
1

Alan G. Labouseur, Ph.D.

Alan.Labouseur@Marist.edu

Growth Functions

mailto:Alan.Labouseur@Marist.edu

2

Growth Functions

Remember, algorithms are general recipes for solving problems

not specific of any language or platform. We characterize their
performance in time/speed/effort/complexity with growth
functions.

	 	 Examples:

	 	 O(n)	 	 	 “Order n” or “Big-oh of n”

	 	 O(n2)	 	 	 “Order n squared” or “Big-oh of n squared”

	 	 O(log2 n)	 	 “Order log to the base two of n” or . . .

We only want the largest (or dominant) function of n and
we ignore constant factors.

	 	 ½ n2 + 2112 	 	 	 is O(n2)

	 	 42 n1.5 - 8,675,309 	 is O(n1.5)

	 	 11 n log2 n + 1 	 	 is O(n log2 n)

	 	 42 n1.5 + √n 	 	 	 is O(n1.5) because √n = n0.5 so n1.5 dominates

3

Growth functions let us characterize how the 	time/effort/space
required to execute the algorithm grows as the size of the input
grows.

Think of this as “complexity”.

We’re concerned with the measures of effort/complexity needed to
correctly solve a problem.

We’re also concerned with how those measures change
proportionally with the size of the input. I.e., how does the effort
scale or grow with the input? What is its “order of growth”?

Growth Functions

4

Common Growth Functions

5

Common Growth Functions

Put in other terms . . .

Thanks	to	MIT	6.006	

6

A Quick log Refresher

Assume log means log2 .

Definition: log(n) is the number so that 2log(n) = n.

In other words, log(n) is the number of times you need to
divide n by 2 to get down to 1.

log2(32) = 5 because 32 ➛ 16 ➛ 8 ➛ 4 ➛ 2 ➛ 1

log2(64) = 6 because 64 ➛ 32 ➛ 16 ➛ 8 ➛ 4 ➛ 2 ➛ 1

Thanks	to	Mary	Wootters.

halve 5 times

halve 6 times

7

A Quick log Refresher

Assume log means log2 .

Definition: log(n) is the number so that 2log(n) = n.

In other words, log(n) is the number of times you need to
divide n by 2 to get down to 1.

log2(32) = 5 because 32 ➛ 16 ➛ 8 ➛ 4 ➛ 2 ➛ 1

log2(64) = 6 because 64 ➛ 32 ➛ 16 ➛ 8 ➛ 4 ➛ 2 ➛ 1

log2(128) 	 = 7	 and	 27 	 = 128

log2(256) 	 = 8 	 and	 28 	= 256

log2(512) 	 = 9 	 and	 29 	= 512

log2(1024)	 = 10	 and	 210	 = 1024

log2(number of particles in the universe) < 280 so

log(n) grows very slowly.

Thanks	to	Mary	Wootters.

halve 5 times

halve 6 times

8

Worst Case Analysis

The “running time” (time/speed/effort/complexity) of an algorithm
is determined by its worst possible input.

In other words, if we say some recipe is an O(n2) algorithm, that
means that the worst possible running time is proportional to n2 and
never worse than that. It could — under lucky circumstances — be
better (faster) than O(n2), but never worse no matter what.

A common example of where we need to apply this thinking is in
sorting lists.

9

Worst Case Analysis

The “running time” (time/speed/effort/complexity) of an algorithm
is determined by its worst possible input.

In other words, if we say some recipe is an O(n2) algorithm, that
means that the worst possible running time is proportional to n2 and
never worse than that. It could — under lucky circumstances — be
better (faster) than O(n2), but never worse no matter what.

A common example of where we need to apply this thinking is in
sorting lists.

Q: Which input to a sort algorithm is worse?

• the elements of the list are “arranged” randomly

• the elements of the list are already sorted in ascending order

• the elements of the list are already sorted in descending order

A: It depends on the specifics of the sorting algorithm.

But when we characterize the sorting algorithm as O(something),
that must represent the worst-case input.

10

Asymptotic Analysis

“Big Oh”

upper-bound

worst case

??

From the CLRS text, section 3.1

11

Asymptotic Analysis

“Big Oh”

upper-bound

worst case

?

From the CLRS text, section 3.1

“Big Omega”

lower-bound

best case

12

Asymptotic Analysis

“Big Oh”

upper-bound

worst case

“Big Theta”

tight-bound

worst and best range

From the CLRS text, section 3.1

“Big Omega”

lower-bound

best case

13

Asymptotic Analysis :: Big Oh

“Big Oh”

upper-bound

worst case

From the CLRS text, section 3.1

14

Asymptotic Analysis :: