Greedy Algorithms

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu
mailto:Alan.Labouseur@Marist.edu

Optimization Problems

Consider optimization problems:
- shortest paths on a map
- network routing
- activity scheduling with
constraints
- minimal spanning trees

In this world of optimization
problems, how can we insure that
we get... the most?

Figure 23.4 The execution of Kruskal’s algorithm on the graph from Figure 23.1. Shaded edges
belong to the forest A being grown. The algorithm considers each edge in sorted order by weight.
An arrow points to the edge under consideration at each step of the algorithm. If the edge joins two
distinct trees in the forest, it is added to the forest, thereby merging the two trees.

Maximizing our take

How can we insure that we get... the most?
- Make choices one at a time.
- Never look back.
- Hope for the best.

Sometime this actually works, but not always,
and we have to make smart choices.

This is the nature of “greedy” algorithms.

Greedy Algorithms

A greedy algorithm always makes the choice that looks best in the
moment. In other words...

- make locally optimal choices

- and hope they lead to the globally optimal solution.

This does not always work. But for some kinds of problems, it does.

Greedy Algorithms

Problem: 0-1 Knapsack

The 0-1 knapsack problem is the following. A thief robbing a store finds n
items. The ith item 1s worth v; dollars and weighs w; pounds, where v; and w; are
integers. The thief wants to take as valuable a load as possible, but he can carry at
most W pounds 1n his knapsack, for some integer W. Which items should he take?
(We call this the 0-1 knapsack problem because for each item, the thief must either

take it or leave 1t behind; he cannot take a fractional amount of an item or take an
1tem more than once.)

Imagine trying to steal a bunch of
golden idols. Each could be a different
weight. You cannot divide the idols;
each one is everything or nothing

(i.e., no “partial credit”).

Greedy Algorithms

Problem: 0-1 Knapsack

More abstractly (but less fun) ponder
this instance of the 0-1 Knapsack

problem:
s

Your knapsack holds 50 lbs.

50

item 2

item 1

20
-

$60 $100 $120 knapsack

item idol #1 weighs 10 lbs and is worth Us$60.
Idol #2 weighs 20 Ibs and is worth US$100.
Idol #3 weighs 30 lbs and is worth Us$120.

How do you fill your 50 lb. capacity knapsack to achieve optimal
(maximum in this case) value?

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity e
knapsack to achieve maximum
value?

50

— $60 $100 | $120 knapsack

201 $100 @
+
$60 |

=$160

B

Greedy Algorithms
Problem: 0-1 Knapsack
How do you fill your 50 lb. capacity

knapsack to achieve maximum
value?

50

item 2

$100 | $120 Jknapsack

]

30| $120
+

560 [

=$180

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value? I

50

‘o $60 $100 $120 Jknapsack
30 $120

P—

201 $100 D

= $220

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity
knapsack to achieve maximum
value?

50

item 1

‘a| $60 $100 $120 Jknapsack

30| $120

S

20| $100

Bl

= $220

Winner! But how do we program it?

10

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity item 3
knapsack to achieve maximum item 2 50
value? rom | 30

20

$60 $100 $120 knapsack

item 1: $60/10lbs = $6/1b
Notice the unit-value. item 2: $100/20 lbs = $5/1b
item 3: $120/30 lbs = $4/1b

11

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity item 3
knapsack to achieve maximum item 2 50
value? 30

item 1

20
-

$60 $100 $120 knapsack

item 1: $60/10lbs = $6/1b
item 2: $100/20 lbs = $5/1b
item 3: $120/30 lbs = $4/1b

Sort by highest value per unit
How do we program it? and take them in that order.

12

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity item 3
knapsack to achieve maximum item 2 50
value? rom | 30

20

S $60 $100 $120 knapsack

item 1: $60/10lbs = $6/1b
item 2: $100/20 lbs = $5/1b
item 3: $120/30 lbs = $4/1b

$60

[

Sort by highest value per unit
and take them in that order.

13

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity item 3
knapsack to achieve maximum item 2 50
value? rom | 30

20

$60 $100 $120 knapsack
[item 1: $60/10lbs = $6/1b
item 2: $100/20 lbs = $5/1b
/item 3: $120/30 lbs = $4/1b

20] $100

-

] e

Sort by highest value per unit
and take them in that order.

14

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity item 3
knapsack to achieve maximum item 2 50
value? rom | 30

20

$60 $100 $120 knapsack
[won't fit
item 1: $60/101lbs = $6/1b
$10Xitem 2: $100/20 lbs = $5/1b

0 item 3: $120/30 Ibs = $4/Ib

-

] e

Sort by highest value per unit
and take them in that order.

