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ABSTRACT
In this paper we describe the basis of a validation framework for 
G* (“gee star”), a research graph database currently under 
development at the University at  Albany under Prof. Jeong-Hyon 
Hwang (jhh@cs.albany.edu). We develop a validation graph small 
enough to evaluate our test metrics by hand (and with Ms-Excel). 
We then implement our test metrics in the PostgreSQL open 
source relational database management system and also in the 
open source Neo4j graph database. After showing that  our 
PostgreSQL and Neo4j results match our manually calculated 
traits, we examine the accuracy of G* in this context.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks
G.2.2 [Discrete Mathematics]: Graph Theory – graph algorithms
H.2  [Database Management]: Systems

General Terms
Measurement, Experimentation, Theory, Verification.

Keywords
Graph Database, PostgreSQL, Neo4j, validation, G*, G-star

1. INTRODUCTION
A long time ago in a galaxy far, far away... Oops, wrong saga! 
This is not a tale of good and evil battling it out in a universe of 
FTL (Faster Than Light travel as well as an elegant proof of 
Fermat’s Last  Theorem). Neither is this a tale of two cities, 
although we originally set  out to measure the best of times and the 
worst of times. But  we found some issues  with G* so following 
the sage advice that in software development one should get it 
right before one worries about getting it fast  (or beautiful), we 
pivoted to building a validation framework instead of 
benchmarking. We present here a tale of three databases: 
PostgreSQL, Neo4j, and G*.  

2. TEST METRICS
We use three (3) graph algorithms in this validation framework: 
the distribution of vertex degrees, distribution of clustering 
coefficients, and the distribution of single-source shortest  paths. 
Each of these metrics is of crucial  importance in many aspects of 
graph processing (clustering, summarizing, searching) so it’s 
worth talking just a little about each of them.

2.1 Distribution of Vertex Degrees
Distribution of Vertex Degrees is useful to understand as it 
measures whether the graph’s connectivity is strong or not. The  
Vertex Degree in a graph stands for the count of incoming and 
outgoing  edges of vertex to and from its neighbors. The degree 
distribution is probability, P(k),  which describes portion of nodes 
which have a certain number of neighbors. P(k) = nk/n where 
there are nk nodes on degree k in a graph of n nodes.

2.2 Distribution of Clustering Coefficients
Distribution of Clustering Coefficients (CC) is one of the most 
important  metrics used to analyze graph heterogeneity. To 
calculate this measure we first calculate all possible edges among 
neighbors of a vertex, which is (n*(n-1))/2 if there are n 
neighbors. Then we find  actual number of connections, m, between 
these neighbors. Each vertex has its own CC, and for node x, 
CC(x)= m/((n*(n-1))/2). For further explanation and examples 
please see [4] and [5].

2.3 Distribution of Single-source Shortest Paths
Distribution of Single-source Shortest Paths (SSSP) is a metric 
that measures the distribution of the lengths of shortest  paths to all 
reachable vertexes from a given source vertex. We apply two 
techniques to find shortest paths:  the well-known shortest path 
search algorithm named for (and by) Dijkstra and the Bellman-
Ford  algorithm. On Neo4j we apply Dijkstra repeatedly and in 
PostgreSQL we use Bellman-Ford. This shows that  we preserve 
consistency of results between these two different algorithms.

3. VALIDATION GRAPH
In order to bootstrap our chain of trusted validation cases we 
began with a simple 21-vertex graph. Our base case had to be 
small enough that we could calculate our validation metrics by 
hand or with Ms-Excel.  

3.1 The Great Underground Empire
We chose the first (ground) level of the Great  Underground 
Empire from the seminal interactive fiction game Zork by 
Infocom. (What computer scientist didn’t play some form of 
interactive fiction game?  And why not  go back to one of the 
originals?1) This 21-vertex graph is  almost  but not entirely 
undirected. Our graphs are all directed for greater generality, so 
we added sets of edges  between all undirected vertexes. For the 
few directed edges we added only one edge (of course). Since 
edges in Zork are not labeled with weight we assume a uniform 
weight of one (1) for all  of them. Figure 1 shows our validation 
map as it appeared in Zork documentation a few decades ago.

1 Yes, we know that William Crowther’s Colossal Cave game predates Zork, but that’s too obscure for our proposes here.
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Figure 1. Zork map level 1 - Our validation graph

3.2 Validation Traits
There are 53 edges in our graph. We counted up the in-degree and 
out-degree for each vertex. They both sum to 53, which is nice, 
since there are 53 edges and a vertex on both ends of every one. 
Thus the sum of the total  vertex degrees  (in-degree plus  out-
degree) is  106, or twice the number of edges in  the graph. Good 
and consistent.
Figure 2 shows our manual calculations for the distribution of 
vertex degrees and clustering coefficients traits.

