
Data Gauge
An experimental validation framework for G* using PostgreSQL and Neo4j

Jak Akdemir Alan Labouseur
University at Albany University at Albany

jakdemir@gmail.com alan@Labouseur.com

ABSTRACT
In this paper we describe the basis of a validation framework for
G* (“gee star”), a research graph database currently under
development at the University at Albany under Prof. Jeong-Hyon
Hwang (jhh@cs.albany.edu). We develop a validation graph small
enough to evaluate our test metrics by hand (and with Ms-Excel).
We then implement our test metrics in the PostgreSQL open
source relational database management system and also in the
open source Neo4j graph database. After showing that our
PostgreSQL and Neo4j results match our manually calculated
traits, we examine the accuracy of G* in this context.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks
G.2.2 [Discrete Mathematics]: Graph Theory – graph algorithms
H.2 [Database Management]: Systems

General Terms
Measurement, Experimentation, Theory, Verification.

Keywords
Graph Database, PostgreSQL, Neo4j, validation, G*, G-star

1. INTRODUCTION
A long time ago in a galaxy far, far away... Oops, wrong saga!
This is not a tale of good and evil battling it out in a universe of
FTL (Faster Than Light travel as well as an elegant proof of
Fermat’s Last Theorem). Neither is this a tale of two cities,
although we originally set out to measure the best of times and the
worst of times. But we found some issues with G* so following
the sage advice that in software development one should get it
right before one worries about getting it fast (or beautiful), we
pivoted to building a validation framework instead of
benchmarking. We present here a tale of three databases:
PostgreSQL, Neo4j, and G*.

2. TEST METRICS
We use three (3) graph algorithms in this validation framework:
the distribution of vertex degrees, distribution of clustering
coefficients, and the distribution of single-source shortest paths.
Each of these metrics is of crucial importance in many aspects of
graph processing (clustering, summarizing, searching) so it’s
worth talking just a little about each of them.

2.1 Distribution of Vertex Degrees
Distribution of Vertex Degrees is useful to understand as it
measures whether the graph’s connectivity is strong or not. The
Vertex Degree in a graph stands for the count of incoming and
outgoing edges of vertex to and from its neighbors. The degree
distribution is probability, P(k), which describes portion of nodes
which have a certain number of neighbors. P(k) = nk/n where
there are nk nodes on degree k in a graph of n nodes.

2.2 Distribution of Clustering Coefficients
Distribution of Clustering Coefficients (CC) is one of the most
important metrics used to analyze graph heterogeneity. To
calculate this measure we first calculate all possible edges among
neighbors of a vertex, which is (n*(n-1))/2 if there are n
neighbors. Then we find actual number of connections, m, between
these neighbors. Each vertex has its own CC, and for node x,
CC(x)= m/((n*(n-1))/2). For further explanation and examples
please see [4] and [5].

2.3 Distribution of Single-source Shortest Paths
Distribution of Single-source Shortest Paths (SSSP) is a metric
that measures the distribution of the lengths of shortest paths to all
reachable vertexes from a given source vertex. We apply two
techniques to find shortest paths: the well-known shortest path
search algorithm named for (and by) Dijkstra and the Bellman-
Ford algorithm. On Neo4j we apply Dijkstra repeatedly and in
PostgreSQL we use Bellman-Ford. This shows that we preserve
consistency of results between these two different algorithms.

3. VALIDATION GRAPH
In order to bootstrap our chain of trusted validation cases we
began with a simple 21-vertex graph. Our base case had to be
small enough that we could calculate our validation metrics by
hand or with Ms-Excel.

3.1 The Great Underground Empire
We chose the first (ground) level of the Great Underground
Empire from the seminal interactive fiction game Zork by
Infocom. (What computer scientist didn’t play some form of
interactive fiction game? And why not go back to one of the
originals?1) This 21-vertex graph is almost but not entirely
undirected. Our graphs are all directed for greater generality, so
we added sets of edges between all undirected vertexes. For the
few directed edges we added only one edge (of course). Since
edges in Zork are not labeled with weight we assume a uniform
weight of one (1) for all of them. Figure 1 shows our validation
map as it appeared in Zork documentation a few decades ago.

