
CODE
RECKON

More than complexity. More than feel.

ALAN G. LABOUSEUR

© 2012 Alan G. Labouseur - All Rights Reserved - Unauthorized reproduction is prohibited.
Any reproduction, retransmission, redistribution, reeducation, rememorization, retardation, reverberation, retribution or other re-generalization, either explicit or implicit,
from this document must not be done without the express written consent of Ian Fleming, Ted Codd, and Stevie Ray Vaughan. The user of this document may be subject
to alien abduction(s) and/or visitation(s). Any such events shall be at the users own expense and the creator of this document shall not be held liable for any damages that

may be incurred from said abduction or visitation.

i

Think Different

There are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies, and the other way is to
make it so complicated that there are no obvious deficiencies. The first
method is far more difficult. - C.A.R. Hoare, From his 1980 Turing Award Lecture

Every truth passes through three stages before it is recognized. In the first, it is
ridiculed, in the second it is opposed, in the third it is regarded as self-evident.
- Arthur Schopenhauer

It don’t mean a thing if it ain’t got that swing. - Duke Ellington

Thousands of years ago Lao Tzu wrote, in the Tao Te Ching,
“The people themselves need to learn simplicity.” In fact, ele-
gant simplicity the core of Lao Tzu’s teachings and of Tao-
ism itself.

Simple means not complex.

Years later, the great Fred Brooks wrote about essential and
accidental complexity in software, basing his ideas of the es-
sential and the accidental on Aristotle’s “Categories”. Com-
plexity can be pruned to its bare essentials for easy compre-
hension.

Elegant simplicity is not-complex and easy-comprehension in
balance, as yin and yang.

Complexity in software development is well understood and
there are many means to measure it. Comprehension, the sec-
ond component of elegant simplicity, is not very well under-
stood and there are few means of measure here. This is
where we’ll spend our time in this report.

ii

Elegant Simplicity

Chapter 1

BACKGROUND

I have been a professional software developer since 1990. In that
time I have owned three consulting companies, all service busi-
nesses built around custom database and software development.

I have written software for . . .

• large companies such as Scholastic, GE Capital, IBM, Pear-
son, East New York Savings Bank, Pricewaterhouse Coo-
pers, Lincoln Medical and Mental Health Center, and Vi-
acom;

• specialized firms like Keymark Financial Services, Dick
Clark Corporate Productions and the Co-Ed Uniform Com-
pany;

• and startups like Classroom Authors, GotSchool, and Direct
Response Marketing.

In the public sector I've consulted to the New York State Office
of Mental Health, New York University, New York Institute of
Finance, and the Department of Child Welfare.

Internationally I helped the Global Association of Risk Profes-
sionals deal with information issues in the US and Europe and

ALAN G. LABOUSEUR

❖ BS, Computer Science, Marist College - 1990
❖ MS, Computer Science, Pace University - 1995
❖ PhD in progress, Computer Science, SUNY Albany

❖ Entrepreneur 1990 - 2006, 2013 - ?
❖ Adjunct faculty in Computer Science and

Information Technology 1995-2006
❖ Full-time faculty in Computer Science and

Information Technology 2003-present

4

SECTION 1

History

provided strategic counseling and implementation services to
BioPharma Greenhouse, a biotech firm operating in the US
and the People's Republic of China

These projects were spread over many industries, including
but not limited to the following:

• Finance and Banking
• Risk Management
• Biotech and Pharmaceutical
• Commercial Real Estate
• International Trade
• Event Management
• Healthcare Administration
• Publishing
• Higher Education
• Marketing

In all this time I’ve personally designed, developed, de-
bugged, and documented a lot of source code in a lot of sys-
tems for a lot of companies. Some, though certainly not all,
of the details are shown in table 1.

I’ve also seen and modified a lot of other people’s code on
my journeyman’s path... code of all types: the good, the bad,
and the ugly. I’ve developed a good “feel” for what quality
code looks and smells like.

I’ve spent the past nine years teaching software development
in addition to my consulting. In that time I’ve noticed that I
can look at my students’ source code and make a fast intui-
tive judgement about its quality (whatever that is) that turns

out to be right more often than not. My “feel” for how com-
prehendible source code looks is quite good. But “feel”
doesn’t scale, and it’s too subjective to be scientific.

