
An Empirical Study on Object-Oriented Metrics

Mei-Huei Tang Ming-Hung Kao Mei-Hwa Chen
Computer Science Department

SUNY at Albany
Albany, NY 12222

(meitang, kao, mhc)@cs.albany.edu

Abstract

The objective of this study is the investigation of the
correlation between object-oriented design metrics and the
likelihood of the occurrence of object-oriented faults. Such
a relationship, if identified, can be utilized to select effec-
tive testing techniques that take the characteristics of the
program under test into account. Our empirical study was
conducted on three industrial real-time systems that con-
tain a number of natural faults reported for the past three
years. The faults found in these three systems are classi-
fied into three types: object-oriented faults, object manage-
ment faults and traditional faults. The object-oriented de-
sign metrics suite proposed by Chidamber and Kemerer is
validated using these faults. Moreover, we propose a set of
new metrics that can serve as an indicator of how strongly
object-oriented a program is, so that the decision to adopt
object-oriented testing techniques can be made, to achieve
more reliable testing and yet minimize redundant testing ef-
forts.

1. Introduction

Object-oriented programming has many useful features,
such as information hiding, encapsulation, inheritance,
polymorphism and dynamic binding. These object-oriented
features facilitate software reuse and component-based de-
velopment. However, they might cause some types of faults
that are difficult to detect using traditional testing tech-
niques. For example, if a fault in an inherited function is en-
countered only in the context of the derived class, then this
fault cannot be detected without the selected testing tech-
nique forcing an invocation of this function in an object
which binds to this derived class. Our previous study [10]
suggests that traditional testing techniques, such as func-
tional testing, statement testing and branch testing, are not
viable for detecting OO faults. To overcome these defi-
ciencies, it is necessary to adopt an object-oriented testing

technique that takes these features into account. However,
the extent to which the cost and benefit we can balance by
adopting an object-oriented testing depends on how the pro-
gram under test has been implemented. We observe that
it is not unusual for an object-oriented program to be syn-
tactically ported from a traditional non-OO program or im-
plemented using very few object-oriented features. Under
such circumstances, the program is very unlikely to have
object-oriented faults; therefore, additional effort in con-
ducting object-oriented testing is not necessary.

Performing effective testingunder cost and schedule con-
straints relies heavily on the selection of testing techniques,
while the selection decision must be based on the charac-
teristics of the program. Software metrics are the quantita-
tive measurement of the complexity of the software or its de-
sign; therefore, they are good candidates for guiding the se-
lection of testing techniques. Object-oriented metrics have
been studied and proposed as good predictors for fault-prone
modules/classes, for program maintainability and for soft-
ware productivity. Our empirical study is aimed at identi-
fying object-oriented metrics that can be utilized to char-
acterize the degree of object-orientation an object-oriented
program contains, so that the likelihood of object-oriented
faults occurring can be estimated. This study, conducted on
three industrial real-time programs, has two parts; the first
part of the study is the validation of CK metrics on these
programs. Then, through the observations obtained from the
first part of the study, in the second part we identify a set of
new metrics that might better serve our needs.

The remainder of the paper is organized as follows: Sec-
tion 2 gives an overview of the existing studies in object-
oriented metrics. The application programs used in this
study and the analysis of the faults found in these programs
are described in Sections 3 and 4. The study of CK metrics
as well as the new metrics we proposed is presented in Sec-
tion 5. Our conclusions, from this empirical study, and fu-
ture research directions are given in Section 6.