15

Greedy Algorithms

Problem: 0-1 Knapsack il
How do you fill your 50 lb. capacity e
knapsack to achieve maximum item 2 50
value? item I 20

20

$60 $T06 $T26 Enapsack

[won't fit
item 1: $60/101lbs = $6/1b

item 2: $100/20 lbs = $5/1b
item 3: $120/30 lbs = $4/1b

20] $100

] e

=$160
Sort by high@llue per unit

and take then{ h that order.

16

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity e
knapsack to achieve maximum item 2 50
Value? item 1 30
20
‘o $60 $100 $120 knapsack
[won't fit
i $120 item 1: $60/101bs = $6/1b
. item 2: $100/20 lbs = $5/1b
an 201 $100 . 5
) item 3: $120/30 lbs = $4/1b

2 $100 E 60
Sort by highes{” galue per unit

Oops. and take then{ h that order.

17

Greedy Algorithms

Problem: 0-1 Knapsack

How do you fill your 50 lb. capacity e
knapsack to achieve maximum item 2 50
Value? item 1 30
20
‘o $60 $100 $120 knapsack
[won't fit
i $120 item 1: $60/101bs = $6/1b
. item 2: $100/20 lbs = $5/1b
an 201 $100 . 5
) item 3: $120/30 lbs = $4/1b

2 $100 E 60
’e@ =$160
Sort by highe [ue per unit

A greedy approach does not and take thg / 1\ \hat order.
work for 0-1 knapsack.

18

Greedy Algorithms

Problenapsack | il

How do you fill your 50 lb. capacity item 3
knapsack to achieve maximum item 2 50
value? 30

item 1

20
-

$60 $100 $120 knapsack

A greedy approach does not item 1: $60/101bs = $6/1b
work for 0-1 knapsack. item 2: $100/20 lbs = $5/1b l
But it seems promising. item 3: $120/30 Ibs = $4/1b
Let’s change the problem

just a little... Sort by highest value per unit

and take them 1in that order.

19

Greedy Algorithms

Problem: Fractional Knapsack

In the fractional knapsack problem, the setup is the same, but the thief can take
fractions of items, rather than having to make a binary (0-1) choice for each item.
You can think of an item in the 0-1 knapsack problem as being like a gold idol
and an item 1n the fractional knapsack problem as more like gold dust.

Imagine trying to steal from piles of
gold dust varying in purity. The gold
in each pile could be a different
weight. But since it’s dust, you can
take any fraction of the pile you like;
it’s not everything or nothing (i.e.,
there is “partial credit” in this case).

20

Greedy Algorithms

Problem: Fractional Knapsack il

Ponder this instance of the Fractional
Knapsack problem:

—

Your knapsack holds 50 lbs.

pile 3

pile 2 S0

pile 1 30

20
4 . 4 =

$60 $100 $120 knapsack

pile #1 weighs 10 lbs and is worth US$60 total.
pile #2 weighs 20 Ibs and is worth US$100 total.
pile #3 weighs 30 lbs and is worth US$120 total.

How do you fill your 50 lb. capacity knapsack to achieve optimal
(maximum in this case) value?

Greedy Algorithms

Problem: Fractional Knapsack

Let’s try the same algorithm.

/

pile 3
pile 2 S0
M)
- 30
ile 1
& 20
4 —_— —

$60 $100 $120 knapsack

pile 2: $100/201bs = $5/Ib
pile 3: $120/301bs = $4/1b

pile 1: $60/10lbs = $6/1b l

Sort by highest value per unit
and take them in that order.

22

Greedy Algorithms

Problem: Fractional Knapsack il

Let’s try the same algorithm.
Take all of the most valuable pile.

pile 3
pile 2 S0

30
20

$100 $120 knapsack

pile 1: $60/10lbs = $6/1b
pile 2: $100/201bs = $5/Ib
pile 3: $120/301bs = $4/1b

[5]

$60

Sort by highest value per unit
and take them in that order.

23

Greedy Algorithms

Problem:

Let’'stry t
Take all of t
Take all of t

Fractional Knapsack

ne same algorithm.
he most valuable pile.

ne 2nd most valuable pile.

pile 3
50
pile 1 30
$60 $120 knapsack

pile 1: $60/10lbs = $6/1b
—pile 2: $100/201bs = $5/1b

20| $100 <

] o

pile 3: $120/301bs = $4/1b

Sort by highest value per unit
and take them in that order.

24

Greedy Algorithms

Problem: Fractional Knapsack

Let’s try the same algorithm.

Take all of the most valuable pile. 50

: . pile 2
Take all of the 2rd most valuable pile. i
Take as much of the 3rd most valuable pile piel S
as will fit.
— $60 $100 | $120 kné;;;ck
=1 580 |)
L] . pile 1: $60/10lbs = $6/1b

pile 2: $100/201bs = $5/Ib
pile 3: $120/301bs = $4/1b

20| $100

] o

= $240

Sort by highest value per unit
and take them in that order.