5

Company Application Approx.
Lines of Code

Approx.
Dates in use

IBM MMS - the Meeting Management
System 10 K 1990 - 1994+

New York Institute of
Finance

SMS - the Student Management
System 24 K 1993 - 2001

Simon & Schuster ISBN Generator and Sales Catalog
database publisher 4 K 1993 - 1995+

Viacom AMPS - the Advanced Manuscript
Processing System 4 K 1994 - 1997

GE
Capital Quick Quote 5 K 1997 - 2000

PriceWaterhouse
Coopers Risk Perceptions 6.5 K 1999 - 2000

NYS Office of Mental
Health PSMS 5.2 K 1996 - 2000

Co-Ed Uniform
Company OpMan and WebMan 11.5 K 1994 - present

Scholastic Teacher’s Store E-commerce
database 2 K 2006 - 2009+

Approximate total designed, developed,
debugged, and documented lines of code:
Approximate total designed, developed,
debugged, and documented lines of code: ~ 72.2 K

Table 1

More Than Complexity

My view of source code quality is more than (and also other
than) complexity alone. Source code complexity is well-
understood and not terribly interesting to me in this context.
There’s more to it than that. My experience tells me that
code feel and comprehendability -- the amount of effort required
to understand a piece of code -- also relate to measures of
code quality; the yang to complexity’s yin.

More Than Feel

“Feel” doesn’t scale. My goal is to enhance my own under-
standing of why I feel certain ways about source code. I hope
to note some objective, measurable, and detectable traits of
source code quality and “comprehendability” along the way.

Measurable and Detectable Quality Traits

To this end, I’ll look at some important (and directed) read-
ings in software development and computer science with an
eye towards identifying measurable and detectable traits of
source code quality outside of complexity.

In addition to identifying these measurable and detectable
traits, I’ll describe some possible ways one might implement
these measures and detections in a compiler, profiler, or some
supplemental analysis system.

Finally, I’ll note other ideas that come to me along this jour-
ney. These may point towards additional or other directions
for future investigation.

6

SECTION 2

Goals

Chapter 2

An Empirical Study on Object-oriented Metrics

by Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen
[meitang, kao, mhc]@cs.albany.edu

Computer Science Department, SUNY at Albany,
Albany, NY 12222

This study, conducted on three industrial real-time
systems that contained a number of natural faults,
identified object-oriented faults, object management
faults, and traditional faults.

After validating CK metrics with those faults, the authors
propose a set of new metrics to measure how strongly
object-oriented a program is.

AN EMPIRICAL STUDY
ON OBJECT-ORIENTED

METRICS

EXISTING METRICS

Background

• “Software metrics are the quantitative measurement of the
complexity of the software or its design.” Actually, there
are many other varieties of software metrics beyond com-
plexity. That’s my main point in these readings and this re-
port.

• Thomas McCabe’s 1976 cyclomatic complexity metric [2]
is a popular measure of complexity based on program
structure. (A similar set of textual measures created by Hal-
sted in 1977 are popular as well.) Cyclomatic complexity is
based on analysis of a program’s CFG (control flow graph,
not context-free grammar). Note my suggestions for other
uses of the control flow graph in calculating non-
complexity measures of source code quality.

CK Metrics

• Chidamber and Kemerer’s complexity CK metrics [3]
have been validated in this and other works (Basili, Briand,
and Melo; Li and Henry; others).

• CK metrics, in summary:

‣ Weighted Methods per Class (WMC)

‣ Class Inheritance Tree Depth

‣ Number of Child Classes

‣ Coupling Between Objects (this should read “among” ob-
jects since it could involve three or more.)

‣ Response for a class (RFC)

Experiment

• The authors analyzed three years worth of trouble reports
to classify the faults into object-oriented and non-object-
oriented faults. (Of the object-oriented faults, the second
of the two categories they noted was memory-related. Most
of these memory-related faults disappear in a garbage-
collected language/environment.)

• They conclude that among the CK metrics noted here,
only WMC and RFC turn out to be significant.

❖ IDEA:
I wonder what the outcome would have been if the WMC
metric had excluded private classes by assigning them a
weight of 0 instead of counting them (with weight of 1)
along with everything else.

8

NEW METRICS

Background

• The authors invent some new metrics to try out on the
same software and measure against CK metrics.

‣ Inheritance Coupling: the number of parent classes to
which a given subclass is coupled via variables or meth-
ods.

‣ Coupling Between Methods: the number of functional
dependancies among inherited methods and new or rede-
fined methods. (This seems a lot like Coupling Between
Objects, since an object is data plus some methods de-
fined on it.)

‣ Number of Object / Memory Allocations: a count of the
statements that allocate new objects in a class.

‣ Average Method Complexity: the average method size
for each class (as a count of source lines, sum of bytecode
size, character count, what?).

Results

• Average Method Complexity is shown to be a significant
predictor of fault-prone classes. This makes a lot of sense
because the simplest source code measure, the size of the
code (in number of functional lines) is widely accepted as a
fault indicator. (We’ll see this elsewhere in this report.)

