea of  measuring the amount of  effort needed 
to understand a piece of  code is what fascinates me, 
and what drives this entire report, actually.

• Lines of  Code - This sounds promising because common 
sense states that the more lines of  code there are there 
greater the opportunity for mistakes. This is indeed true in 
some sense. But LOC is notoriously difficult to measure. 
Depending on how they are counted, a program could vary 
in complexity based on whether or not comments, includes, 
blank lines, and macro definitions are included or not. 
Worse still is the vagaries of  programmer whims regarding 
putting multiple statements per line, or even including 
“functional” yet “empty” lines (like only a semi-colon) for 
various formatting or readability reasons.

• Lines of  Code (again) - There are many (myself  included) 
that argue that the best programmers write less code. I bet 
there is correlation between code compactness and quality 
programming, at least to a point. The best programmers 
also write clear code, and that defies over-compacting. 
(There is difference between compact code and minified 
code, after all.)

• Coupling Between Objects, Coupling Between Methods, 
Lack of  Cohesion in Methods - These measure, in one 
form or another, the extent to which the parts of  a class per-
form the same or related tasks. The idea is that methods 
that access the same member variable are performing re-
lated tasks. Li and Henry [5], CK metrics [3], and TKC 
(Tang,  Kao, an Chen - see prior chapter) metrics are simi-
lar. 

These metrics can fail to correctly reflect actual class cohe-
sion when the constructor and destructor are used in the 
method analysis. If  member variables are initialized in the 
constructor (a well-known best practice; see my “Code 
Complete” chapter) then every other method in the class 
will be considered to be cohesive with the constructor. 
(This is clearly not the case, but you can see how the analy-
sis can make that mistake.) It gets worse. Since the construc-
tor is is then cohesive every method in the class, all classes 
are therefore cohesive to each other. This means the class 
will have a maximum cohesion rating regardless of  
whether any of  the methods have anything at all to do with 
each other. Ugh.
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• Different structural aspects of  two sets of  source code can 
result in different metric values even if  both programs per-
form the same task. Clearly syntactic measures do not pro-
vide us with a picture of  overall quality. We need more, for 
balance.

Code-related and Domain-related Internal Docu-
mentation

• Code-related documentation involves looking only at the 
functional code. This is what we do in syntactic analysis.

• Domain-related documentation involves looking at seman-
tics via comments and identifiers in the source code. Bigger-
staff  [6] discusses the nature of  determining not only what 
the code does, but why it does it by looking not only at the 
code but also at the comments and identifiers.

• By using syntactic and semantic measures in concert, we 
can determine both programming information (code com-
plexity) and domain information (human complexity, or 
“comprehendability”), and thus glean a more complete pic-
ture of  source code quality than we could otherwise.

• Syntactic Analysis + Semantic Analysis = Overall Quality.

THE SEMANTIC CLASS DEFINITION 
METRIC

Because they represent the basic building blocks of  any 
Object-oriented system, the authors use the class as their ba-
sic unit of  measurement. If  we accept that the complexity of  
a given design is influenced by the complexity of  its compo-
nent classes then this makes sense. (If  we do not accept that 
-- a consideration not taken into account by the authors -- 
there there’s trouble in River City; and that starts with “T” 
which rhymes with “C” and that stands for complexity!) 

Now that we’ve decided that we’re looking at classes we need 
to figure out how to measure semantic entropy. Prior authors 
used “name strings” (identifiers, basically). Our authors use 
something more grand: “the domain related concepts and 
key words that are identified as belonging to the class”. 
That’s cool, but how in the world do they identify these? Two 
tools: DESIRE (DESign Information Recovery Environment)  
[6] and PATRicia (Program Analysis Tool for Reuse) [7]. 
The authors use PATRicia (since they wrote it) in this work.

Using PATRicia the authors develop a system to identify 
domain-related concepts and keywords. These are extracted 
from the comments and identifiers the classes comprising the 
system under observation. The authors posit that the amount 
of  “information” (they are very unclear on exactly what they 
mean by that, and whether or not it is different than data 
(which is most certainly is!)) conveyed by each of  the identi-
fied domain-related concepts or keywords is inversely related 
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to its probability of  occurring. They then develop a formula 
for the average amount if  information contributed by each 
domain-related concept or keyword (again, from the code 
and comments). The details are in the paper.

F INDINGS

The authors conduct three experiments comparing their se-
mantic entropy metric to analyses from human experts and 
syntactic complexity measures. In the frist case, the semantic 
entropy metric correlates nicely with syntactic predictors of  
complexity. When measured against human experts the se-
mantic entropy metric correlates strongly, permitting the 
authors to assert that their metric is like having a group of  hu-
man experts analyze the code. (They also point out that their 
system can only be as good as the PATRicia knowledge base 
and that that may be a limiting factor in domains with with 
which PATRicia is not all that familiar.) 

Overall, the authors state that their semantic entropy metric 
performed as well or better than syntactic complexity metrics 
and human experts. Very impressive.

❖ Traits We Can Measure or Detect, and How
• The semantic entropy metrics described in this paper are 

highly reliant on the knowledge base used to identify 
domain-related concepts and keywords and extract them 
from the comments and identifiers the classes comprising 
the software system. I don’t think it’s practical to assume 
any sort of  wide dissemination of  this/these is likely. From 

that point of  view, stand-alone analyses of  this sort are ex-
tremely difficult to implement. 

• But that opens up an opportunity for a web-based service. 
If  some enterprising Ph.D. student with entrepreneurial ex-
perience were to start a business around this idea it might 
be very successful. There would be a ton of  issues to work 
out, not the least of  which would be those around privacy 
and security. 

• A service that measures the amount of  effort needed to un-
derstand a piece of  code would be invaluable for software 
developers the world over. 

• It’s something to think about . . .
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Chapter 4

Code Complete, 2nd Edition

by Steve McConnell

Microsoft Press, 2004. 960 pages. 

ISBN: 0735619670. 

This 2004 edition, revised and updated from the 1995 
original, is one of  the best books on software 
development ever written. I have used this book as the 
text for programming classes I’ve taught. It’s full of  great 
advice and wisdom on the art and science of  software 
development. It’s certainly a good place to begin looking 
for objective measures of  source code quality.

CODE 
COMPLETE



HIGH-QUALITY ROUTINES

Reasons to Create a Routine

• Isolate and therefore reduce complexity

• Hide implementation details

• Limit effect of  changes

• Hide data, sequences, and pointers operations

• Introduce understandable abstractions

• Avoid duplicate code

• Improve portability

• Simplify complicated boolean tests

• Make central points of  control

• Facilitate code reuse

Small Routines a Waste?

Just because something is small does not mean it shouldn’t be 
a routine. Routines make code more readable, even in small 
doses.

Design Goal:

“The goal is to have each routine do one 
thing well and not do anything else.”
Also known as functional cohesion, this leads to higher reliability.

Good Routine Names . . .

• describe everything it does.

• are typically composed of  verbs and direct objects.

• avoid meaningless / vague/ wishy-washy verbs.

• don’t differentiate by number alone.

• are as long as necessary.

• describe the return value, if  any.

• use opposites precisely.

Parameters . . .

• should be listed in input-modify-output order and have any 
status /error variables last

• are never used working variables.

• document interface assumptions.
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• use naming conventions.

❖ Traits We Can Measure or Detect, and How
• Duplicate code - compiler backend during code optimiza-

tion. (Compare basic blocks.)

• The complexity of  boolean tests - compiler front end in 
parse. (Count the number of  “boolean operator” produc-
tions for each expression.)

• The semantic structure of  identifier names - compiler front 
end in parse. (Use a string tokenizer to split the identifiers 
into component “words” to send to a grammar classifier.)

• Identifiers differentiated only by number or letter - com-
piler front end in lex (using pattern matching).

• Parameters used as working variables - compiler front end 
in semantic analysis. (Check for parameters appearing on 
the left-hand-side of  assignment-type statements during 
type-checking.)

NAMING PRACTICES

Declaration and Initialization

• If  your language supports implicit declarations, turn them 
off ! 

• Always initialize variables when they are declared if  possi-
ble. If  that is not possible, then initialize them as close to 
their first use as possible.

• Use constant or readonly variables wherever you can.

• Initialize class member data in constructor.

• Initialize constants once (if  possible).

• Initialize variables with an init() routine.

• Reset counters before their next use.

Minimizing Scope

• Keep variables as local as possible.

• Keep window of  vulnerability as small as possible.

• Keep average span as small as possible.

• Use just in time assignment where you can.
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• Favor the smallest scope for the variable.

Variable Use

• Use each variable for one purpose only.

• Ensure all declared variables are used.

Identifier Names

• Express what rather than how. 

• Avoid names with hidden meanings.

• Use nouns rather than verbs for variables; leave the verbs 
for routine names.

• Make them as long as they need to be.

• Make names descriptive of  their contents or purpose.

• Never use the name “temp”. Ever.

• Use capitalization and underscores effectively to increase 
readability. Understanding a variable name should not be 
like solving a cryptogram.

• For Booleans, use positive variable names (e.g., found instead 
of  notFound or even notUnfound) and use names that imply 
true or false (e.g., isFound)

• For constants, use all capital letters and represent abstract 
entity (pi) rather than constant value 
(three_point_one_four).

• Differentiate variable names and routine names by begin-
ning variable names in lowercase and routine names in up-
percase.

• Differentiate class names from instance names by begin-
ning class names with uppercase and instance names with 
lowercase .

• Use standardized abbreviations consistently.

• Remove articles.

• Remove useless suffixes.

• Do not use phonetic abbreviations.

• Finally, use common sense. If  an identifier name cannot be 
understood at first glance, don’t use it.

Identifier Names to Avoid

• Misleading names

• Names with similar meanings

• Variables with different meanings but similar names

17



• Homonyms

• Misspelled words or even words commonly misspelled

• Multiple languages in the same project.

• Names that are totally unrelated to what the variable repre-
sents

• Names containing hard-to-read characters

• Reserved words

❖ Traits We Can Measure or Detect, and How
• Variables that could be constants - compiler back end dur-

ing code optimization.  (Live variable analysis, reaching 
definitions, and constant propagation all help here).

• Uninitialized variables - compiler front and (via symbol ta-
ble) and back end (via code optimizations). Most compilers 
will do this for you already.

• Scattered variable initialization - compiler front end in se-
mantic analysis. (As type checking is proceeding we can 
also look at the symbol table and scope data to see where 
the variable initializations are coming from.)

• Unnecessary scope - compiler front end in semantic analy-
sis. (Analysis of  the abstract syntax tree (AST) and the 
scope data contained in the symbol table (and possibly 

linked to the AST) might help us identify variables whose 
scope could be constricted.

• Variable names that do not include nouns. This is another 
case of  semantic structure. Do it in the compiler front end 
in parse. (Use a string tokenizer to split the variable names 
into component “words” to send to a grammar classifier. A 
Natural Language Toolkit like http://www.nltk.org/ seems 
like it might be useful here.)

• The use of  “temp” and other “stop words” as inadvisable 
variable names - compiler front end in parse. (Keep a list 
of  “stop words” accessible to the parser component of  the 
compiler and warn the programmer if  any are detected.)

❖ IDEA: 
I wonder what other information retrieval techniques (like 
“stop words”) could be used in programming language analy-
sis via compiler extensions or other analysis means.

• The use of  commonly misspelled or misleading words, re-
served words, curse words, whatever... - compiler front end 
in parse. (“Stop words” again.)

• The use of  homonyms - We might use a pronunciation dic-
tionary like the one at CMU 
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict) to deter-
mine identifiers that are spelled differently but sound simi-
lar to the ear, and this muddle the meaning od the  code. 
(E.g., “Ham and Eggs” vs. “Hammond Eggs”.)
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• Identifier names unrelated to their meaning - compiler 
front end in lex and parse by analysis of  the comments (if  
any) and the variable names. (This is a little far out, but 
there’s been some work in semantic distance here, which 
we’ll look at later in this report.) 

CONDITIONAL EXPRESSIONS

if statements

• Write the normal (expected) path through the code first, in 
the if block, then write the unusual cases in the else blocks.

• Put the most common cases first.

• You almost always need an else, so be careful when omit-
ting it. James Elshoff  [1] found that 50 to 80 percent of  if 
statements alone should have been followed by an else. 

case statements

• Put the normal case first.

• Order cases by frequency.

• If  all cases are equally likely and equally important, chose 
another order like numeric or alphabetic or something so 
that the code is predictable.

• Use the default clause to detect errors.

• Avoid accidentally dropping through cases. Be careful with 
break.
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❖ Traits We Can Measure or Detect, and How
• if and case statements not ordered by their likelihood - An 

analysis of  the source code in concert with runtime profil-
ing might be able to detect whether or not if and case state-
ments are ordered by their likelihood. The compiler front-
end could output the expected “bound abstract relative fre-
quency” (or BARF; I just made that up) of  the if and case 
clauses. The profiler could then observe actual runtime 
events, compute if and case clause actual runtime frequency, 
compare it to the BARF, and report back to the user. 

• if clauses without an else  - These can be easily detected in 
the parse phase of  compilation. Warnings or hints could be 
generated pointing this out and asking the user to take spe-
cial care with them. (A good compiler gives errors, warn-
ing, and hints. Errors stop compilation; hints do not; warn-
ings might, depending on their severity or the mood of  the 
compiler writer at the time s/he wrote it.)

• case statements without a break after each clause - These 
can be easily detected in the parse phase of  compilation. 
Warnings or hints could be generated pointing this out and 
asking the user to take special care with them. (Microsoft’s 
C# compiler does this today.)
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Chapter 5

EVIDENCE-BASED 
FAILURE PREDICTION

Evidence-based Failure Prediction

by Nachi Nagappan and Thomas Ball

Microsoft Research - RiSE, Redmond, Wa.

The authors discuss six metrics for failure prediction they 
examined in a case study performed on the Windows 
Vista and Windows Server 2003 code. Windows is about 
40 million lines of  C, C++, and C# and is used (for 
better or worse) by virtually everybody with a computer 
all over the world.



INTRODUCTION

When talking about software metrics it’s useful to consider 
both internal and external metrics. Internal metrics are those 
that are derived from the code itself. (Perhaps “intrinsic” 
would be a better term?) Cyclomatic Complexity is one exam-
ple of  an intrinsic metric. External (extrinsic?) metrics are 
those derived from external assessments of  the product. Bugs 
and failures are extrinsic metrics.

The best intrinsic metrics are those that relate to extrinsic 
ones. (Actually, what good at all is an internal metric that has 
no bearing on the external evaluation of  your software prod-
uct?) Thankfully, internal metrics have been shown to be use-
ful as early indications of  externally visible product quality. 

Here are a the metrics the authors measured on the 40 mil-
lion lines of  Windows source code.

1 .  CODE COVERAGE

Code coverage refers to the extent to which all source code in 
a given project can be tested (presumably by automated unit 
testing or something similar). For example, if  there are 100 
lines of  code and we have tests that verify the functionality of  
84 of  them (note we are talking about functionality, so we do 
not need 84 tests but far less in most cases), then we have 
84% code coverage. But what about the other 16%? What 
might cause code to avoid test coverage? 

Unreachable branches are one example  of  ways in which 
code may avoid test coverage. If  there are blocks of  code that 
are unreachable then it’s clearly impossible to test them since 
they never execute. This the authors note that it can be ar-
gued that higher coverage should lead to the detection of  
more flaws in the code. (And, following that logic, higher 
quality code upon release assuming the flows that are discov-
ered are fixed before release.) This line of  thinking makes 
sense to me.

Doh! I guess this is why we read read research, because it 
turns out that this is not the case. Who’da thunk it? The 
authors point out (in [9]) several flaws the the above logic(?)

• Coverage is about lines of  code and has nothing to do with 
whether or not they are the right lines or even the right 
code.

• The simple fact that a statement was executed does not at 
all imply that it has been tested with all possible data values 
within and without the intended domain.

• What about complexity? Achieving 84% coverage on a 
module with cyclomatic complexity of  1000 is far more dif-
ficult than achieving 84% coverage on a module with a cy-
clomatic complexity of  10. (But is it 100 times harder? I 
doubt it. I wonder what that scaling relation is.) In fact, a 
better measure could be constructed from looking at com-
plexity values tied into code coverage to help describe the 
effectiveness of  code coverage percentages.
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The authors compared branch and block coverage values for 
Windows Vista with Vista field failure reports six months af-
ter release. They observed weak positive correlation between 
coverage and quality and low prediction precision. As a result 
of  their findings they suggest that code coverage is not very 
useful all by itself  but may be when combined with other fac-
tors as previously mentioned, like complexity and code 
churn.

2 .  CODE CHURN

Successful software is never finished: it evolves over time 
along with the enterprise it serves. Code churn measures the 
changes (adds/updates/deletes) made to a module/
component over the course of  time and quantifies the extent 
of  this change. 

Code churn data is usually extracted from the version control 
system used to manage the code. Differences are measured in 
terms of  lines of  code. (A utility like Diff (or WinDiff), com-
mon to virtually all version control systems, even bad ones 
like CVS) calculates the lines-of-code delta between versions 
of  the same module/component.) 

Since software projects vary in so vastly in size, and modules 
vary a lot in size within the same system, relative churn is a 
more accurate measure. Relative churn is calculated using 
delta-lines-of-code values normalized (divided into) by some 

other factor, usually total lines of  code or source file count, or  
something similar.

The authors hypothesize that code/modules that change 
more from one release to the next are more likely to contain 
faults than code/modules that change less. To test this they 
examined relative code churn between the release of  Win-
dows Server 2003 and Windows Server 2003 Service Pack 1. 
[10]

Using a variety of  metrics derived by normalizing absolute 
code churn with different factors (total lines of  code, file 
count, files churned, others) the authors found that the corre-
lation between actual and estimated defect density is strong, 
positive, and statistically significant. This means that code 
churn and code quality (as measured by post-release defect 
reporting) are highly and positively correlated. The more 
code churn, the more defects.

3 .  CODE COMPLEXITY

Source code complexity can be expressed using several differ-
ent metrics, some of  which we’ve already discussed in this re-
port in chapters two and three. The metrics popular at Micro-
soft are . . .

1. Executable lines of  code

2. Cyclomatic complexity

3. Fan-in - other functions calling a given module
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4. Fan-out - other functions called from a given module

5. Total number of  methods in a class (all of  them)

6. Maximum inheritance depth for a class

7. Coupling to other classes 

8. Number of  subclasses directly inheriting from a parent 

The authors experimented once again on Windows Server 
2003 and found that those complexity measures were fair pre-
dictors code quality, though not as good as code churn.

In discussing related work the authors note that Basili et al. 
observed in 1996 that the CK metrics WMC and RFC corre-
late with defects while LCOM does not. It’s interesting to 
note that these findings agree with those of  Chen et al. (chap-
ter 2).

4 .  CODE DEPENDANCIES

In any serious-sized software development effort many people 
or many teams work independently on many different parts 
of  the system. A software dependency is a relationship be-
tween two pieces of  code: either a data dependency wherein 
the two pieces of  code share some data element(s) or a call de-
pendency wherein one piece of  code calls the other.

In this context we can see code churn in a new light. Suppose 
one piece of  code (let’s call it “Kirk”) has many dependencies 
on another piece of  code (called “Spock” for example (and 
giggles)). If  there is a lot of  churn in the Spock code then we 

would naturally expect a certain amount of  churn in the 
Kirk code in order to keep up with it and stay in sync. Put an-
other way, churn often propagates across dependencies. It’s 
only logical to conclude, therefore, that a high degree of  de-
pendence coupled with churn will cause errors that will 
propagate through the system, reducing it’s quality. (“Fascinat-
ing.” as Spock might say.)

The authors studied the dependencies among the binaries in 
Windows Vista and used them to predict failures. When com-
pared to actual reported failures they found the precision and 
recall to be as good as those for code churn. Very cool.

5 .  PEOPLE AND ORGANIZATIONAL 
METRICS

Software is written by people. Human people (in most cases... 
though I’ve had a few consulting experiences where I was in 
doubt of  that). The great Fred Brooks wrote in the 1995 anni-
versary edition of  his famous Mythical Man Month that soft-
ware product quality is strongly affected by organizational  
structure. This seems self-evidently true to me. So it makes 
sense, then, to wonder if  attributes of  the software develop-
ment organization, measured as metrics, might predict faults 
as well as attributes of  the code itself  when measured as met-
rics. 