25

Greedy Algorithms

Problem: Fractional Knapsack

Let’s try the same algorithm.

Take all of the most valuable pile.

Take all of the 2rd most valuable pile.
Take as much of the 3rd most valuable pile
as will fit.

H

20

l>—<+

20| $100
+

] o

= $240

Is this optimal?

pile 3
pile 2 S0
M)
: 30
ile 1
& 20
4 4 —

$60 $100 $120 knapsack

pile 1: $60/10lbs = $6/1b
pile 2: $100/201bs = $5/1b
pile 3: $120/301bs = $4/1b

Sort by highest value per unit
and take them in that order.

26

Greedy Algorithms

Problem: Fractional Knapsack

Let’s try the same algorithm.

Take all of the most valuable pile.

Take all of the 2rd most valuable pile.
Take as much of the 3rd most valuable pile
as will fit.

20
30 $120
— +
+
D—
201 $100
= $220

Yes! We have a new winner!

pile 3
pile 2 S0
M)
- 30
ile 1
& 20
4 —_— —

$60 $100 $120 knapsack

pile 1: $60/10lbs = $6/1b
pile 2: $100/201bs = $5/Ib
pile 3: $120/301bs = $4/1b

Sort by highest value per unit
and take them in that order.

27

Greedy Algorithms

Problem: Fractional Knapsack

Let’s try the same algorithm.

Take all of the most valuable pile.

Take all of the 2rd most valuable pile.
Take as much of the 3rd most valuable pile
as will fit.

20
30 $120
— +
+
D—
201 $100
= $220

A greedy approach does work
for Fractional Knapsack.

pile 3
pile 2 S0
M)
- 30
ile 1
& 20
4 4 —

$60 $100 $120 knapsack

pile 1: $60/10lbs = $6/1b
pile 2: $100/201bs = $5/Ib
pile 3: $120/301bs = $4/1b

Sort by highest value per unit
and take them in that order.

28

Greedy Algorithms

Example: Spice Heist on Arrakis S
When the time is right

Input file Be in control of the

-- She who controls the spice controls the universe.

-- Available spice to take in scoops: \ :!
spice name = red; total price = 4.0; gty = 4; L3

spice name = green; total price = 12.0; gty = 6; 3

spice name = blue; total price = 40.0; gty = 8;

spice name = orange; total price = 18.0; gty = 2;

-- Available knapsacks in which to keep spice:
knapsack capacity = 1;
knapsack capacity = 6;
knapsack capacity = 10;
knapsack capacity = 20;
knapsack capacity = 21;

PI(E""

Output XY (Spice Melange)

Knapsack of capacity 1 is worth 9 quatloos and
contains 1 scoop of orange.

Knapsack of capacity 6 is worth 38 quatloos and
contains 2 scoops of orange, 4 scoops of blue.

Warning: Please seek immediate medical attentionif
actor musician Sting attempts to fight you to the death.

29

Greedy Algorithms

Example: Spice Heist on Arrakis — Implementation

Read and parse file.

Create a list of Spice objects.

Spice
color

— > |total_price

quantity
unit_price

red
4
4

Spice

color
total_price
quantity
unit_price

Spice

color
total_price
quantity
unit_price

30

Greedy Algorithms

Example: Spice Heist on Arrakis — Implementation

Read and parse file.

Create a list of Spice objects.
Spice
color red

— > |total_price 4

quantity
unit_price

Compute the unit price for each.

Spice

color
total_price
quantity
unit_price

Spice

color
total_price
quantity
unit_price

Sort the list by unit_price from high to low.

Fill each knapsack.
Write the output.

Note: Each “turn” is independent.

31

Greedy Algorithms

Example: Spice Heist on Arrakis

Input file

-- She who controls the spice controls the universe.

-- Available spice to take in scoops:

spice name = red; total price = 4.0; gty = 4;
spice name = green; total price = 12.0; gty = 6;
spice name = blue; total price = 40.0; gty = 8;
spice name = orange; total price = 18.0; gty = 2;

-- Available knapsacks in which to keep spice:

knapsack capacity = 1;
knapsack capacity = 6;
knapsack capacity = 10;
knapsack capacity = 20;
knapsack capacity = 21;

Output <

Knapsack of capacity 1 is worth 9 quatloos and
contains 1 scoop of orange.

Knapsack of capacity 6 is worth 38 quatloos and
contains 2 scoops of orange, 4 scoops of blue.

— Read and parse file.

Create a list of Spice objects.

Compute the unit price for
each.

Sort the list by unit_price from
high to low.

Fill each knapsack.
Write the output.

32