❖ Traits We Can Measure or Detect, and How
• All of the metrics noted in this paper can be calculated by

various kinds of source code analysis. Most can be done in
the front-end of a compiler (lex, parse, semantic analysis).
Others can be done in the back-end via data flow analysis
of the control-flow graph. Many IDEs do a lot of these al-
ready. Eclipse, Visual Studio, IntelliJ, NetBeans, and others.

9

Chapter 3

A Semantic Entropy Metric

by Letha H. Etzkorn, Sampson Gholston, and William
Hughes, Jr.

University of Alamaba in Hunstville, AL

This 2002 paper introduces a semantically-based metric
for Object-oriented systems called the Semantic Class
Definition Entropy (SCDE) Metric. It seeks to go beyond
traditional complexity metrics that look only at the
structure and/or text of the code (e.g., the work of
McCabe, Halsted and that crew) and incorporate domain
content through considering internal-documentation-
related information from comments and identifiers in the
source code. The idea is to get at the human-level
complexity (“comprehendability”) of the task the
program is performing as described by the programs own
internal documentation (comments and identifiers).

A SEMANTIC ENTROPY
METRIC

BACKGROUND

Problems with Syntactic Metrics

• Herraiz and Hassan [8] note that . . .

Syntactic complexity metrics cannot capture the whole
picture of software complexity. Complexity metrics
that are exclusively based on the structure of the pro-
gram or the properties of the text (for example, redun-
dancy, as Halstad’s metrics do), do not provide informa-
tion about the amount of effort that is needed to un-
derstand a piece of code.

This idea of measuring the amount of effort needed
to understand a piece of code is what fascinates me,
and what drives this entire report, actually.

• Lines of Code - This sounds promising because common
sense states that the more lines of code there are there
greater the opportunity for mistakes. This is indeed true in
some sense. But LOC is notoriously difficult to measure.
Depending on how they are counted, a program could vary
in complexity based on whether or not comments, includes,
blank lines, and macro definitions are included or not.
Worse still is the vagaries of programmer whims regarding
putting multiple statements per line, or even including
“functional” yet “empty” lines (like only a semi-colon) for
various formatting or readability reasons.

• Lines of Code (again) - There are many (myself included)
that argue that the best programmers write less code. I bet
there is correlation between code compactness and quality
programming, at least to a point. The best programmers
also write clear code, and that defies over-compacting.
(There is difference between compact code and minified
code, after all.)

• Coupling Between Objects, Coupling Between Methods,
Lack of Cohesion in Methods - These measure, in one
form or another, the extent to which the parts of a class per-
form the same or related tasks. The idea is that methods
that access the same member variable are performing re-
lated tasks. Li and Henry [5], CK metrics [3], and TKC
(Tang, Kao, an Chen - see prior chapter) metrics are simi-
lar.

These metrics can fail to correctly reflect actual class cohe-
sion when the constructor and destructor are used in the
method analysis. If member variables are initialized in the
constructor (a well-known best practice; see my “Code
Complete” chapter) then every other method in the class
will be considered to be cohesive with the constructor.
(This is clearly not the case, but you can see how the analy-
sis can make that mistake.) It gets worse. Since the construc-
tor is is then cohesive every method in the class, all classes
are therefore cohesive to each other. This means the class
will have a maximum cohesion rating regardless of
whether any of the methods have anything at all to do with
each other. Ugh.

11

• Different structural aspects of two sets of source code can
result in different metric values even if both programs per-
form the same task. Clearly syntactic measures do not pro-
vide us with a picture of overall quality. We need more, for
balance.

Code-related and Domain-related Internal Docu-
mentation

• Code-related documentation involves looking only at the
functional code. This is what we do in syntactic analysis.

• Domain-related documentation involves looking at seman-
tics via comments and identifiers in the source code. Bigger-
staff [6] discusses the nature of determining not only what
the code does, but why it does it by looking not only at the
code but also at the comments and identifiers.

• By using syntactic and semantic measures in concert, we
can determine both programming information (code com-
plexity) and domain information (human complexity, or
“comprehendability”), and thus glean a more complete pic-
ture of source code quality than we could otherwise.

• Syntactic Analysis + Semantic Analysis = Overall Quality.

THE SEMANTIC CLASS DEFINITION
METRIC

Because they represent the basic building blocks of any
Object-oriented system, the authors use the class as their ba-
sic unit of measurement. If we accept that the complexity of
a given design is influenced by the complexity of its compo-
nent classes then this makes sense. (If we do not accept that
-- a consideration not taken into account by the authors --
there there’s trouble in River City; and that starts with “T”
which rhymes with “C” and that stands for complexity!)