1 Yes, we know that William Crowther’s Colossal Cave game predates Zork, but that’s too obscure for our proposes here.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission from Jak or Alan.

Figure 1. Zork map level 1 - Our validation graph

3.2 Validation Traits
There are 53 edges in our graph. We counted up the in-degree and
out-degree for each vertex. They both sum to 53, which is nice,
since there are 53 edges and a vertex on both ends of every one.
Thus the sum of the total vertex degrees (in-degree plus out-
degree) is 106, or twice the number of edges in the graph. Good
and consistent.
Figure 2 shows our manual calculations for the distribution of
vertex degrees and clustering coefficients traits.

Figure 2. Manually calculated validation traits

4. POSTGRES RESULTS
4.1 Modeling the Graph
We created a relational database in PostgreSQL (version 9) to
model a collection of graphs. The identifier names are self-
explanatory. See Figure 3 for the code. Note the careful use of
foreign keys on lines 8, 18, 24, and 25 to ensure that there is no
“bleed over” among separate graphs. The sssp_ fields on lines 12
and 13 are used in and store the results of our single-source
shortest path computation.

Figure 3. PostgreSQL representation of graphs
Several insert statements later we have a populated database and
can begin calculating our validation metrics.

4.2 Distribution of Vertex Degrees
To compute the distribution of vertex degrees we began by
creating two views on the data: one for in-degree and one for out-
degree. (The full source code available is online [6] and in these
appendices.) Given those two views, we computed the distribution
of vertex degrees with the code in Figure 4.

Figure 4. PostgreSQL distribution of vertex degrees code
Running the code in Figure 4 against our validation graph we get
the following results, presented in Figure 5.

 1 create table Graphs (
 2 gid integer not null,
 3 name text,
 4 primary key (gid)
 5);
 6
 7 create table Vertexes (
 8 gid integer not null
 references Graphs(gid),
 9 vid bigint not null,
10 name text,
11 data text,
12 sssp_est int,
13 sssp_pred int,
14 primary key (gid, vid)
15);
16
17 create table Edges (
18 gid integer not null
 references Graphs(gid),
19 fromVertex bigint not null,
20 toVertex bigint not null,
21 weight real,
22 data text,
23 primary key (gid, fromVertex, toVertex),
24 foreign key (gid, fromVertex)
 references Vertexes(gid, vid),
25 foreign key (gid, toVertex)
 references Vertexes(gid, vid)
26);

create view Graph0vertexdegrees
 as
select gin.vid,
 gin.name,
 ("In_degree" + "Out_degree") as "Vertex_degree"
from Graph0indegrees gin,
 Graph0outdegrees gout
where gin.vid = gout.vid
order by vid;
-- Test it.
select *
from Graph0vertexdegrees;

-- Compute the distribution of vertex degrees.
select "Vertex_degree", count("Vertex_degree")
from Graph0vertexdegrees
group by "Vertex_degree"
order by "Vertex_degree";

Figure 5. PostgreSQL Distribution of vertex degrees results
Comparing our PostgreSQL results in Figure 5 to those we
manually computed in Figure 2 we see that they match. So far, so
good.

4.3 Distribution of Clustering Coefficients
We created another view, this time for calculating clustering
coefficients. The rather complex (but hopefully readable)
clustering coefficient code is given in Figure 6.