Figure 2. Manually calculated validation traits

4. POSTGRES RESULTS
4.1 Modeling the Graph
We created  a relational database in PostgreSQL (version  9) to 
model a collection of graphs. The identifier names are self-
explanatory. See Figure 3 for the code. Note the careful  use of 
foreign keys on lines 8, 18, 24, and 25 to ensure that there is  no 
“bleed over” among separate graphs. The sssp_ fields on lines 12 
and 13 are used in  and store the results of our single-source 
shortest path computation.

Figure 3. PostgreSQL representation of graphs
Several insert  statements later we have a populated database and 
can begin calculating our validation metrics.

4.2 Distribution of Vertex Degrees
To compute the distribution of vertex degrees we began by 
creating two views on the data: one for in-degree and one for out-
degree. (The full source code available is online [6] and in these 
appendices.) Given those two views, we computed the distribution 
of vertex degrees with the code in Figure 4.

Figure 4. PostgreSQL distribution of vertex degrees code
Running the code in Figure 4 against our validation graph we get 
the following results, presented in Figure 5.

 1  create table Graphs (
 2     gid  integer not null,
 3     name text,
 4   primary key (gid)
 5  );
 6  
 7  create table Vertexes (
 8     gid       integer not null 
                         references Graphs(gid),
 9     vid       bigint  not null,
10     name      text,
11     data      text,
12     sssp_est  int,
13     sssp_pred int,
14   primary key (gid, vid)
15  );
16  
17  create table Edges (
18     gid        integer not null 
                          references Graphs(gid),
19     fromVertex bigint  not null,
20     toVertex   bigint  not null,
21     weight     real,
22     data       text,
23   primary key (gid, fromVertex, toVertex),
24   foreign key (gid, fromVertex) 
                  references Vertexes(gid, vid),
25   foreign key (gid, toVertex)   
                  references Vertexes(gid, vid)
26  );

create view Graph0vertexdegrees
 as
select gin.vid, 
       gin.name,
       ("In_degree" + "Out_degree") as "Vertex_degree"
from Graph0indegrees  gin, 
     Graph0outdegrees gout
where gin.vid = gout.vid
order by vid;
-- Test it.
select *
from Graph0vertexdegrees;

-- Compute the distribution of vertex degrees.
select "Vertex_degree", count("Vertex_degree")
from Graph0vertexdegrees
group by "Vertex_degree"
order by "Vertex_degree";



Figure 5. PostgreSQL Distribution of vertex degrees results
Comparing our PostgreSQL results in Figure 5 to those we 
manually computed in Figure 2 we see that they match. So far, so 
good.

4.3 Distribution of Clustering Coefficients
We created another view, this time for calculating clustering 
coefficients. The rather complex (but  hopefully readable) 
clustering coefficient code is given in Figure 6.

Figure 6. PostgreSQL clustering coefficients code
Running the code in Figure 6 against our validation graph we get 
the following results, presented in Figure 7.

create or replace view Graph0clusteringcoefficients
 as 
select np.vid, 
       np.neighbors, 
       coalesce(na.actual, 0) as "actual_connections",
       np.possible as "possible_connections", 
       ( cast(coalesce(na.actual, 0) as real) / 
cast(np.possible as real) ) as "clustering coefficient"
from 
    -- Possible neighbor connections
    (select Vertexes.vid, "neighbors", ( ("neighbors" * 
("neighbors" - 1) / 2) ) as "possible"
     from Vertexes , 
       (select v.vid, count(*) as "neighbors"
        from Vertexes v, Edges e
        where v.gid = 0 and e.gid = 0
          and e.fromVertex = v.vid
        group by v.vid
       ) as nptemp
     where Vertexes.vid = nptemp.vid 
       and "neighbors" > 1
    ) as np
left outer join
    -- Actual neighbor connections
    (select v.vid, 
            count(*) as "actual"
     from Vertexes v, Edges e1, 
          Edges e2,   Edges e3
     where v.gid = 0 and e1.gid = 0
       and e1.fromVertex = v.vid
       and e2.fromVertex = e1.toVertex
       and e3.fromVertex = e2.toVertex
       and e3.toVertex = v.vid
     group by v.vid
    ) as na
on np.vid = na.vid
order by np.vid;

Figure 7. PostgreSQL clustering coefficients results
Counting up our PostgreSQL results in Figure 7 and comparing to 
those we manually computed in Figure 2 we see that they are the 
same. Still good, at least so far.

