
The Gamma
Database Machine

a 1990 paper from the
IEEE Transactions on Knowledge and Data Engineering

written by
David J. DeWitt, Shahram Ghandeharizadeh, Donovan A.
Schneider, Allan Bricker, Hui-i Hsiao, and Rick Rasmussen

presented by
Alan G. Labouseur - alan@Labouseur.com

mailto:alan@Labouseur.com
mailto:alan@Labouseur.com

Gamma: the Big Idea
• Database - stores data

• Relational

‣ structured data

‣ tables of rows and columns

‣ context turns data into information

• Supports Data Definition

• Supports Data Manipulation: CRUD

Gamma: the Big Idea
• Parallel - many processors, many disks

• Three keys to parallelism:

1. tables are horizontally partitioned

2.parallel hash algorithms for
relational operators

3. coordinated dataflow scheduling

• Shared-nothing architecture

The Plan
• History

• Hardware Architecture

• Software Architecture

• Query Algorithms

• Transactions

• Performance

• Summary

The Plan
• History

• Hardware Architecture

• Software Architecture

• Query Algorithms

• Transactions

• Performance

• Summary

History
• Began with DIRECT (1977-1984)

‣ One of the first operational parallel
database systems. [2]

‣ Built on the DEC PDP 11 (16-bit)

History
• 1984 - The GAMMA project began in

January 1984 and ran until late 1992 at
which point the code was so broken from
years of patching that we gave up.

- David J. DeWitt on his
web site [2]

• Built on a network of
VAX computers (32-bit)

• Operational in 1985

History
• 1984

History
• 1984

History
• 1988: Intel ipsc/2 hypercube - 32 i386 CPUs

• Nodes connected via VLSI routers.

‣ Small messages sent as datagrams.

‣ Large messages sent via circuits.

The Plan
• History

• Hardware Architecture

• Software Architecture

• Query Algorithms

• Transactions

• Performance

• Summary

Hardware Architecture
• Shared-nothing

‣ All nodes are self-sufficient and
independent, sharing neither disks nor
memory nor CPU nor . . . anything,
communicating only by sending
messages. (Like people.)

• Storage is distributed among the nodes.

• Nodes are connected . . .

Hardware Architecture
• Why shared-nothing?

‣ In scalable, tunable, nearly delightful data
bases, [shared-nothing] systems will have
no apparent disadvantages compared to
the other alternatives [shared memory,
disk]. - Michael Stonebraker [3]

• This remains an excellent approach today.
(Erlang, Scala with Akka, others.)

• Shared-nothing scales better than shared
architectures. Why?

Hardware Architecture
• Converting from VAX to Intel

uncovered previously unseen bugs in
their code.

‣ The VAX did not trap null pointer
dereference errors.

‣ The Intel 386 did. They found a
number of hidden bugs.

• They also had to rewrite a lot of code
because the VAX began numbering
nodes at 1 while Intel began at 0.

The Plan
• History

• Hardware Architecture

• Software Architecture

• Query Algorithms

• Transactions

• Performance

• Summary

Software Architecture
• Storage Organization

‣ Tables are Horizontally Partitioned
across all disks at all nodes.

- exploits all available I/O bandwidth

‣ This “declustering” (Bubba) makes
parallelizing selections trivial.

- Just send a message to each node to
execute the selection operator with
the passed-in parameters.

Software Architecture
• Storage Organization

‣ Three declustering strategies.

1. round robin - default method

2. hashed - keys hashed into node ids

3. range partitioned (“shards”)

- Specify a range of keys for each
node in a Range Table.

- MongoDB and others do this today.