Figure 6. PostgreSQL clustering coefficients code
Running the code in Figure 6 against our validation graph we get
the following results, presented in Figure 7.

create or replace view Graph0clusteringcoefficients
 as
select np.vid,
 np.neighbors,
 coalesce(na.actual, 0) as "actual_connections",
 np.possible as "possible_connections",
 (cast(coalesce(na.actual, 0) as real) /
cast(np.possible as real)) as "clustering coefficient"
from
 -- Possible neighbor connections
 (select Vertexes.vid, "neighbors", (("neighbors" *
("neighbors" - 1) / 2)) as "possible"
 from Vertexes ,
 (select v.vid, count(*) as "neighbors"
 from Vertexes v, Edges e
 where v.gid = 0 and e.gid = 0
 and e.fromVertex = v.vid
 group by v.vid
) as nptemp
 where Vertexes.vid = nptemp.vid
 and "neighbors" > 1
) as np
left outer join
 -- Actual neighbor connections
 (select v.vid,
 count(*) as "actual"
 from Vertexes v, Edges e1,
 Edges e2, Edges e3
 where v.gid = 0 and e1.gid = 0
 and e1.fromVertex = v.vid
 and e2.fromVertex = e1.toVertex
 and e3.fromVertex = e2.toVertex
 and e3.toVertex = v.vid
 group by v.vid
) as na
on np.vid = na.vid
order by np.vid;

Figure 7. PostgreSQL clustering coefficients results
Counting up our PostgreSQL results in Figure 7 and comparing to
those we manually computed in Figure 2 we see that they are the
same. Still good, at least so far.

4.4 Distribution of Single-source Shortest Paths
Single-source shortest path (SSSP) is the most complex of our
three validation metrics. Though our validation graph is indeed
small and easy to analyze by hand, and while individual shortest
paths are relatively easy to see, recognizing shortest paths from a
single vertex to all others is not readily obvious through casual
observation. Since we cannot “just see it” we need a more formal
justification for our baseline results if we are to believe them later
when evaluating G*.
Time to hit the books. Page 652 of the third edition of
Introduction to Algorithms by Cormen, Leiserson, Rivest, and
Stein (CLRS) [1] includes an even simpler graph showing the
execution of the Bellman-Ford SSSP algorithm. We built that
graph in our PostgreSQL model to test our implementation of
Bellman-Ford. Details of this meta-experiment are included in the
appendices and available online [6]. As shown in Figure 8, we
successfully validated our PostgreSQL implementation against the
CLRS reference.

Figure 8. Validating our SSSP code against CLRS reference
Our pg/plsql code for Bellman-Ford is given in Figure 9.

Figure 9. PostgreSQL single-source shortest path code

create or replace function shortestPath(graphId integer,
 fromVertex integer) returns boolean as $$
declare
 numVertexesInGraph integer;
 e record; -- Index variable used to iterate over the edges.
 fromVertexEst, toVertexEst, currentEdgeWeight, newEst real;
begin
 -- Initialize the vertex data. (CLRS 3ed, page 648)
 update Vertexes
 set sssp_est = 32768, sssp_pred = NULL -- TODO: Use a more natural stand-in for infinity. (MaxInt() or something.)
 where Vertexes.gid = graphId;
 -- Set our fromVertex's sssp_est to 0, since we're already there.
 update Vertexes set sssp_est = 0 where Vertexes.gid = graphId and Vertexes.vid = fromVertex;
 -- Iterate over all of the count(verticies in our target graph)-1 times
 select count(*) into strict numVertexesInGraph from Vertexes where Vertexes.gid = graphId;
 for i in 1 .. numVertexesInGraph - 1 loop
 -- Iterate over all of the edges in our target graph.
 for e in select Edges.fromVertex, Edges.toVertex, Edges.weight from Edges where Edges.gid = graphId loop
 -- Relax (CLRS 3ed, page 649)
 select Vertexes.sssp_est into strict fromVertexEst from Vertexes
 where Vertexes.gid = graphId and Vertexes.vid = e.fromVertex;
 select Vertexes.sssp_est into strict toVertexEst from Vertexes
 where Vertexes.gid = graphId and Vertexes.vid = e.toVertex;
 currentEdgeWeight = coalesce(e.weight,1); -- NULL edge weights are coalesced to 1.
 if toVertexEst > (fromVertexEst + currentEdgeWeight) then
 -- Update the new path estimate and predecessor vertex for the current vertex (v).
 newEst := (fromVertexEst + currentEdgeWeight);
 update Vertexes set sssp_est = newEst, sssp_pred = e.fromVertex
 where Vertexes.gid = graphId and Vertexes.vid = e.toVertex;
 end if;
 end loop;
 end loop;
 -- TODO: Check for negative cycles (CLRS 3ed page 651) and ROLLBACK if there are any. Else COMMIT.
 return true;
end;
$$ language plpgsql;