Now that we’ve decided that we’re looking at classes we need
to figure out how to measure semantic entropy. Prior authors
used “name strings” (identifiers, basically). Our authors use
something more grand: “the domain related concepts and
key words that are identified as belonging to the class”.
That’s cool, but how in the world do they identify these? Two
tools: DESIRE (DESign Information Recovery Environment)
[6] and PATRicia (Program Analysis Tool for Reuse) [7].
The authors use PATRicia (since they wrote it) in this work.

Using PATRicia the authors develop a system to identify
domain-related concepts and keywords. These are extracted
from the comments and identifiers the classes comprising the
system under observation. The authors posit that the amount
of “information” (they are very unclear on exactly what they
mean by that, and whether or not it is different than data
(which is most certainly is!)) conveyed by each of the identi-
fied domain-related concepts or keywords is inversely related

12

to its probability of occurring. They then develop a formula
for the average amount if information contributed by each
domain-related concept or keyword (again, from the code
and comments). The details are in the paper.

F INDINGS

The authors conduct three experiments comparing their se-
mantic entropy metric to analyses from human experts and
syntactic complexity measures. In the frist case, the semantic
entropy metric correlates nicely with syntactic predictors of
complexity. When measured against human experts the se-
mantic entropy metric correlates strongly, permitting the
authors to assert that their metric is like having a group of hu-
man experts analyze the code. (They also point out that their
system can only be as good as the PATRicia knowledge base
and that that may be a limiting factor in domains with with
which PATRicia is not all that familiar.)

Overall, the authors state that their semantic entropy metric
performed as well or better than syntactic complexity metrics
and human experts. Very impressive.

❖ Traits We Can Measure or Detect, and How
• The semantic entropy metrics described in this paper are

highly reliant on the knowledge base used to identify
domain-related concepts and keywords and extract them
from the comments and identifiers the classes comprising
the software system. I don’t think it’s practical to assume
any sort of wide dissemination of this/these is likely. From

that point of view, stand-alone analyses of this sort are ex-
tremely difficult to implement.

• But that opens up an opportunity for a web-based service.
If some enterprising Ph.D. student with entrepreneurial ex-
perience were to start a business around this idea it might
be very successful. There would be a ton of issues to work
out, not the least of which would be those around privacy
and security.

• A service that measures the amount of effort needed to un-
derstand a piece of code would be invaluable for software
developers the world over.

• It’s something to think about . . .

13

Chapter 4

Code Complete, 2nd Edition

by Steve McConnell

Microsoft Press, 2004. 960 pages.

ISBN: 0735619670.

This 2004 edition, revised and updated from the 1995
original, is one of the best books on software
development ever written. I have used this book as the
text for programming classes I’ve taught. It’s full of great
advice and wisdom on the art and science of software
development. It’s certainly a good place to begin looking
for objective measures of source code quality.

CODE
COMPLETE

HIGH-QUALITY ROUTINES

Reasons to Create a Routine

• Isolate and therefore reduce complexity

• Hide implementation details

• Limit effect of changes

• Hide data, sequences, and pointers operations

• Introduce understandable abstractions

• Avoid duplicate code

• Improve portability

• Simplify complicated boolean tests

• Make central points of control

• Facilitate code reuse

Small Routines a Waste?

Just because something is small does not mean it shouldn’t be
a routine. Routines make code more readable, even in small
doses.

Design Goal:

“The goal is to have each routine do one
thing well and not do anything else.”
Also known as functional cohesion, this leads to higher reliability.

Good Routine Names . . .

• describe everything it does.

• are typically composed of verbs and direct objects.

• avoid meaningless / vague/ wishy-washy verbs.

• don’t differentiate by number alone.

• are as long as necessary.

• describe the return value, if any.

• use opposites precisely.

Parameters . . .

• should be listed in input-modify-output order and have any
status /error variables last

• are never used working variables.

• document interface assumptions.

15

• use naming conventions.

❖ Traits We Can Measure or Detect, and How
• Duplicate code - compiler backend during code optimiza-

tion. (Compare basic blocks.)

• The complexity of boolean tests - compiler front end in
parse. (Count the number of “boolean operator” produc-
tions for each expression.)

• The semantic structure of identifier names - compiler front
end in parse. (Use a string tokenizer to split the identifiers
into component “words” to send to a grammar classifier.)

• Identifiers differentiated only by number or letter - com-
piler front end in lex (using pattern matching).

• Parameters used as working variables - compiler front end
in semantic analysis. (Check for parameters appearing on
the left-hand-side of assignment-type statements during
type-checking.)

NAMING PRACTICES

Declaration and Initialization

• If your language supports implicit declarations, turn them
off !

• Always initialize variables when they are declared if possi-
ble. If that is not possible, then initialize them as close to
their first use as possible.

• Use constant or readonly variables wherever you can.

• Initialize class member data in constructor.