Software Architecture
• Storage Organization - Round Robin

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

01 02 03 04 05 06 07 08 09 10 11 12

Data Heap

Node 0

D
A
T
A

01

D
A
T
A

02

Node 1 Node 2

D
A
T
A

03

Software Architecture
• Storage Organization - Round Robin

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

01 02 03 04 05 06 07 08 09 10 11 12

Data Heap

Node 1 Node 2Node 0

D
A
T
A

01

D
A
T
A

04

D
A
T
A

07

D
A
T
A

10

D
A
T
A

02

D
A
T
A

05

D
A
T
A

08

D
A
T
A

11

D
A
T
A

03

D
A
T
A

06

D
A
T
A

09

D
A
T
A

12

Software Architecture
• Storage Organization - Hashed

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

01 02 03 04 05 06 07 08 09 10 11 12

Data Heap

Node 0

D
A
T
A

02

Node 2

(Goofy) Hash function: Even or Odd

Node 1

D
A
T
A

01

Software Architecture
• Storage Organization - Hashed

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

01 02 03 04 05 06 07 08 09 10 11 12

Data Heap

Node 1 Node 2Node 0

(Goofy) Hash function: Even or Odd

D
A
T
A

02

D
A
T
A

04

D
A
T
A

06

D
A
T
A

08

D
A
T
A

10

D
A
T
A

12

D
A
T
A

01

D
A
T
A

03

D
A
T
A

05

D
A
T
A

07

D
A
T
A

09

D
A
T
A

11

Software Architecture
• Storage Organization - Shards

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

D
A
T
A

01 02 03 04 05 06 07 08 09 10 11 12

Data Heap

Node 1 Node 2Node 0

D
A
T
A

11

D
A
T
A

12

Range Table
Condition Node

id <= 5 0

id > 5 and id <= 10 1

id > 10 2

D
A
T
A

01

D
A
T
A

02

D
A
T
A

03

D
A
T
A

04

D
A
T
A

05

D
A
T
A

06

D
A
T
A

07

D
A
T
A

08

D
A
T
A

09

D
A
T
A

10

Software Architecture
• Storage Organization

‣ Partition data is stored in the system
catalog via the Catalog Manager.

‣ This partition data is used in query
optimization and planning.

‣ Indexes are supported -- both
clustered and non-clustered -- and are
used in query optimization and
planning.

Software Architecture
• Indexes [4]

‣ No Index

- Scan the data

‣ With Index

- Clustered (not
pictured)

- Non-clustered
B-Tree

Software Architecture
• Gamma’s Process Structure

Software Architecture
• Catalog Manager

‣ Central repository
for all schema and
partition data.

‣ Loaded when
database is started.

‣ Ensures consistency among cached
copies elsewhere.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Software Architecture
• Query Manager

‣ Each user gets a
Query Manager
process.

‣ Locally caches
schema data.

‣ Provides interface for ad-hoc queries

‣ Performs query parsing, optimization,
planning, and compilation.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Software Architecture
• Scheduler Processes

‣ Each query is
controlled by a
scheduler process.

‣ Activates operator
processes on
participating nodes.

‣ They can be run on any node, ensuring
that none becomes a bottleneck.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Software Architecture
• Scheduler Processes

‣ If the Query
Manager/optimizer
notes that a query
requires only a
single site it is sent
to the appropriate
node for execution.

‣ In that case the scheduler processes
are bypassed.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Software Architecture
• Execution/Operator Processes

‣ There is one
operator process
for every relational
operator (select,
join, etc.) in the
compiled query.

‣ The scheduler spreads these out
over the nodes participating in the
query execution.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Software Architecture
• Query Execution Overview

‣ User invokes ad-
hoc query
interface.

‣ Range of u is users
Retrieve u.name
Where u.clue > 0

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Hey... What language is that?

Software Architecture
• Query Execution Overview

‣ A Query
Manager process
starts

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Software Architecture
• Query Execution Overview

‣ A Query
Manager process
starts,

‣ connects itself to
the Catalog
Manager process

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Software Architecture
• Query Execution Overview

‣ A Query
Manager process
starts,

‣ connects itself to
the Catalog
Manager process,

‣ and gets to work on the query.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Range of u is users
Retrieve u.name
Where u.clue > 0

Software Architecture
• Query Execution Overview

‣ The Query
Manager does...

- parsing

- optimization

- planning

‣ ... in the traditional relational ways,

‣ but with only hash-based joins.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Range of u is users
Retrieve u.name
Where u.clue > 0

Software Architecture
• Aside: Three Common Join Types

‣ the Nested-Loop join

‣ the Merge join

‣ the Hash join

Software Architecture
• Aside: the

Nested Loop Join
[4]

Software Architecture
• Aside: the Merge Join [4]

Software Architecture
• Aside: the Hash Join [4] - Gamma’s Join

Inner TableOuter Table

Software Architecture
• Query Execution Overview

‣ The Query
Manager does...