Our authors wondered the same thing and came up with 
eight (8) organizational metrics to test against the entire Win-
dows Vista code base.
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1. Number of  unique engineers who touched the code and 
are still employed at the company as of  the software re-
lease date. The more people who touch the code, the lower 
the quality.

2. Number of  unique ex-engineers who touched the code but  
left the company before the software release date. A lot of  
team members leaving the company affects institutional 
knowledge about the project and thus quality.

3. Edit frequency - The total number of  times the source 
code for a given module was edited. An edit here is defined 
as a transaction consisting of  an engineer checking a mod-
ule out of  the version control system, altering it, and check-
ing it back in. This has nothing to do with the number of  
lines altered during the edit transaction. More edits means 
more instability, which leads to lower quality. 

4. Depth of  Master Ownership (DMO) - This metric deter-
mines the organizational level of  ownership of  a module 
based on the number of  edits done and who in the organi-
zation did them. The organizational level of  the person 
who has engineers reporting to him or her who have done 
a certain percent of  the edits is considered to be the DMO. 
The authors used 75% for their experiments. The lower 
the level of  ownership, the better the quality.

5. Percentage of  organization contributing to development - 
This is the ratio of  the number of  people reporting to the 
DMO over the overall organization size. More organiza-
tionally cohesive contributors make for higher quality.

6. Level of  organizational code ownership - The percent of  
edits made by the organization that contains the module 
owner. If  there is no owner, then it’s the precent of  edits 
made by the organization that made the majority of  edits 
to that module. More edit-wise cohesive contributors make 
for higher quality.

7. Overall organization ownership - The ratio of  the percent 
of  people at the DMO level making edits to the module 
relative to the total number of  engineers who ever touched 
the module. (High is good.) The more concentrated the 
contribution to a module, the higher the quality.

8. Organizational intersection factor - The number of  differ-
ent organizations contributing more than 10% of  the edits 
to a given module. Fewer organizations contributing to the 
code mean higher quality.

The authors calculated all of  these metrics on 50 random 
splits of  the Windows Vista code and obtained precision and 
recall values better than those of  code churn (which was the 
best so far, until now) with little variance. Organizational 
metrics were much better indicators of  code quality 
then attributes of  the code itself ! I did not expect that. 
That’s very cool indeed.

6 .  INTEGRATED APPROACH

This is more of  a meta-metric wherein the authors take sev-
eral of  the metrics defined earlier in this chapter and organ-
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ize them in the context of  a social network defined by the re-
lationships among the developers as defined by their code in-
teractions.

A social network defined by code interactions? Very cool in-
deed. “See Putting it All Together:  
Using Socio-Technical Networks to Predict Failures” by 

Christian Bird, Nachiappan Nagappan, Harald Gall, Bren-
dan Murphy, and Premkumar Devanbu1 for a detailed expla-
nation of  this idea. It’s available online at 
http://cabird.com/papers/bird2009pat.pdf  .

❖ Traits We Can Measure or Detect, and How
• Unreachable code can be detected by a decent compiler us-

ing control-flow analysis. There are even some automated 
tools for this in compiler compilers like ANTLR and oth-
ers.

• Code churn is easily calculated from data available in 
source code version control systems. At least two popular 
open source version control systems, Git and Mercurial, 
both have extensions for calculating code churn available 
today. Many other version control systems do as well. 

• It would be interesting to develop a source code health/
quality dashboard that integrates all of  these metrics and 
presents a holistic picture of  the system under considera-
tion. Most of  the pieces are likely already there (compilers 
that detect unreachable code, test-driven development and 
unit testing frameworks like jUnit and nUnit and others, 

code churn analysis in source code version control systems, 
and the others.) Eclipse and Visual Studio already have 
some of  this in place, especially the code-centric metrics, 
but I don’t know of  any sort of  software developers work-
bench that does it all. It’s a big job, but quite do-able, I 
think. 

❖ Hey... Wait a Minute
It’s important to note that these finds by these authors, while 
fascinating and very cool indeed, have ground truth only at 
Microsoft. And within Microsoft, only for Window Vista and 
Windows 2003 Server. The results may or may not generalize 
to other organizations and other software systems

That said, other studies have been done on large, open-
source code bases, specifically Eclipse and and PostgreSQL, 
and drawn similar or supporting conclusions. This is a fasci-
nating area for further research.
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