• Initialize constants once (if possible).

• Initialize variables with an init() routine.

• Reset counters before their next use.

Minimizing Scope

• Keep variables as local as possible.

• Keep window of vulnerability as small as possible.

• Keep average span as small as possible.

• Use just in time assignment where you can.

16

• Favor the smallest scope for the variable.

Variable Use

• Use each variable for one purpose only.

• Ensure all declared variables are used.

Identifier Names

• Express what rather than how.

• Avoid names with hidden meanings.

• Use nouns rather than verbs for variables; leave the verbs
for routine names.

• Make them as long as they need to be.

• Make names descriptive of their contents or purpose.

• Never use the name “temp”. Ever.

• Use capitalization and underscores effectively to increase
readability. Understanding a variable name should not be
like solving a cryptogram.

• For Booleans, use positive variable names (e.g., found instead
of notFound or even notUnfound) and use names that imply
true or false (e.g., isFound)

• For constants, use all capital letters and represent abstract
entity (pi) rather than constant value
(three_point_one_four).

• Differentiate variable names and routine names by begin-
ning variable names in lowercase and routine names in up-
percase.

• Differentiate class names from instance names by begin-
ning class names with uppercase and instance names with
lowercase .

• Use standardized abbreviations consistently.

• Remove articles.

• Remove useless suffixes.

• Do not use phonetic abbreviations.

• Finally, use common sense. If an identifier name cannot be
understood at first glance, don’t use it.

Identifier Names to Avoid

• Misleading names

• Names with similar meanings

• Variables with different meanings but similar names

17

• Homonyms

• Misspelled words or even words commonly misspelled

• Multiple languages in the same project.

• Names that are totally unrelated to what the variable repre-
sents

• Names containing hard-to-read characters

• Reserved words

❖ Traits We Can Measure or Detect, and How
• Variables that could be constants - compiler back end dur-

ing code optimization. (Live variable analysis, reaching
definitions, and constant propagation all help here).

• Uninitialized variables - compiler front and (via symbol ta-
ble) and back end (via code optimizations). Most compilers
will do this for you already.

• Scattered variable initialization - compiler front end in se-
mantic analysis. (As type checking is proceeding we can
also look at the symbol table and scope data to see where
the variable initializations are coming from.)

• Unnecessary scope - compiler front end in semantic analy-
sis. (Analysis of the abstract syntax tree (AST) and the
scope data contained in the symbol table (and possibly

linked to the AST) might help us identify variables whose
scope could be constricted.

• Variable names that do not include nouns. This is another
case of semantic structure. Do it in the compiler front end
in parse. (Use a string tokenizer to split the variable names
into component “words” to send to a grammar classifier. A
Natural Language Toolkit like http://www.nltk.org/ seems
like it might be useful here.)

• The use of “temp” and other “stop words” as inadvisable
variable names - compiler front end in parse. (Keep a list
of “stop words” accessible to the parser component of the
compiler and warn the programmer if any are detected.)

❖ IDEA:
I wonder what other information retrieval techniques (like
“stop words”) could be used in programming language analy-
sis via compiler extensions or other analysis means.

• The use of commonly misspelled or misleading words, re-
served words, curse words, whatever... - compiler front end
in parse. (“Stop words” again.)

• The use of homonyms - We might use a pronunciation dic-
tionary like the one at CMU
(http://www.speech.cs.cmu.edu/cgi-bin/cmudict) to deter-
mine identifiers that are spelled differently but sound simi-
lar to the ear, and this muddle the meaning od the code.
(E.g., “Ham and Eggs” vs. “Hammond Eggs”.)

18

http://www.nltk.org
http://www.nltk.org
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

• Identifier names unrelated to their meaning - compiler
front end in lex and parse by analysis of the comments (if
any) and the variable names. (This is a little far out, but
there’s been some work in semantic distance here, which
we’ll look at later in this report.)

CONDITIONAL EXPRESSIONS

if statements

• Write the normal (expected) path through the code first, in
the if block, then write the unusual cases in the else blocks.

• Put the most common cases first.

• You almost always need an else, so be careful when omit-
ting it. James Elshoff [1] found that 50 to 80 percent of if
statements alone should have been followed by an else.

case statements

• Put the normal case first.

• Order cases by frequency.

• If all cases are equally likely and equally important, chose
another order like numeric or alphabetic or something so
that the code is predictable.

• Use the default clause to detect errors.

• Avoid accidentally dropping through cases. Be careful with
break.

19

❖ Traits We Can Measure or Detect, and How
• if and case statements not ordered by their likelihood - An

analysis of the source code in concert with runtime profil-
ing might be able to detect whether or not if and case state-
ments are ordered by their likelihood. The compiler front-
end could output the expected “bound abstract relative fre-
quency” (or BARF; I just made that up) of the if and case
clauses. The profiler could then observe actual runtime
events, compute if and case clause actual runtime frequency,
compare it to the BARF, and report back to the user.

