
1

Alan G. Labouseur, Ph.D.

Alan.Labouseur@Marist.edu

Elementary Data Structures

mailto:Alan.Labouseur@Marist.edu


2

Algorithms :: Elementary Data Structures

Algorithms are general recipes for solving problems

not specific of any language or platform.


To study algorithms, we need something for them to act upon. 

That brings up Data Structures.


As with algorithms themselves, data structures present the same 
challenges:


Challenges:

• Correctness

• Efficiency

• Applicability



3

Elementary Data Structures

• Lists

• Stacks

• Queues

• ?


But before we get to those, consider the array data type.


This is an array of length 8 indexed from 0 to 7.

We could fill this array with data, for example … 

Algorithms :: Elementary Data Structures

[0] [1] [2] [3] [4] [5] [6] [7]



4

Arrays

We could fill this array with eight James Bond movie names.


string bondFilms[8] = { };

bondFilms[0] = “Dr. No”;

bondFilms[1] = “From Russia with Love”;

bondFilms[2] = “Goldfinger”;

bondFilms[3] = “On Her Majesty’s Secret Service”;

bondFilms[4] = “The Spy Who Loved Me”;

bondFilms[5] = “Moonraker”;

bondFilms[6] = “For Your Eyes Only”;

bondFilms[7] = “GoldenEye”;


In this example, we have an array of string (text) values. We can have 
arrays of other data types, including pointers.

[0] [1] [2] [3] [4] [5] [6] [7]

Dr.	No
From	
Russia	

with	Love
Goldfinger

On	Her	
Majesty’s	
Secret	
Service

The	Spy	
Who	

Loved	Me
Moonraker For	Your	

Eyes	Only GoldenEye



5

Arrays

We could fill this array with pointers to objects representing eight 
James Bond movie names.

[0] [1] [2] [3] [4] [5] [6] [7]

Dr.	No

From	Russia	
with	Love

Goldfinger

On	Her	
Majesty’s	Secret	

Service

The	Spy	Who	
Loved	Me

Moonraker

For	Your	Eyes	
Only

GoldenEye



6

Arrays

We could fill this array with pointers to objects representing eight 
James Bond movie names.

[0] [1] [2] [3] [4] [5] [6] [7]

Dr.	No

From	Russia	
with	Love

Goldfinger

On	Her	
Majesty’s	Secret	

Service

The	Spy	Who	
Loved	Me

Moonraker

For	Your	Eyes	
Only

GoldenEye



7

Arrays

We could fill this array with pointers to objects representing eight 
James Bond movie names.

[0] [1] [2] [3] [4] [5] [6] [7]

Dr.	No

From	Russia	
with	Love

Goldfinger

On	Her	
Majesty’s	Secret	

Service

The	Spy	Who	
Loved	Me

Moonraker

For	Your	Eyes	
Only

GoldenEye



8

Elementary Data Structures

• Lists

• Stacks

• Queues

• ?


Q:	 Does an array work for a list?


A:	 It certainly can. 

	 	 Especially if we know in advance how many items 

	 	 we want to store in the list.


But what if we need to be more flexible?

Lists

[0] [1] [2] [3] [4] [5] [6] [7]



9

Linked Lists

For flexibility, we need a linked list. 


It’s a list… of linked objects.

Film


Dr.	No

Next Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next

Film


The	Spy	Who

Loved	Me

Next Film


Moonraker

Next Film


For	Your	Eyes	Only

Next Film


GoldenEye

Next



10

Linked Lists

We need to know the head or start of the list. 

We also need to denote that the last item has no Next pointer.

Film


Dr.	No

Next Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next

Film


The	Spy	Who

Loved	Me

Next Film


Moonraker

Next Film


For	Your	Eyes	Only

Next Film


GoldenEye

Next


NULL

Head	or	Start	of	the	list



11

Linked Lists

Pointers are really addresses in memory.

Film


Dr.	No

Next Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next

Film


The	Spy	Who

Loved	Me

Next Film


Moonraker

Next Film


For	Your	Eyes	Only

Next Film


GoldenEye

Next


NULL

Head	or	Start	of	the	list

from	the	great	XKCD
0x3A28213A

0x3A28213A 0x6339392C

0x6339392C

0x7363682E

0x7363682E

https://xkcd.com/138/


111010001010
000010000100
111010

110001100111
001001110010
0101100

111001101100
011011010000
0101110

12

Linked Lists

Pointers are really addresses in memory.

Those hexadecimal addresses are really just shorthand for binary.

Film


Dr.	No

Next Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next

Film


The	Spy	Who

Loved	Me

Next Film


Moonraker

Next Film


For	Your	Eyes	Only

Next Film


GoldenEye

Next


NULL

Head	or	Start	of	the	list
11101000

10100000

10000100

111010

110001100111
001001110010
0101100

111001101100
011011010000
0101110



13

Linked Lists

We can use linked lists to build elementary data structures.