Now that were were confident in our SSSP code we ran it against
our validation graph with source vertex = 0. Note the results in
Figure 10.

Figure 10. PostgreSQL SSSP from vertex 0 results

5. NEO4J RESULTS
5.1 Modeling the Graph
Neo4j has a simple API for graph generation, update, and graph -
wide calculations. We use community edition, version 1.6.1.
In graph modeling, we used same data as PostgreSQL (and later
G*) for input. Each vertex has directed or undirected edges. Our
validation application initializes the graph with the
generateGraph method. To create a relation between two vertexes
we create a new relation type as RelTypes.Follows. Also, for each
relation we assign a default cost of one (1). We’ll use this in the

shortest path metric. Additionally, we used a hash map to store
vertex IDs and corresponding IDs given by Neo4j. A portion of
this code is shown in Figure 11.

Figure 11. Creating the graph in Neo4j

5.2 Distribution of Vertex Degrees
For this metric the degreeDistributionCalculator method
calculates the total vertex degree for each vertex. First we define
TraversalDescription as followers then we iterate over all
vertices and explore their neighbors. Our full source code is in the
appendices and online [6]. Our results are given in Figure 12.

Figure 12. Neo4j Distribution of vertex degree results

Relationship relationship =
 sourceVertex.createRelationshipTo(destinationVertex,
 RelTypes.FOLLOWS);
relationship.setProperty("cost", 1);
 ¦
HashMap<Integer, Long> nodeListMap =
 new HashMap<Integer, Long>();
 ¦
EmbeddedGraphDatabase graphDatabase =
 new EmbeddedGraphDatabase(".../neo4j-galaxy");
Transaction tr = graphDatabase.beginTx();
generateGraph(graphDatabase);
tr.success();
tr.finish();
graphDatabase.shutdown();

In outgoing degree 2 there are 6 nodes
In outgoing degree 4 there are 3 nodes
In outgoing degree 5 there are 2 nodes
In outgoing degree 6 there are 3 nodes
In outgoing degree 7 there are 4 nodes
In outgoing degree 8 there are 2 nodes
In outgoing degree 10 there are 1 nodes

Comparing our Neo4j results in Figure 12 to those we manually
computed in Figure 2 and those from PostgreSQL in Figure 5 we
see that they are all consistent and match. Excellent.

5.3 Distribution of Clustering Coefficients
Neo4j has some difficulties like reaching collection size and
randomAccess to vertexes according to property. For this part
these problems emerged in multiple iterations stated in each other
which caused polynomial performance problems. Nonetheless,
our validation application first retrieved all vertices then for each
vertex, all neighbors. After that, for all neighbors we sum actual
edges among them and divide as noted in section 2.2. Our results
are given in Figure 13.

Figure 13. Neo4j clustering coefficients results
Counting up our Neo4j results in Figure 13 and comparing them
to those we manually computed in Figure 2 and those from
PostgreSQL in Figure 7 we see some differences. There are some
issues to be addressed in future work here. See section 8.

5.4 Distribution of Single-source Shortest Paths
For this metric we use the singleSourceShortestPathCalculator
method. We direct ly used Neo4j’s bui l t - in method
GraphAlgoFactory.dijkstra to find shortest path between two
vertices. For n vertexes, it iterates on n2 cases from all vertexes to
all vertexes, calculating the all shortest paths.