• if clauses without an else - These can be easily detected in
the parse phase of compilation. Warnings or hints could be
generated pointing this out and asking the user to take spe-
cial care with them. (A good compiler gives errors, warn-
ing, and hints. Errors stop compilation; hints do not; warn-
ings might, depending on their severity or the mood of the
compiler writer at the time s/he wrote it.)

• case statements without a break after each clause - These
can be easily detected in the parse phase of compilation.
Warnings or hints could be generated pointing this out and
asking the user to take special care with them. (Microsoft’s
C# compiler does this today.)

20

Chapter 5

EVIDENCE-BASED
FAILURE PREDICTION

Evidence-based Failure Prediction

by Nachi Nagappan and Thomas Ball

Microsoft Research - RiSE, Redmond, Wa.

The authors discuss six metrics for failure prediction they
examined in a case study performed on the Windows
Vista and Windows Server 2003 code. Windows is about
40 million lines of C, C++, and C# and is used (for
better or worse) by virtually everybody with a computer
all over the world.

INTRODUCTION

When talking about software metrics it’s useful to consider
both internal and external metrics. Internal metrics are those
that are derived from the code itself. (Perhaps “intrinsic”
would be a better term?) Cyclomatic Complexity is one exam-
ple of an intrinsic metric. External (extrinsic?) metrics are
those derived from external assessments of the product. Bugs
and failures are extrinsic metrics.

The best intrinsic metrics are those that relate to extrinsic
ones. (Actually, what good at all is an internal metric that has
no bearing on the external evaluation of your software prod-
uct?) Thankfully, internal metrics have been shown to be use-
ful as early indications of externally visible product quality.

Here are a the metrics the authors measured on the 40 mil-
lion lines of Windows source code.

1 . CODE COVERAGE

Code coverage refers to the extent to which all source code in
a given project can be tested (presumably by automated unit
testing or something similar). For example, if there are 100
lines of code and we have tests that verify the functionality of
84 of them (note we are talking about functionality, so we do
not need 84 tests but far less in most cases), then we have
84% code coverage. But what about the other 16%? What
might cause code to avoid test coverage?

Unreachable branches are one example of ways in which
code may avoid test coverage. If there are blocks of code that
are unreachable then it’s clearly impossible to test them since
they never execute. This the authors note that it can be ar-
gued that higher coverage should lead to the detection of
more flaws in the code. (And, following that logic, higher
quality code upon release assuming the flows that are discov-
ered are fixed before release.) This line of thinking makes
sense to me.

Doh! I guess this is why we read read research, because it
turns out that this is not the case. Who’da thunk it? The
authors point out (in [9]) several flaws the the above logic(?)

• Coverage is about lines of code and has nothing to do with
whether or not they are the right lines or even the right
code.

• The simple fact that a statement was executed does not at
all imply that it has been tested with all possible data values
within and without the intended domain.

• What about complexity? Achieving 84% coverage on a
module with cyclomatic complexity of 1000 is far more dif-
ficult than achieving 84% coverage on a module with a cy-
clomatic complexity of 10. (But is it 100 times harder? I
doubt it. I wonder what that scaling relation is.) In fact, a
better measure could be constructed from looking at com-
plexity values tied into code coverage to help describe the
effectiveness of code coverage percentages.

22

The authors compared branch and block coverage values for
Windows Vista with Vista field failure reports six months af-
ter release. They observed weak positive correlation between
coverage and quality and low prediction precision. As a result
of their findings they suggest that code coverage is not very
useful all by itself but may be when combined with other fac-
tors as previously mentioned, like complexity and code
churn.

2 . CODE CHURN

Successful software is never finished: it evolves over time
along with the enterprise it serves. Code churn measures the
changes (adds/updates/deletes) made to a module/
component over the course of time and quantifies the extent
of this change.

Code churn data is usually extracted from the version control
system used to manage the code. Differences are measured in
terms of lines of code. (A utility like Diff (or WinDiff), com-
mon to virtually all version control systems, even bad ones
like CVS) calculates the lines-of-code delta between versions
of the same module/component.)

Since software projects vary in so vastly in size, and modules
vary a lot in size within the same system, relative churn is a
more accurate measure. Relative churn is calculated using
delta-lines-of-code values normalized (divided into) by some

other factor, usually total lines of code or source file count, or
something similar.