2. Related Work

Chidamber and Kemerer [4] proposed a suite of object-
oriented design metrics which were developed based on the
ontology of Bunge. They analytically evaluated the met-
rics against Weyuker’s measurement theory principles [18]
and provided an empirical sample of these metrics from two
commercial systems. Several studies have been conducted
to validate CK metrics. Basili, Briand and Melo [1] pre-
sented the results of an empirical validation of CK met-
rics. Based on eight medium sized school projects they
applied a logistic regression model to investigate whether
these metrics can be used as fault-prone class indicators.
Their results suggest that five of the six CK metrics are use-
ful quality indicators for predicting fault-prone classes. Li
and Henry [14] used two size metrics and eight OO metrics,
including five of CK metrics, to empirically validate the ap-
plicability of these metrics on the number of lines changed
per class, assumed to be related to maintenance effort. This
empirical validation was conducted on two commercial sys-
tems using multiple linear regression technique. Their re-
sults show that OO metrics can be used to predict mainte-
nance effort, measured by the number of lines changed per
class, in an object-oriented system. Li [13] also theoreti-
cally validated CK metrics using metric-evaluation frame-
work proposed by Kitchenham et. al. [12]. He discovered
some deficiencies of CK metrics in the evaluation process
and proposed a new suite of OO metrics that overcome these
deficiencies. Chidamber et. al. [3] further explored the ap-
plicability of CK metrics on practical managerial work such
as productivity and rework effort. Their empirical results
suggest CK metrics were significant economic variable in-
dicators for the three commercial OO systems used in their
study.

Moreover, other object-oriented metrics are proposed to
complement CK metrics. In [2], a new suite of coupling
measures for object-oriented design was proposed and em-
pirically validated using logistic regression technique. They
discovered that not all of the import and export coupling
measures are significant predictors of class fault-proneness.
Their data also suggest that these OO coupling measure-
ment metrics are complementary quality indicators to CK
OO metrics. In [7], a set of object-oriented design met-
rics, MOOD metrics, was proposed and theoretically vali-
dated from measurement point of view. They also empiri-
cally validated this set of metrics and the results suggest that
MOOD metrics operate at the system level is complemen-
tary to CK’s class level OO metrics.

To use software metrics in guiding testing resources allo-
cation, Harrison [8] evaluated several traditional testing re-
sources allocation techniques such as resource allocation by
module size and by complexity. He used McCabes cyclo-
matic complexity measurement, Halsteads effort measure

and Harrison and Cooks MMC metric for resource alloca-
tion by complexity. He concluded that none of the resource
allocation techniques were perfect and more work need to
be done in this area.

3. Descriptions of the Applications

The applications used in this empirical study are subsys-
tems of an HMI (Human Machine Interface) software which
is a fully networked Supervisory Control and Data Acquisi-
tion system. This software is based on client-server archi-
tecture consisting of servers and clients. Servers are respon-
sible for the collection and distribution of data. Clients con-
nect into servers and have full access to the collected data for
viewing and control actions. This software, which consists
of more than 200 subsystems and 3 million lines of code,
has been used by many manufacturing companies for sev-
eral years.

Although each subsystem selected plays a different role
in the system and performs a different functionality, they
share some similar characteristics that meet with our selec-
tion criteria. All the subsystems are implemented using Mi-
crosoft Visual C++TM under the Windows NTTM environ-
ment and possess certain object-oriented features such as en-
capsulation, inheritance and polymorphism. These subsys-
tems are briefly described as below.

System A is a user interface-oriented program that al-
lows customers to configure the basic product operations
and device communications. It consists of 20 classes that
define 256 new, re-defined or virtual functions, and approx-
imately 5,600 lines of code in length. System B is a real
time data logging process that collects data as needed and
logs data into the database, based on the user configuration.
This system defines 45 classes and 353 new, re-defined or
virtual functions, comprising approximately 21,300 lines of
code. System C is a communication-oriented program that
acts as a router not only delivering messages between pro-
cesses within the same host but also forwarding messages
to other hosts. This system defines 27 classes and 293 new,
re-defined or virtual functions and contains approximately
16,000 lines of code. Among these three systems, Systems
A and B were designed and implemented in a certain object-
oriented methodology, whereas System C was ported from
a program written in C programming language and partially
redesigned and enhanced by its engineers to support the new
requirements of a new operational environment.

4. Fault Analysis

We analyzed the trouble reports of the three systems
recorded for the past three years and classified the faults
found in the system test and maintenance phases. The



classification scheme was based on the nature of these
faults and their relevance to the object-orientation. Below
we describe the detailed classification of these types among
which Type I and Type II are OO faults and Type III faults
are non-OO.

Type I: Object-oriented faults that are strongly related to
the OO features and are introduced by these features such
as inheritance and polymorphism. This type of faults can be
further divided into two sub-categories: inheritance faults
and polymorphism faults. A typical inheritance fault occurs
when a derived class modifies a data member of the base
class, which in turn changes the behavior of the base class
and then causes the fault. In other words, the derived class
changes the environment of the base class which causes the
faults encountered in either the derived class or the base
class. Polymorphism faults are the faults encountered in
the OO program when an object can be bound to different
classes during the runtime. For instance, if there are
X possible bindings of an object which sends a service
request and Y possible bindings of the other object which
provides the service, then totally there are X x Y different
possible combinations of bindings during the runtime. If
some of them are not tested during a system test phase,
then a failure, caused by a polymorphism fault, might occur.

Type II: The object management faults that are related
to object management such as object copying, dangling
reference, object memory usage faults and so on. A typical
object copying fault would be encountered if the imple-
mentation of the method for copying an object is either
a duplication of the original object or the generation of a
reference to the original object. If the copied method is used
incorrectly, some unexpected faults or memory corruption
will occur. The dangling reference object fault happens
when an object, say “object A,” tries to reference another
object, “object B,” which was destroyed by a third object,
“object C.” The object memory usage fault normally refers
to the situation where an object allocates memory during
runtime and does not free up this resources when it is no
longer needed.

Type III: The traditional types of faults that are not related
to objects. They fall into the fault classification of tradi-
tional software [16].

In Table 1 we summarize the results obtained from the
analysis of these three systems. The upper half of the table
lists the system size in thousands of lines of code and the
number of classes defined in such system. The total number
of known faults and their distributionsin the three fault types
is presented along with the percentages of type I and type II
faults to the total known faults. We observe that among the

Table 1. Summary of the faults in the three
systems.

System A B C
Lines of code 5.6k 21.3k 16.0k
Number of classes 20 45 27

Number of faults 35 80 85
Type I faults 5 15 10
Type II faults 6 13 7
Type III faults 24 52 68
OO faults(%) 31% 35% 20%

total faults found, one third of the faults in Systems A and B
are OO faults, and in System C these faults types comprise
about one fifth of the total faults.

5. Object-Oriented Metrics

It is often desirable that the fault-prone modules and
the types of residential faults can be estimated based on
some quantitative measurement of a given system. Object-
oriented metrics are developed to realize the structure and
the characteristic of object-oriented programs. Some met-
rics, such as CK metrics [4], have been proven empirically
to be useful for the prediction of fault-prone modules [1].

In this study, we measured the CK metrics of the three
systems, described in Section 3, and analyzed their distribu-
tions in these systems.

5.1 CK metrics

The object-oriented metrics proposed by Chidamber and
Kemerer [4] are described as follows:

Weighted methods per class (WMC): This measures the
complexity of an individual class. Two different
weighting functions are considered: WMC1 uses the
nominal weight of 1 for each function, and hence mea-
sures the number of functions. WMC uses a weight-
ing function which is 1 for functions accessible to other
modules and 0 for private functions. In this study, we
adopted the first approach to simplify the factors. In
another word, we consider all methods of a class to be
equally complex.

Depth of inheritance tree of a class (DIT): It is defined
as the length of the longest path of inheritance ending
at the current module. Intuitively, the deeper the inher-
itance tree for a class, the harder it might be to predict
its behavior due to the interaction between the inherited
features and new features.



Number of children (NOC): It represents the number of
classes that inherit directly from the current class.
Moderate values for this measure indicate the scope for
reuse; however, high values may indicate an inappro-
priate abstraction in the design. Furthermore, a class
with a large number of children has to provide more
generic service to all the children in various contexts
and must be more flexible. We believe that this tends
to introduce more complexity into this parent class.

Coupling between objects (CBO): This provides the
number of other modules that are coupled to the
current module either as a client or a supplier. A class
is coupled to another if it uses the member functions
and/or instance variables of the other class. Excessive
coupling indicates weakness of module encapsulation
and may inhibit reuse. The assumption behind this
metric is that highly coupled classes tend to introduce
more faults caused by inter-class activities.

Response for a class (RFC): This gives the number of
methods that can potentially be executed in response
to a message received by an object of that class. The
larger the number of methods that could potentially re-
spond to a message, the greater the complexity of that
class.