Figure 14. Neo4j SSSP code
Executing the code in Figure 14 we get our results, presented here
in Figure 15.

 0 - 4 neighbors with 0 external paths=> LCC 0.0
 1 - 3 neighbors with 0 external paths=> LCC 0.0
 2 - 4 neighbors with 0 external paths=> LCC 0.0
 3 - 3 neighbors with 0 external paths=> LCC 0.0
 4 - 3 neighbors with 0 external paths=> LCC 0.0
 5 - 1 neighbors with 0 external paths=> LCC NaN
 6 - 1 neighbors with 0 external paths=> LCC NaN
 7 - 4 neighbors with 1 external paths=> LCC 0.1667
 8 - 3 neighbors with 2 external paths=> LCC 0.6667
 9 - 2 neighbors with 0 external paths=> LCC 0.0
10 - 1 neighbors with 0 external paths=> LCC NaN
11 - 2 neighbors with 0 external paths=> LCC 0.0
12 - 3 neighbors with 1 external paths=> LCC 0.3333
13 - 3 neighbors with 2 external paths=> LCC 0.6667
14 - 5 neighbors with 3 external paths=> LCC 0.3
15 - 3 neighbors with 4 external paths=> LCC 1.3333
16 - 1 neighbors with 0 external paths=> LCC NaN
17 - 3 neighbors with 1 external paths=> LCC 0.3333
18 - 1 neighbors with 0 external paths=> LCC NaN
19 - 2 neighbors with 0 external paths=> LCC 0.0
20 - 1 neighbors with 0 external paths=> LCC NaN

Figure 15. Neo4j SSSP from vertex 0 results
Comparing these results to those from PostgreSQL in Figure 10
we see that they are the same. Extra cool is the fact that we’ve
also cross-validated the Bellman-Ford algorithm and Dijkstra’s.

6. EVALUATING G*
6.1 Modeling the Graph
G* is a research graph database currently under development at
the University at Albany under Prof. Jeong-Hyon Hwang
(jhh@cs.albany.edu). See [2], [3] for details. We express our
validation graph as one source vertex ID followed by one or more
destination vertex IDs in a plain text file. (Our file, galaxy.dat, is
available online [6].)
When executing import_graph.sh (which makes a call to
graphdb.GraphImporter from the G* JAR) with galaxy.dat we
observe that G* reports the presence of 73 vertices. There are only
21 in the our graph and in the data file, so this is not a good sign.
But let’s press on and see what happens when we look at our
validation metrics.

6.2 Distribution of Vertex Degrees
We formulate this query in G* with the code shown in Figure 16.
Note how precise and compact this code is compared to
PostgreSQL and Neo4j.

Figure 16. G* Distribution of vertex degrees code
Executing the G* code in Figure 16 we get the results, presented
here in Figure 17.

Figure 17. G* Distribution of vertex degree results
Comparing these results from G* to those we computed manually
(Figure 2) and those from PostgreSQL (Figure 5) and Neo4j
(Figure 12) we are forced to observe that G* is wrong.

In outgoing direction on distance 0 there are 1 nodes
In outgoing direction on distance 1 there are 4 nodes
In outgoing direction on distance 2 there are 5 nodes
In outgoing direction on distance 3 there are 4 nodes
In outgoing direction on distance 4 there are 4 nodes
In outgoing direction on distance 5 there are 1 nodes
In outgoing direction on distance 6 there are 1 nodes
In outgoing direction on distance 7 there are 1 nodes

%select graph.id, histogram(degree(vertex).degree, [0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100])
%from graph(*) group by graph.id

vertex@* = VertexOperator([], *);
degree@* = DegreeOperator([vertex@local]);
histogram@* = HistogramOperator([degree@local], degree,
Integer, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100]);
union@1 = UnionOperator([histogram@*]);
histogramMerge@1 =
HistogramMergeOperator([union@local]);

6.3 Distribution of Clustering Coefficients
We formulate this query in G* with the code noted in Figure 18.
Note once again how precise and compact this code is compared
to PostgreSQL and Neo4j. That’s pretty cool.