4.4 Distribution of Single-source Shortest Paths
Single-source shortest path  (SSSP) is  the most complex of our 
three validation metrics. Though our validation graph is indeed 
small and easy to analyze by hand, and while individual  shortest 
paths are relatively easy to see, recognizing shortest  paths from a 
single vertex to all others is not readily obvious through casual 
observation. Since we cannot “just see it” we need a more formal 
justification for our baseline results if we are to believe them later 
when evaluating G*.
Time to hit  the books. Page 652 of the third edition of 
Introduction to Algorithms by Cormen, Leiserson, Rivest, and 
Stein (CLRS) [1] includes an even simpler graph showing the 
execution of the Bellman-Ford SSSP  algorithm. We built that 
graph in our PostgreSQL model to test  our implementation of 
Bellman-Ford. Details of this meta-experiment are included  in the 
appendices and available online [6]. As shown in Figure 8, we 
successfully validated our PostgreSQL implementation against the 
CLRS reference. 

Figure 8. Validating our SSSP code against CLRS reference
Our pg/plsql code for Bellman-Ford is given in Figure 9.



Figure 9. PostgreSQL single-source shortest path code

create or replace function shortestPath(graphId integer,
                                     fromVertex integer) returns boolean as $$
declare
    numVertexesInGraph integer;
    e                  record; -- Index variable used to iterate over the edges.
    fromVertexEst, toVertexEst, currentEdgeWeight, newEst real;
begin
    -- Initialize the vertex data. (CLRS 3ed, page 648)
    update Vertexes 
    set sssp_est = 32768, sssp_pred = NULL  -- TODO: Use a more natural stand-in for infinity. (MaxInt() or something.)
        where Vertexes.gid = graphId;
    -- Set our fromVertex's sssp_est to 0, since we're already there.
    update Vertexes set sssp_est = 0 where Vertexes.gid = graphId and Vertexes.vid = fromVertex;
    -- Iterate over all of the count(verticies in our target graph)-1 times
    select count(*) into strict numVertexesInGraph  from Vertexes where Vertexes.gid = graphId;    
    for i in 1 .. numVertexesInGraph - 1 loop
        -- Iterate over all of the edges in our target graph. 
        for e in select Edges.fromVertex, Edges.toVertex, Edges.weight from Edges where Edges.gid = graphId loop 
            -- Relax (CLRS 3ed, page 649)
            select Vertexes.sssp_est into strict fromVertexEst from Vertexes 
                   where Vertexes.gid = graphId and Vertexes.vid = e.fromVertex;
            select Vertexes.sssp_est into strict   toVertexEst from Vertexes 
                   where Vertexes.gid = graphId and Vertexes.vid = e.toVertex;
            currentEdgeWeight = coalesce(e.weight,1); -- NULL edge weights are coalesced to 1.
            if toVertexEst > (fromVertexEst + currentEdgeWeight) then
                -- Update the new path estimate and predecessor vertex for the current vertex (v).
                newEst := (fromVertexEst + currentEdgeWeight);
                update Vertexes set sssp_est = newEst, sssp_pred = e.fromVertex 
                       where Vertexes.gid = graphId and Vertexes.vid = e.toVertex;
            end if;
        end loop;
    end loop;    
    -- TODO: Check for negative cycles (CLRS 3ed page 651) and ROLLBACK if there are any. Else COMMIT.
    return true;
end;
$$ language plpgsql;

Now that were were confident in our SSSP code we ran it against 
our validation graph with source vertex = 0. Note the results in 
Figure 10.

Figure 10. PostgreSQL SSSP from vertex 0 results

5. NEO4J RESULTS
5.1 Modeling the Graph
Neo4j has a simple API for graph generation, update, and graph -
wide calculations. We use community edition, version 1.6.1.
In graph modeling, we used same data as PostgreSQL (and later 
G*) for input. Each vertex has directed or undirected edges. Our 
validation application initializes the graph with the   
generateGraph method. To create a relation between two vertexes 
we create a new relation type as RelTypes.Follows. Also, for each 
relation we assign a default cost of one (1). We’ll use this in  the 

shortest path metric. Additionally, we used  a hash map to store 
vertex IDs and corresponding IDs given by Neo4j. A portion of 
this code is shown in Figure 11.

Figure 11. Creating the graph in Neo4j

5.2 Distribution of Vertex Degrees
For this metric the degreeDistributionCalculator method 
calculates the total vertex degree for each vertex. First  we define 
TraversalDescription as followers then we iterate over all 
vertices and explore their neighbors. Our full source code is in the 
appendices and online [6]. Our results are given in Figure 12.