5.2. Statistical Analysis

In order to investigate the correlation between OO met-
rics and fault-prone (including traditional and OO faults)
classes, we conducted logistic regression analysis, a stan-
dard classification technique [9] based on maximum log
likelihood estimation, to analyze the relationships between
explanatory independent variables and binary dependent
variables. In our study we used univariate logistic regres-
sion to evaluate the relationships between individual OO
metric and fault-prone classes.

A logistic regression model can be defined as

Prob�X��X�� ����Xn� �
exp�B��B��X������Bn�Xn�

��exp�B��B��X������Bn�Xn�

where Xi , i= 1, 2, .., n, are the explanatory independent
variables (OO metrics), exp is the base of the natural log-
arithms, approximately 2.718 and Prob is the probability
of detection of a specific type of faults in a class. An
univariate logistic regression model is a special case of the
above formula with only one variable in the formula.

Prob�X� � exp
�B��B��X�

��exp�B��B��X�

Table 2 and 4 show the results obtained through univariate
logistic regression on system A, B and C. Only the metrics

that are significant are included in these tables and for each
metric the following statistics are reported:

Coefficients (Bi’s): the estimated logistic regression coef-
ficients are estimated from data through maximization
of the log likelihood function, and measure the respec-
tive independent variable’s (metric’s) contribution in
the dependent variable. The larger the absolute coeffi-
cient values, the larger (positive or negative according
to the sign) the impact of the explanatory variables (OO
metrics) on the probability of fault detection.

The statistical significance (p-value): represents the de-
gree of accuracy of coefficient estimation. More
specifically, the p-value represents the probability of
error that is involved in accepting observed results as
valid. The larger the statistical significance, the less be-
lievable the estimated impact of the explanatory inde-
pendent variable (OO metric). In our study we used 0.1
as the significance threshold.

The goodness of fit (R�): is an indicator of how well the
model fits the data. The higher the value of R�, the
more accurate the model is. R� is defined as

R� � LL��LL

LL�

where LL� is the log likelihood of the data under null
hypothesis without any variable and LL is the log like-
lihood of the data under the model.

Odds ratio: represents the change in odds when the value
of an independent variable increases by 1. The odds of
an event occurring is defined as the ratio of the proba-
bility of having a fault over the probability of not hav-
ing a fault. Odds ratio is provided as an evaluation of
the impact of explanatory independent variables (OO
metrics) on the dependent variable.

5.3. Analysis of CK Metrics

Table 2 shows the descriptive statistics of CK metrics for
three systems. Table 3 shows the results of our logistic re-
gression analysis on CK metrics, where WMC/RFC(all) de-
notes the analysis of WMC/RFC w.r.t. the classes that con-
tain faults regardless of type; while WMC/RFC(oo) indi-
cates the analysis of WMC/RFC w.r.t. the classes that con-
tain OO faults. Among the five evaluated CK metrics, only
WMC and RFC are shown to be significant (with p-value�
0.1) indicators for OO faults and the total number of faults
in both System A and B. For system C, WMC is a signifi-
cant fault-prone class detector while RFC is a very signifi-
cant OO fault indicator. In sum, for all three systems, WMC



Table 2. Descriptive statistics of CK metrics.
SYSTEM A

WMC DIT NOC CBO RFC
Minimum 1 0 0 1 0
Maximum 37 3 2 5 291
Median 10.5 1 0 1 42.5
Mean 11.85 1.25 0.2 1.65 56.55
Std. Dev. 8.51 0.71 0.52 1.03 64.09

SYSTEM B
Metrics WMC DIT NOC CBO RFC
Minimum 1 0 0 0 0
Maximum 27 5 17 28 205
Median 5 2 0 2 12
Mean 6.81 1.54 0.70 3.29 27.16
Std. Dev. 5.73 1.27 2.63 4.72 40.34

SYSTEM C
Metrics WMC DIT NOC CBO RFC
Minimum 2 0 0 0 0
Maximum 89 2 2 5 397
Median 7 1 0 1 3
Mean 10.37 0.89 0.24 1.17 35.75
Std. Dev. 15.66 0.55 0.63 1.33 76.73

Table 3. Summary of CK metrics.
SYSTEM A

Metrics Coefficient p-value R� Odds Ratio
WMC(all) 0.2298 0.054 0.2438 1.2583
RFC(all) 0.0546 0.0401 0.3135 1.0562
WMC(oo) 0.1652 0.07 0.207 1.1796
RFC(oo) 0.0439 0.0441 0.3170 1.0449

SYSTEM B
Metrics Coefficient p-value R� Odds Ratio
WMC(all) 0.3728 0.0219 0.1831 1.4517
RFC(all) 0.0634 0.0499 0.1666 1.0654
WMC(oo) 0.1897 0.0254 0.1207 1.2089
RFC(oo) 0.0411 0.0218 0.1704 1.0419

SYSTEM C
Metrics Coefficient p-value R� Odds Ratio
WMC(all) 0.2305 0.0602 0.1417 1.2592
RFC(oo) 0.0579 0.0033 0.4999 1.0596

Table 4. Observations on significant CK met-
rics.

WMC RFC
Type A 28% 29%
Type B 36% 36%
Type OO 50% 42%

is a significant fault-prone class indicator and RFC is a sig-
nificant OO fault-prone class indicator. On the other hand,
although the logistic regression results show WMC and RFC
are significant indicators, our observations show that there
are 36% of faulty classes that have less than average WMC
value might be overlooked if we only use WMC for test-
ing resources allocation and this observation also holds for
the RFC. Moreover 50%, and 42% of classes that have OO
faults, but with less than average WMC and RFC values,
might be overlooked if we only consider CK metrics. These
results are summarized in Table 4 where Type A is the per-
centage of faulty classes which have high WMC/RFC val-
ues over the total number of classes in all three systems;
Type B is the percentage of faulty classes which have low
WMC/RFC values and Type OO is the percentage of classes
which have OO faults yet have low WMC/RFC values.
Thus additional metrics might be needed to provide a better
fault-prone class prediction.

The scenario described above can be explained by the fol-
lowing observations:

1. The complexity of the method is not considered. For
example, a method with 1000 lines of code is likely to
introduce more faults than a method with 100 lines of
code.

2. The dynamic behavior is not considered. For example,
a class which is used more frequently than other classes
tends to have more reported faults than other classes.

3. The number of child classes, including those who in-
herit directly and indirectly from the current module,
should be considered. The existing NOC metric re-
flects only the number of direct descendants for each
class. Therefore, the additional complexity introduced
by indirect descendants is not considered.

4. The function dependency relationship between the in-
herited methods and the new/redefined methods in
child classes. A method is function dependent on an-
other method if the former method uses any data which
is defined/modified by the latter method. The moti-
vation behind this factor is that when a data member,
which is used by the inherited methods, is modified by
the new or redefined method, new faults tend to be in-
troduced into the inherited methods.



5. A class with more object/memory allocating activities
tends to introduce more type II faults. Therefore, the
number of object/memory allocating statements within
a class should be taken into account. Furthermore, a
complicated copy/assign operator of a class tends to in-
troduce more type II faults than the default or simple
one. Therefore, the complexity of the copy/assign op-
erator implementation of a class should be also consid-
ered.

In summarizing from this study, we observe that CK met-
rics may not be sufficient for identifying fault-prone classes
with OO faults. For this purpose, other metrics are needed
which take into account (1)the dynamic behavior of the pro-
gram; and (2) the scenarios that the instances of the classes
are referenced in the program.

5.4. New Metrics

In this section we present a set of new metrics which are
derived from our observations in studying CK metrics.

Inheritance Coupling: (IC) The IC provides the number
of parent classes to which a given class is coupled. A
class is coupled to its parent class if one of its inherited
methods is functionally dependent on the new or rede-
fined methods in the class. In general, a class is cou-
pled to its parent class if one of the following condi-
tions holds:

1. One of its inherited methods uses a variable (or
data member) that is defined in a new/redefined
method.

2. One of its inherited methods calls a redefined
method and uses the return value of the redefined
method.

3. One of its inherited methods is called by a rede-
fined method and uses a parameter that is defined
in the redefined method.

4. One of its inherited methods uses a variable X,
and the value of X depends on the value of a
variable Y which is defined in a new/redefined
method.

The motivation behind the IC metric is that when a data
member, which is used by an inherited method, is mod-
ified by a new or redefined method, it is likely to intro-
duce new faults into the inherited method.

Coupling Between Methods: (CBM) The CBM provides
the total number of new/redefined methods to which
all the inherited methods are coupled. An inherited
method is coupled to a new/redefined method if it is
functionally dependent on a new/redefined method in

the class. Therefore, the number of new/redefined
methods to which an inherited method is coupled can
be measured.

The CBM measures the total number of function de-
pendency relationships between the inherited methods
and new/redefined methods. As a matter of fact, this
metric is a variant of the IC metric. The motivation
behind this metric is that the IC only measures the
number of parent classes to which a given class is
coupled, without the CBM, additional function depen-
dency complexity at the methods level is not consid-
ered.

Number of Object/Memory Allocation: (NOMA) It
measures the total number of statements that allocate
new objects or memories in a class. The indirect
allocations, ie. the allocations caused by calling
other methods, are not considered. The motivation
behind this metric is that classes with large numbers of
object/memory allocation statements tend to introduce
additional complexity for object/memory manage-
ment. Therefore, the higher the NOMA, the higher the
probability of detecting object management faults.

Average Method Complexity: (AMC) The AMC pro-
vides the average method size for each class. Pure
virtual methods and inherited methods are not
counted. The assumption behind this metric is that
a large method, which contains more code, tends to
introduce more faults than a small method.

5.5. Analysis of the New Metrics

Table 5 shows the results of the logistic regression anal-
ysis on the new metrics where (all) refers to all types of
faults and (oo) refers to OO faults only. AMC is a signifi-
cant fault-prone class predictor and NOMA is a significant
OO fault indicator for both system A and B. IC, CBM and
NOMA are significant fault-prone class indicators for sys-
tem B. In Table 6 we summarized the percentage of classes
where Type A denotes the faulty classes that have high
IC/CBM/AMC, Type B denotes the faulty classes that have
low IC/CBM/AMC and Type OO denotes the classes that
have low IC/CBM/AMC while still containing OO faults.
Although the logistic regression results show that IC, CBM
and AMC were significant OO fault indicators for all three
systems, our observations show that there are 30%, 35%
and 23% of faulty classes with less than average IC, CBM
and AMC values which might be overlooked. Also there
are 24%, 34% and 26% of classes with OO faults, having
less than average IC, CBM and AMC values which might
be overlooked if we only consider these metrics. Thus the
use of CK metrics with our additional four new metrics to



Table 5. Summary of the new metrics.
SYSTEM A

Metrics Coefficient p-value R� Odds Ratio
AMC(all) 0.4183 0.036 0.5924 1.5194
IC(oo) 3.4965 0.0084 0.3867 32.9984
CBM(oo) 2.6156 0.0197 0.5554 13.6756
NOMA(oo) 1.9542 0.0262 0.2789 7.0585
AMC(oo) 0.2264 0.0558 0.3580 1.254

SYSTEM B
Metrics Coefficient p-value R� Odds Ratio
IC(all) 2.1162 0.01 0.1582 8.2997
CBM(all) 1.4466 0.029 0.2171 4.2468
NOMA(all) 0.6954 0.0439 0.0955 2.0046
AMC(all) 0.1621 0.0012 0.4421 1.176
IC(oo) 2.9299 0.0001 0.3174 18.725
CBM(oo) 1.6595 0.0024 0.3594 5.2569
NOMA(oo) 0.7199 0.0162 0.1243 2.0542
AMC(oo) 0.0699 0.0017 0.1981 1.0724

SYSTEM C
Metrics Coefficient p-value R� Odds Ratio
IC(oo) 2.2069 0.0167 0.2203 9.0872
CBM(oo) 0.5659 0.0343 0.2165 1.761
AMC(oo) 0.0513 0.0069 0.3559 1.0526

Table 6. Observations on the significant new
metrics.

IC CBM AMC
Type A 35% 30% 42%
Type B 30% 35% 23%
Type OO 24% 34% 26%

achieve a higher percentage of fault detection becomes an
important issue for testing resources allocation.