Figure 18. G* Distribution of clustering coefficients code
Executing the G* code in Figure 18 we get our results, presented
here in Figure 19.

Figure 19. G* Distribution of clustering coefficients results
Comparing these results from G* to those we computed manually
(Figure 2) and those from PostgreSQL (Figure 7), we are forced to
observe that G* is once again wrong. Bummer.

6.4 Distribution of Single-source Shortest Paths
We formulate this query (from vertex 0) in G* with the code noted
in Figure 20.

Figure 20. G* SSSP code
Executing the G* code in Figure 20 we get our results, presented
here in Figure 21.

Figure 21. G* SSSP from vertex 0 results
Comparing these results from G* to those from PostgreSQL
(Figure 10) and Neo4j (Figure 15), we are pleased to observe that
G* is very close. For reasons that are left to explore in future work
(see section 8) we see that G* is far more accurate for SSSP than
for the other two validation metrics we measured. Interesting.

%select graph.id, histogram(c_coeff(vertex).c_coeff, [0,
0.16, 0.3, 0.33 0.67, 1.0])
%from graph(*) group by graph.id

vertex@* = VertexOperator([], *);
c_coeff@* = CCoeffOperator([vertex@local]);
histogram@* = HistogramOperator([c_coeff@local],
c_coeff, Double, [0, 0.16, 0.3, 0.33 0.67, 1.0]);
union@1 = UnionOperator([histogram@*]);
histogramMerge@1 =
HistogramMergeOperator([union@local]);

%select graph.id, histogram(distance(vertex,
0).distance, [0, 1, 2, 4, 8, 16, 32, 64, 128])
%from graph(*) group by graph.id

min_dist@* = MinDistOperator([], 0, *);
histogram@* = HistogramOperator([min_dist@local],
min_dist, Double, [0, 1, 2, 4, 8, 16, 32, 64, 128]);
union@1 = UnionOperator([histogram@*]);
histogramMerge@1 =
HistogramMergeOperator([union@local]);

7. CONCLUSIONS
Though G* failed to perform accurately in two of the three
validation metrics we used, that the third, SSSP, performed so
well as give us hope that getting the others into compliance may
not be terribly difficult nor take terribly long once the source code
is analyzed. Overall, our analysis of G* yields hope for the future.

8. FUTURE WORK
• Improve our Neo4j clustering coefficient implementation,

since it’s at least a little broken here.
• We shall be examining G*’s implementation of vertex degree

distribution and clustering coefficient distribution, especially
in comparison with SSSP, as SSSP is far more accurate than
the first two.

• We should also like to implement more graph algorithms for
validation.

• Automation and logging is necessary for long-term testing
and measurement of progress as G* evolves.

There is much to do.

9. ACKNOWLEDGMENTS
Our thanks go out to Prof. Jeong-Hyon Hwang for introducing us
to this fascinating topic as well as for his enthusiasm and support.

10. REFERENCES
[1] Cormen, Leiserson, Rivest, Stein - 2009. Introduction to

Algorithms. The MIT Press. ISBN 978-0-262-53305-8
[2] Hwang, Spillane - 2012. G*: A Parallel System for

Efficiently Managing Large Graphs.
[3] http://www.nsf.gov/awardsearch/showAward.do?

AwardNumber=1149372 accessed on May 11, 2012
[4] Izquierdo and Hanneman. Introduction to the Formal

Analysis of Social Networks Using Mathematica. Section
7.6.2. 2005 http://library.wolfram.com/infocenter/TechNotes/
6638/Izquierdo_Hanneman.pdf accessed May 12, 2012

[5] Watts and Strogatz. 1998 Collective Dynamics of “Small-
world” Networks. Nature vol 393 - 4 June 1998

[6] http://www.labouseur.com/projects/dataGauge/