Figure 12. Neo4j Distribution of vertex degree results

Relationship relationship =
    sourceVertex.createRelationshipTo(destinationVertex, 
                                      RelTypes.FOLLOWS);
relationship.setProperty("cost", 1);
 ¦
HashMap<Integer, Long> nodeListMap = 
                           new HashMap<Integer, Long>();
 ¦
EmbeddedGraphDatabase graphDatabase = 
          new EmbeddedGraphDatabase(".../neo4j-galaxy");
Transaction tr = graphDatabase.beginTx();
generateGraph(graphDatabase);
tr.success();
tr.finish();
graphDatabase.shutdown();

In outgoing degree 2 there are 6 nodes
In outgoing degree 4 there are 3 nodes
In outgoing degree 5 there are 2 nodes
In outgoing degree 6 there are 3 nodes
In outgoing degree 7 there are 4 nodes
In outgoing degree 8 there are 2 nodes
In outgoing degree 10 there are 1 nodes



Comparing our Neo4j results in Figure 12 to those we manually 
computed in Figure 2 and those from PostgreSQL in Figure 5 we 
see that they are all consistent and match. Excellent.

5.3 Distribution of Clustering Coefficients
Neo4j has some difficulties like reaching collection size and 
randomAccess to vertexes according to property. For this part 
these problems emerged in multiple iterations stated in each other 
which caused polynomial performance problems. Nonetheless, 
our validation application first  retrieved all  vertices then for each 
vertex, all neighbors. After that, for all neighbors we sum actual 
edges among them and divide as noted in section 2.2. Our results 
are given in Figure 13.

Figure 13. Neo4j clustering coefficients results
Counting up our Neo4j results in Figure 13 and comparing them 
to those we manually computed in Figure 2 and those from 
PostgreSQL in Figure 7 we see some differences. There are some 
issues to be addressed in future work here. See section 8.

5.4 Distribution of Single-source Shortest Paths
For this  metric we use the singleSourceShortestPathCalculator 
method. We direct ly used Neo4j’s bui l t - in method 
GraphAlgoFactory.dijkstra to find shortest path between two 
vertices. For n vertexes, it iterates  on n2 cases from all vertexes to 
all vertexes, calculating the all shortest paths. 

Figure 14. Neo4j SSSP code
Executing the code in Figure 14 we get our results, presented here 
in Figure 15.

 0 - 4 neighbors with 0 external paths=> LCC 0.0
 1 - 3 neighbors with 0 external paths=> LCC 0.0
 2 - 4 neighbors with 0 external paths=> LCC 0.0
 3 - 3 neighbors with 0 external paths=> LCC 0.0
 4 - 3 neighbors with 0 external paths=> LCC 0.0
 5 - 1 neighbors with 0 external paths=> LCC NaN
 6 - 1 neighbors with 0 external paths=> LCC NaN
 7 - 4 neighbors with 1 external paths=> LCC 0.1667
 8 - 3 neighbors with 2 external paths=> LCC 0.6667
 9 - 2 neighbors with 0 external paths=> LCC 0.0
10 - 1 neighbors with 0 external paths=> LCC NaN
11 - 2 neighbors with 0 external paths=> LCC 0.0
12 - 3 neighbors with 1 external paths=> LCC 0.3333
13 - 3 neighbors with 2 external paths=> LCC 0.6667
14 - 5 neighbors with 3 external paths=> LCC 0.3
15 - 3 neighbors with 4 external paths=> LCC 1.3333
16 - 1 neighbors with 0 external paths=> LCC NaN
17 - 3 neighbors with 1 external paths=> LCC 0.3333
18 - 1 neighbors with 0 external paths=> LCC NaN
19 - 2 neighbors with 0 external paths=> LCC 0.0
20 - 1 neighbors with 0 external paths=> LCC NaN

Figure 15. Neo4j SSSP from vertex 0 results
Comparing these results to those from PostgreSQL in Figure 10 
we see that they are the same. Extra cool is the fact that we’ve 
also cross-validated the Bellman-Ford algorithm and Dijkstra’s.

6. EVALUATING G*
6.1 Modeling the Graph
G* is a research graph database currently  under development  at 
the University at Albany under Prof. Jeong-Hyon Hwang 
(jhh@cs.albany.edu). See [2], [3] for details. We express  our 
validation graph  as  one source vertex ID followed by one or more 
destination vertex IDs in a plain text  file. (Our file, galaxy.dat, is 
available online [6].) 
When executing import_graph.sh (which makes a call to 
graphdb.GraphImporter from the G* JAR) with galaxy.dat we 
observe that G* reports the presence of 73 vertices. There are only 
21  in the our graph and in the data file, so this  is not a good sign. 
But  let’s  press on and see what happens when we look at  our 
validation metrics.