The authors hypothesize that code/modules that change
more from one release to the next are more likely to contain
faults than code/modules that change less. To test this they
examined relative code churn between the release of Win-
dows Server 2003 and Windows Server 2003 Service Pack 1.
[10]

Using a variety of metrics derived by normalizing absolute
code churn with different factors (total lines of code, file
count, files churned, others) the authors found that the corre-
lation between actual and estimated defect density is strong,
positive, and statistically significant. This means that code
churn and code quality (as measured by post-release defect
reporting) are highly and positively correlated. The more
code churn, the more defects.

3 . CODE COMPLEXITY

Source code complexity can be expressed using several differ-
ent metrics, some of which we’ve already discussed in this re-
port in chapters two and three. The metrics popular at Micro-
soft are . . .

1. Executable lines of code

2. Cyclomatic complexity

3. Fan-in - other functions calling a given module

23

4. Fan-out - other functions called from a given module

5. Total number of methods in a class (all of them)

6. Maximum inheritance depth for a class

7. Coupling to other classes

8. Number of subclasses directly inheriting from a parent

The authors experimented once again on Windows Server
2003 and found that those complexity measures were fair pre-
dictors code quality, though not as good as code churn.

In discussing related work the authors note that Basili et al.
observed in 1996 that the CK metrics WMC and RFC corre-
late with defects while LCOM does not. It’s interesting to
note that these findings agree with those of Chen et al. (chap-
ter 2).

4 . CODE DEPENDANCIES

In any serious-sized software development effort many people
or many teams work independently on many different parts
of the system. A software dependency is a relationship be-
tween two pieces of code: either a data dependency wherein
the two pieces of code share some data element(s) or a call de-
pendency wherein one piece of code calls the other.

In this context we can see code churn in a new light. Suppose
one piece of code (let’s call it “Kirk”) has many dependencies
on another piece of code (called “Spock” for example (and
giggles)). If there is a lot of churn in the Spock code then we

would naturally expect a certain amount of churn in the
Kirk code in order to keep up with it and stay in sync. Put an-
other way, churn often propagates across dependencies. It’s
only logical to conclude, therefore, that a high degree of de-
pendence coupled with churn will cause errors that will
propagate through the system, reducing it’s quality. (“Fascinat-
ing.” as Spock might say.)

The authors studied the dependencies among the binaries in
Windows Vista and used them to predict failures. When com-
pared to actual reported failures they found the precision and
recall to be as good as those for code churn. Very cool.

5 . PEOPLE AND ORGANIZATIONAL
METRICS

Software is written by people. Human people (in most cases...
though I’ve had a few consulting experiences where I was in
doubt of that). The great Fred Brooks wrote in the 1995 anni-
versary edition of his famous Mythical Man Month that soft-
ware product quality is strongly affected by organizational
structure. This seems self-evidently true to me. So it makes
sense, then, to wonder if attributes of the software develop-
ment organization, measured as metrics, might predict faults
as well as attributes of the code itself when measured as met-
rics.

Our authors wondered the same thing and came up with
eight (8) organizational metrics to test against the entire Win-
dows Vista code base.

24

1. Number of unique engineers who touched the code and
are still employed at the company as of the software re-
lease date. The more people who touch the code, the lower
the quality.

2. Number of unique ex-engineers who touched the code but
left the company before the software release date. A lot of
team members leaving the company affects institutional
knowledge about the project and thus quality.

3. Edit frequency - The total number of times the source
code for a given module was edited. An edit here is defined
as a transaction consisting of an engineer checking a mod-
ule out of the version control system, altering it, and check-
ing it back in. This has nothing to do with the number of
lines altered during the edit transaction. More edits means
more instability, which leads to lower quality.

4. Depth of Master Ownership (DMO) - This metric deter-
mines the organizational level of ownership of a module
based on the number of edits done and who in the organi-
zation did them. The organizational level of the person
who has engineers reporting to him or her who have done
a certain percent of the edits is considered to be the DMO.
The authors used 75% for their experiments. The lower
the level of ownership, the better the quality.

5. Percentage of organization contributing to development -
This is the ratio of the number of people reporting to the
DMO over the overall organization size. More organiza-
tionally cohesive contributors make for higher quality.

6. Level of organizational code ownership - The percent of
edits made by the organization that contains the module
owner. If there is no owner, then it’s the precent of edits
made by the organization that made the majority of edits
to that module. More edit-wise cohesive contributors make
for higher quality.

7. Overall organization ownership - The ratio of the percent
of people at the DMO level making edits to the module
relative to the total number of engineers who ever touched
the module. (High is good.) The more concentrated the
contribution to a module, the higher the quality.

8. Organizational intersection factor - The number of differ-
ent organizations contributing more than 10% of the edits
to a given module. Fewer organizations contributing to the
code mean higher quality.