Film


Dr.	No

Next Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next

Film


The	Spy	Who

Loved	Me

Next Film


Moonraker

Next Film


For	Your	Eyes	Only

Next Film


GoldenEye

Next


NULL

Head



14

Elementary Data Structures

• Lists

• Stacks

• Queues

• ?

Stacks

R

A

C

E

C

A

R

Stack

top



15

Stack

A stack is an abstract data type that supports the following 
operations:


• Push 	 	 - add an element to the top of the stack

• Pop		 	 - remove an element from the top of the stack

• isEmpty	 - check to see whether or not the stack is empty



Film


On	Her	Majesty’s

Secret	Service

Next

16

Stack

Operations:

• Push

• Pop	

• isEmpty

Film


Dr.	No

Next

Film


From	Russia	

with	Love

Next

Film


Goldfinger

Next

Top



Film


On	Her	Majesty’s

Secret	Service

Next

17

Stack

Operations:

• Push

• Pop	 

• isEmpty


m = stack.pop()

Film


Dr.	No

Next

Film


From	Russia	

with	Love

Next

Film


Goldfinger

Next

Top



Film


On	Her	Majesty’s

Secret	Service

Next

18

Stack

Operations:

• Push

• Pop	 

• isEmpty


m = stack.pop()

Film


Dr.	No

Next


NULL

Film


From	Russia	

with	Love

Next

Film


Goldfinger

Next

Top



Film


On	Her	Majesty’s

Secret	Service

Next

19

Stack

Operations:

• Push

• Pop	

• isEmpty


stack.push(GoldenEye)

Film


From	Russia	

with	Love

Next

Film


Goldfinger

Next

Top

Film


GoldenEye

Next


NULL



Film


On	Her	Majesty’s

Secret	Service

Next

20

Stack

Operations:

• Push

• Pop	

• isEmpty


stack.push(GoldenEye)

Film


From	Russia	

with	Love

Next

Film


Goldfinger

Next

Top Film


GoldenEye

Next



21

Elementary Data Structures

• Lists

• Stacks

• Queues

• ?

Queues

R A C E C A R

Queue

head tail



22

Queue

A queue is an abstract data type that supports the following 
operations:


• Enqueue	 - add an element to the back of the queue

• Dequeue	 - remove an element from the front of the queue

• isEmpty	 - check to see whether or not the queue is empty



23

Queue

Tail

Film


Dr.	No

Next Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next


NULL

Head

Operations:

• Enqueue

• Dequeue

• isEmpty



24

Queue

Tail

Film


Dr.	No

Next Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next


NULL

Head

Operations:

• Enqueue

• Dequeue

• isEmpty

m = queue.dequeue()



25

Queue

Tail

Film


Dr.	No

Next


NULL

Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next


NULL

Head

Operations:

• Enqueue

• Dequeue

• isEmpty

m = queue.dequeue()



26

Queue

Tail

Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next


NULL

Head

Operations:

• Enqueue

• Dequeue

• isEmpty

queue.enqueue(GoldenEye)
Film


GoldenEye

Next


NULL



27

Queue

Tail

Film


From	Russia	

with	Love

Next Film


Goldfinger

Next Film


On	Her	Majesty’s

Secret	Service

Next

Head

Operations:

• Enqueue

• Dequeue

• isEmpty

queue.enqueue(GoldenEye)

Film


GoldenEye

Next


NULL



28

What’s the “Big Oh” of these operations?


• Lists

‣ add

‣ remove


• Stacks

‣ push

‣ pop

‣ isEmpty


• Queues

‣ enqueue

‣ dequeue

‣ isEmpty

Algorithms :: Performance Characteristics



29

Elementary Data Structures

• Lists

• Stacks

• Queues

• ?

Algorithms :: Wait… more?



30

Elementary Data Structures

• Lists

• Stacks

• Queues

• Trees

leaf	node

Algorithms :: More?

root	node

leaf	node leaf	node leaf	node

branch	nodebranch	node



31

Tree

Operations:

• Insert

• Delete

• Traverse

• isEmpty

Film


Dr.	No

Root

Left

z
Right

Film


From	Russia	

with	Love

Left

z
Right

Film


Goldfinger

Left

z
Right

Film


On	Her	Majesty’s

Secret	Service

Left

z
Right

NULL NULL NULL



32

Tree

Operations:

• Insert

• Delete

• Traverse

• isEmpty

Film


Dr.	No

Root

1st

z
2nd

Film


From	Russia	

with	Love

Film


Goldfinger

Film


On	Her	Majesty’s

Secret	Service

Nth

.	.	.

.	.	.

1st

z
2nd Nth.	.	. 1st

z
2nd Nth.	.	. 1st

z
2nd Nth.	.	.