- parsing

- optimization

- planning

‣ ... in the traditional relational ways,

‣ but with only hash-based joins.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Range of u is users
Retrieve u.name
Where u.clue > 0

Software Architecture
• Query Execution Overview

‣ Now the Query
Manager
connects to an
idle scheduler

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Range of u is users
Retrieve u.name
Where u.clue > 0

Software Architecture
• Query Execution Overview

‣ Now the Query
Manager
connects to an
idle scheduler,

‣ and sends it the
planned,
compiled query.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Range of u is users
Retrieve u.name
Where u.clue > 0

A9 03 8D 18 00 A9
04 6D 18 00 8D 19
00 A2 01 AC 19 00
EA FF

Software Architecture
• Query Execution Overview

‣ The scheduler
activates operator
processes (select,
join, etc.) at
various nodes to
execute the query.

‣ The Query Manager waits as
the scheduler monitors the
progress.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

A9 03 8D 18 00 A9
04 6D 18 00 8D 19
00 A2 01 AC 19 00
EA FF

Software Architecture
• Query Execution Overview

‣ Each participating
operator process reads
tuples from the
database at its node,

‣ performs its operation
(index select, scan, etc.)

‣ and sends the matching
tuples . . . somewhere?

Operator Process
at Node N

DATABASE

Gamma Processor

Stream of Tuples

?
Matching Tuples

Software Architecture
• Query Execution Overview

‣ If we’re doing a join,
then there are other
processes available to
help with the join.

‣ But who gets what?

‣ How do we parallelize
the work of a join?

‣ Remember the Hash Join?

Operator Process
at Node N

DATABASE

Gamma Processor

Stream of Tuples

Join Processors

Matching Tuples

Software Architecture
• Gamma’s Hash Join [4] modified

Inner Table
Data Horizontally Partitioned Across Gamma Nodes

Node 0

Outer Table

Node 1

Node 2

Software Architecture
• Query Execution Overview

‣ The operator process
performs a hash on the
join attribute of each
resulting tuple,

‣ and sends it to the
appropriate join node.

‣ But where is that node?

Operator Process
at Node N

DATABASE

Gamma Processor

Stream of Tuples

Even

Goofy Hash function

Odd

Matching Tuples

Software Architecture
• Query Execution Overview

‣ Gamma builds Split
Tables to demultiplex
matching tuples to join
operator processes. Operator Process

at Node N

DATABASE

Gamma Processor

Stream of Tuples

Hash function

Matching Tuples

Split Table

Join Node

Split Table
Value Destination Process

Even 0

Odd 1

Software Architecture
• Query Execution Overview

‣ Each join process
operates in two phases
(controlled by the
scheduler)

- Building Phase

- Probing Phase

Join Process at Node N

Gamma Processor

Hash function

Matching Tuples

Split Table

Software Architecture
• Query Execution Overview

‣ Each join process
operates in two phases:

- Building Phase

๏ An in-memory hash
table is built for the
join’s inner table.

Join Process at Node N

Gamma Processor

Hash function

Matching Tuples

Split Table

Software Architecture
• Query Execution Overview

‣ Each join process
operates in two phases:

- Building Phase

- Probing Phase

๏ Tuples from the
outer table are used
to probe the hash
table for matches.

Join Process at Node N

Gamma Processor

Hash function

Matching Tuples

Split Table

Software Architecture
• Query Execution Overview

‣ The scheduler,
who has been
monitoring and
controlling all of
this, collects the
partial results as
the various
probing phases
complete.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

Split Table
Value Destination Process

Even 0

Odd 1

Software Architecture
• Query Execution Overview

‣ Finally, the Query
Manager reads
the combined
results from the
scheduler and
returns them to
the user.

‣ Warning: No Rows Selected.

Catalog Manager Query ManagerQuery Manager

Deadlock ProcessRecovery Process
Scheduler
Processes

SCHEMA

Node N

DATABASE

Host

Node 0

DATABASE

Node 1

DATABASE

Gamma Processors

The Plan
• History

• Hardware Architecture

• Software Architecture

• Query Algorithms

• Transactions

• Performance

• Summary

(That was cool, wasn’t it?)

Query Algorithms
• Selection - two cases

‣ Selection on a partitioning attribute

- Scheduler initiates selection operator
on a subset of nodes.

‣ Selection on a non-partitioning
attribute or we used round-robin
partitioning in the first place

- Scheduler initiates the selection
operation at all nodes.

Query Algorithms
• Aggregates - sum, min, max, etc.

‣ Each participating node maps the
aggregate operator to the elements
of its portion of the data in parallel.

‣ The individual node results are
collected (by the scheduler) and
combined (reduced) to the final
answer.

‣ Does this sound familiar?

Query Algorithms
• Aggregates - sum, min, max, etc.

‣ Each participating node maps the
aggregate operator to the elements
of its portion of the data in parallel.

‣ The individual node results are
collected (by the scheduler) and
combined (reduced) to the final
answer.

‣ Does this sound familiar? It should.

Query Algorithms
• Updates - insert, update, delete

‣ Mostly done as typical RDBMS do it.

‣ Exception: modifying the partitioning
attribute.

- Use the split tables or partition data
in the system catalog held at the
Catalog Manager to reroute the
modified tuples to the proper node.

The Plan
• History

• Hardware Architecture

• Software Architecture

• Query Algorithms

• Transactions

• Performance

• Summary

(Still cool.)

Transactions
• (Pessimistic) Concurrency Control - Locks

‣ Basic Lock Types

- S: shared / read

- X: exclusive / write

‣ Lock Terms

- Short-term: until end of access

- Long-term: until end of transaction

Transactions
• Concurrency Control - Locks

‣ Lock Types + Lock Terms = Lock Modes

‣ Gamma’s Lock Modes: S, X, IS, IX, SIX

- The “I” is for “intent”

[6]

Transactions
• Concurrency Control - Locks

‣ Lock Granularity

- Database, Table, Page, Row, Field

- Gamma supports “file” and page
locking granularities.

๏ This means there could be a lot of
lock contention in the average to
worst case, depending on the data
and its indexes.

Transactions
• Concurrency Control - Locks

‣ Two-phase locking

- Growing phase: acquiring locks

- Shrinking phase: releasing locks

‣ This helps relieve some lock contention.

‣ But deadlock is still a worry.

Transactions
• Concurrency Control - Deadlock

‣ Deadlock - mutual waiting, the dreaded
deadly embrace

- Transaction T1 needs resources A, and
B, has a lock on A, waiting for B.

- Transaction T2 needs resources A and
B, has a lock on B, waiting for A.

‣ What will we do? What will we do!?

Transactions
• Concurrency Control - Deadlock

‣ Each Gamma Node has a Lock Manager
that maintains a wait-for graph

- One vertex (V) for each transaction

- An edge from Vi to Vj means that Vi is
blocked and waiting for a resource
that Vj is holding (has locked).

Transactions
• Concurrency Control - Deadlock

‣ Deadlock - mutual waiting, the dreaded
deadly embrace

- Transaction T1 needs resources A, and
B, has a lock on A, waiting for B at T2.

- Transaction T2 needs resources A and
B, has a lock on B, waiting for A at T1.

‣ Combine the pieces into one wait-for
graph to detect deadlock.

T1 T2

T2 T1

Transactions
• Concurrency Control - Deadlock

‣ Combine the pieces into one wait-for
graph to detect cycles and therefore
deadlock.

‣ Gamma does this across
many nodes.

- Lock Managers periodically exchange
wait-for graphs with a central node
who stitches them together for
central deadlock detection.

T1 T2

Transactions
• Concurrency Control - Deadlock

‣ One we’ve detected deadlock, what do
we do?

T1 T2

Transactions
• Concurrency Control - Deadlock

‣ One we’ve detected deadlock, what do
we do?

‣ Kill (roll back) the
transaction that’s holding
the fewest locks.

T1 T2X

Transactions
• Concurrency Control - Deadlock

‣ One we’ve detected deadlock, what do
we do?

‣ Kill (roll back) the
transaction that’s holding
the fewest locks.

‣ This unclogs the wait-for graph and lets
the other transactions proceed.

T1 T2X

Transactions
• Log Manager

‣ When an operator process updates a
record it generates a log record that
contains . . .

- LSL: Log Sequence Number

- Before Image of the data

- After Image of the data

Transactions
• Log Manager

‣ Log records are sent to Log Manager
processes at various nodes where they
are collected, merged, and written to
disk a page at a time.

‣ This process seems pretty fragile to me
and I’m not convinced it worked.
- Jim Gray had this figured out and documented in

his famous paper 1981 paper “The Recovery
Manager of the System R Database Manager”.

Transactions
• Recovery

‣ Log records can be read by the Log
Manager and transactions “undone” in
reverse LSN order, using before images.