6.2 Distribution of Vertex Degrees
We formulate this query in G* with the code shown in Figure 16. 
Note how precise and compact this  code is compared to 
PostgreSQL and Neo4j. 

Figure 16. G* Distribution of vertex degrees code
Executing the G* code in Figure 16 we get  the results, presented 
here in Figure 17.

Figure 17. G* Distribution of vertex degree results
Comparing these results from G* to those we computed manually 
(Figure 2) and those from PostgreSQL (Figure 5) and Neo4j 
(Figure 12) we are forced to observe that G* is wrong.

In outgoing direction on distance 0 there are 1 nodes
In outgoing direction on distance 1 there are 4 nodes
In outgoing direction on distance 2 there are 5 nodes
In outgoing direction on distance 3 there are 4 nodes
In outgoing direction on distance 4 there are 4 nodes
In outgoing direction on distance 5 there are 1 nodes
In outgoing direction on distance 6 there are 1 nodes
In outgoing direction on distance 7 there are 1 nodes

%select graph.id, histogram(degree(vertex).degree, [0, 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100])
%from graph(*) group by graph.id

vertex@* = VertexOperator([], *);
degree@* = DegreeOperator([vertex@local]);
histogram@* = HistogramOperator([degree@local], degree, 
Integer, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100]);
union@1 = UnionOperator([histogram@*]);
histogramMerge@1 = 
HistogramMergeOperator([union@local]);



6.3 Distribution of Clustering Coefficients
We formulate this query in G* with the code noted in Figure 18. 
Note once again  how precise and compact this code is compared 
to PostgreSQL and Neo4j. That’s pretty cool.

Figure 18. G* Distribution of clustering coefficients code
Executing the G* code in Figure 18 we get our results, presented 
here in Figure 19.

Figure 19. G* Distribution of clustering coefficients results
Comparing these results from G* to those we computed manually 
(Figure 2) and those from PostgreSQL (Figure 7), we are forced to 
observe that G* is once again wrong. Bummer.

6.4 Distribution of Single-source Shortest Paths
We formulate this query (from vertex 0) in G* with the code noted 
in Figure 20. 

Figure 20. G* SSSP code
Executing the G* code in Figure 20 we get our results, presented 
here in Figure 21.

Figure 21. G* SSSP from vertex 0 results
Comparing these results from G* to  those from PostgreSQL 
(Figure 10) and Neo4j (Figure 15), we are pleased to observe that 
G* is very close. For reasons that are left to  explore in future work 
(see section 8) we see that G* is far more accurate for SSSP than 
for the other two validation metrics we measured. Interesting.

%select graph.id, histogram(c_coeff(vertex).c_coeff, [0, 
0.16, 0.3, 0.33 0.67, 1.0])
%from graph(*) group by graph.id

vertex@* = VertexOperator([], *);
c_coeff@* = CCoeffOperator([vertex@local]);
histogram@* = HistogramOperator([c_coeff@local], 
c_coeff, Double, [0, 0.16, 0.3, 0.33 0.67, 1.0]);
union@1 = UnionOperator([histogram@*]);
histogramMerge@1 = 
HistogramMergeOperator([union@local]);

%select graph.id, histogram(distance(vertex, 
0).distance, [0, 1, 2, 4, 8, 16, 32, 64, 128])
%from graph(*) group by graph.id

min_dist@* = MinDistOperator([], 0, *);
histogram@* = HistogramOperator([min_dist@local], 
min_dist, Double, [0, 1, 2, 4, 8, 16, 32, 64, 128]);
union@1 = UnionOperator([histogram@*]);
histogramMerge@1 = 
HistogramMergeOperator([union@local]);

7. CONCLUSIONS
Though G* failed to perform accurately in two of the three 
validation metrics we used, that  the third, SSSP, performed so 
well as  give us hope that getting the others into  compliance may 
not be terribly difficult nor take terribly long once the source code 
is analyzed. Overall, our analysis of G* yields hope for the future.

8. FUTURE WORK
• Improve our Neo4j clustering  coefficient implementation, 

since it’s at least a little broken here.
• We shall  be examining G*’s implementation of vertex degree 

distribution and clustering coefficient distribution, especially 
in  comparison with SSSP, as SSSP is far more accurate than 
the first two.

• We should also like to implement  more graph algorithms for 
validation.

• Automation and logging is necessary for long-term testing 
and measurement of progress as G* evolves.

There is much to do.
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