The authors calculated all of these metrics on 50 random
splits of the Windows Vista code and obtained precision and
recall values better than those of code churn (which was the
best so far, until now) with little variance. Organizational
metrics were much better indicators of code quality
then attributes of the code itself ! I did not expect that.
That’s very cool indeed.

6 . INTEGRATED APPROACH

This is more of a meta-metric wherein the authors take sev-
eral of the metrics defined earlier in this chapter and organ-

25

ize them in the context of a social network defined by the re-
lationships among the developers as defined by their code in-
teractions.

A social network defined by code interactions? Very cool in-
deed. “See Putting it All Together:  
Using Socio-Technical Networks to Predict Failures” by

Christian Bird, Nachiappan Nagappan, Harald Gall, Bren-
dan Murphy, and Premkumar Devanbu1 for a detailed expla-
nation of this idea. It’s available online at
http://cabird.com/papers/bird2009pat.pdf .

❖ Traits We Can Measure or Detect, and How
• Unreachable code can be detected by a decent compiler us-

ing control-flow analysis. There are even some automated
tools for this in compiler compilers like ANTLR and oth-
ers.

• Code churn is easily calculated from data available in
source code version control systems. At least two popular
open source version control systems, Git and Mercurial,
both have extensions for calculating code churn available
today. Many other version control systems do as well.

• It would be interesting to develop a source code health/
quality dashboard that integrates all of these metrics and
presents a holistic picture of the system under considera-
tion. Most of the pieces are likely already there (compilers
that detect unreachable code, test-driven development and
unit testing frameworks like jUnit and nUnit and others,

code churn analysis in source code version control systems,
and the others.) Eclipse and Visual Studio already have
some of this in place, especially the code-centric metrics,
but I don’t know of any sort of software developers work-
bench that does it all. It’s a big job, but quite do-able, I
think.

❖ Hey... Wait a Minute
It’s important to note that these finds by these authors, while
fascinating and very cool indeed, have ground truth only at
Microsoft. And within Microsoft, only for Window Vista and
Windows 2003 Server. The results may or may not generalize
to other organizations and other software systems

That said, other studies have been done on large, open-
source code bases, specifically Eclipse and and PostgreSQL,
and drawn similar or supporting conclusions. This is a fasci-
nating area for further research.

26

http://cabird.com/papers/bird2009pat.pdf
http://cabird.com/papers/bird2009pat.pdf

Chapter 6

REFERENCES

[1] Elshoff, James L. 1976. “An Analysis of Some Commer-
cial PL/I Programs.” IEEE Transactions on Software Engi-
neering SE-2 no 2 (June): 113-120

[2] McCabe, Thomas J. 1976. “A Complexity Measure.”
IEEE Transactions on Software Engineering SE-2(4): 308-
320

[3] S. R. Chidamber and C. F. Kemerer. “A metrics suite for
object oriented deign.” IEEE Transactions on Software Engi-
neering, 20(6) June 1994: 476–493,

[4] Oram, A. and Wilson G. editors. “Making Software:
What Really Works, and Why We Believe It.” O’Reilly 2011
ISBN 978-0-596-80832-7

[5] Li W., Henry A. “Object-oriented Metrics that Predict
Maintainability”. The Journal of Systems and Software
1993; 23(2): 111-122

[6] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E.
Webster. 1994. Program understanding and the concept as-
signment problem. Commun. ACM 37, 5 (May 1994), 72-82.
DOI=10.1145/175290.175300
http://doi.acm.org/10.1145/175290.175300

[7] Etzkorn LH, Davis CG. 1997. Automatically Identifying
Reusable Components in OO Systems. IEEE Computer vol
30 issue 10. IEEE DOI 10.1109/2.625311

[8] Herraiz I, HassanA. Beyond Lines of Code: Do We Need
More Complexity Metrics? chapter 8 pp 125-141 in Making
Software: What Really Works and Why We Believe It edited by
Andy Oram and Greg Wilson, 2011.

[9] Nachiappan Nagappan and Thomas Ball. Evidence-
based Failure Prediction, chapter 23 pp 415-434 in Making
Software: What Really Works and Why We Believe It edited by
Andy Oram and Greg Wilson, 2011.

[10] Nachiappan Nagappan and Thomas Ball. 2005. Use of
relative code churn measures to predict system defect density.
In Proceedings of the 27th international conference on Soft-
ware engineering (ICSE '05). ACM, New York, NY, USA,
284-292. DOI=10.1145/1062455.1062514
http://doi.acm.org/10.1145/1062455.1062514

28

http://doi.acm.org/10.1145/175290.175300
http://doi.acm.org/10.1145/175290.175300
http://doi.acm.org/10.1145/1062455.1062514
http://doi.acm.org/10.1145/1062455.1062514