‣ There’s more to do (checkpoints,
write-ahead durability, and more). They
were still working on it at the time this
paper was written.
- DeWitt published at least five papers with Jim

Gray, one in 2005, the others in the early 1990s.

Transactions
• Failure Management

‣ Gamma keeps a primary copy and a
backup copy of each table.

‣ Reads are serviced from the primary
copy.

‣ Writes update both copies.

- I hope the data is (exclusive)
locked until the primary copy is
updated.

The Plan
• History

• Hardware Architecture

• Software Architecture

• Query Algorithms

• Transactions

• Performance

• Summary

Performance
• The authors conducted many benchmark

experiments. Let’s look at two of the
most interesting ones.

1.Constant number of processors (30),
vary the number of tuples - Measure
performance relative to table size.

2.Constant number of tuples (1M), vary
the number of processors - Measure
speed up / scale up

Performance
• 30 processors, variable tuples, 6 queries

[1]

Performance
• 30 processors, variable tuples, 6 queries

[1]

Performance
• 30 processors, variable tuples, 6 queries

• Linear increases

[1]

Performance
• 30 processors, variable tuples, 6 queries

• Constant performance here

[1]

Performance
• 30 processors, variable tuples, 6 queries

• Not constant performance here. Why?

[1]

Performance
• 1M tuples, variable processors, 2 queries

• Query response
time decreases as
the number of
nodes/processors
increase.

• This is speed-up
(or scale-up)

[1]

Performance
• 1M tuples, variable processors, 2 queries

• Same data
expressed as
speed-up.

• Why does the
query with 10%
selectivity speed
up less?

[1]

The Plan
• History

• Hardware Architecture

• Software Architecture

• Query Algorithms

• Transactions

• Performance

• Summary

Summary
• David J. DeWitt’s Gamma was a big deal.

• A few projects/areas citing DeWitt, et al. [5]

DB2 Parallel Edition NUMA Clusters

IBM S/390 Parallel Sysplex vehicular ad-hoc networks

Map-reduce SAP

Sensor Networks extensible web crawlers

Data Mining, OLAP, and BI parallel query processing

Summary
• David J. DeWitt’s Gamma was a big deal.

‣ In 1995, David was named a
Fellow of the ACM and
received the ACM SIGMOD
Innovations Award for his
contributions to the database
field. [2]

Summary
• David J. DeWitt’s Gamma was a big deal.

‣ In 2009, the ACM recognized
the seminal contributions of
the Gamma parallel database
system project with the ACM
Software Systems Award. [2]

Summary
• Gamma was a fast, parallel, relational

database that scaled with the number of
processors and the size of the data and
influenced many systems we still use
today.

Questions? Comments?

Thank you for your attention.

Summary
• References

(1)DeWitt, et.al, The Gamma Database Machine Project, IEEE Transactions on
Knowledge and Data Engineering, Vol. 2 No. 1, March 1990. pp 44-62

(2)David DeWitt’s home page, http://pages.cs.wisc.edu/~dewitt/includes/
publications.html. Accessed February 3, 2012

(3)M. Stonebraker, The Case for Shared Nothing, Database Eng., vol. 9 no. 1, 1986.

(4)Momjian, Bruce, PostgreSQL Internals Through Pictures, Enterprise DB, January,
2004

(5)The Gamma Database Machine Project ACM Digital Library Bibliometrics http://
dl.acm.org/citation.cfm?
id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568
999. Accessed February 11, 2012.

(6)Database: Principles, Programming, and Performance, 2nd edition, by Patrick and
Elizabeth O’Neil

http://pages.cs.wisc.edu/~dewitt/includes/publications.html
http://pages.cs.wisc.edu/~dewitt/includes/publications.html
http://pages.cs.wisc.edu/~dewitt/includes/publications.html
http://pages.cs.wisc.edu/~dewitt/includes/publications.html
http://dl.acm.org/citation.cfm?id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568999
http://dl.acm.org/citation.cfm?id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568999
http://dl.acm.org/citation.cfm?id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568999
http://dl.acm.org/citation.cfm?id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568999
http://dl.acm.org/citation.cfm?id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568999
http://dl.acm.org/citation.cfm?id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568999
http://dl.acm.org/citation.cfm?id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568999
http://dl.acm.org/citation.cfm?id=627276.627398&coll=DL&dl=GUIDE&CFID=65801349&CFTOKEN=74568999