We observe that by using WMC as the only fault prone
class indicator for testing resources allocation, we might
miss 36% of faulty classes and 50% of OO fault prone
classes, which have less than average WMC values. If we
use CBM or AMC by itself, 35% and 23% of faulty classes
and 34% and 26% of OO fault classes might be missed, re-
spectively. However, if we use WMC as faulty class indi-
cator and use traditional testing techniques on these faulty
classes and then use CBM and AMC as OO fault class in-
dicators and use OO testing techniques on the classes that
have either high CBM or AMC values, we will be able to
discover 91.22% of OO faults and 90% of total faults. Thus
we can conclude that after using WMC as a traditional test-
ing resources allocation indicator, if there are classes that do
not test with either high CBM or AMC values, it is necessary
to apply OO testing techniques to these classes, in order to
achieve a high percentage of fault detection.

6. Conclusions and Future Work

We have validated CK metrics using three industrial real-
time systems and the results suggest that WMC can be a
good indicator for faulty classes and RFC is a good indicator
for OO faults. Furthermore, we present a set of new metrics
which we consider useful as indicators of OO fault-prone
classes. Therefore, these new metrics can be utilized to de-
cide which classes need to be tested using OO testing tech-
niques. From the observations of this study, we also suggest
how to use these metrics effectively.

Our future research direction aims at studying how to
systematically implement these metrics to guide the selec-
tion/prioritization of testing techniques. Therefore, not only
identifying which metrics are good indicators of fault-prone
classes but also describing how to apply these metrics in the
testing process.

References

[1] V. R. Basili, L. C. Briand, and W. L. Melo. A valida-
tion of object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering, 22(10):751–
761, October 1996.

[2] L. Briand, P. Devanbu, and W. Melo. An investigation into
coupling measures for c++. Technical Report ISERN-96-08,
ISERN, 1996.

[3] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer. Man-
agerial use of metrics for object-oriented software: An ex-
ploratory analysis. IEEE Transactions on Software Engi-
neering, 24(8):629–639, August 1998.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented design. IEEE Transactions on Software Engi-
neering, 20(6):476–493, June 1994.



[5] S. D. Conte, H. E. Dunsmore, and U. Y. Shen. SoftwareEngi-
neeringMetricsand Models. The Benjamin/Cummings Pub-
lishing Company, Inc., 1986.

[6] N. E. Fenton. Software Metrics: A Rigorous Approach.
Chapman & Hall, 1991.

[7] R. Harrison and S. J. Counsell. An evaluation of the mood
set of object-oriented software metrics. IEEE Transactions
on Software Engineering, 21(12):929–944, December 1995.

[8] W. Harrison. Using software metrics to allocate testing
resources. Journal of Management Information Systems,
4(4):93–105, 1988.

[9] D. W. Hosmer and S. Lemeshow. Applied Logistic Regres-
sion. John Wiley & Sons, 1989.

[10] M. Kao, M. H. Tang, and M. H. Chen. Investigating test
effectiveness on object-oriented software - a case study. In
Proceedingsof Twelfth Annual International Software Qual-
ity Week, 1999.

[11] B. Kitchenham. Software Metrics: Measurement for Soft-
ware ProcessImprovement. BlackwellPublishers Inc., 1996.

[12] B. Kitchenham, S. L. Pfleeger, and N. Fenton. To-
wards a framework for software measurement validation.
IEEE Transactions on Software Engineering, 21(12):929–
944, December 1995.

[13] W. Li. Another metric suite for object-oriented program-
ming. Journal of Systems and Software, 44:155–162, 1998.

[14] W. Li and S. Henry. Object-oriented metrics that predict
maintainability. Journal of Systems and Software, 23:111–
122, 1993.

[15] M. Lorenz and J. Kidd. Object-Oriented Software Metrics.
Prentice Hall Inc., 1994.

[16] I. C. Society. Ieee 1044 - standard classification for software
errors, faults and failures. IEEE Computer Society, 1994.

[17] B. F. Webster. Pitfalls of Object-Oriented Development.
M&T Books, New York, 1995.

[18] E. Weyuker. Evaluating software complexity measures.
IEEE Transactionson SoftwareEngineering, 14:1357–1365,
1988.


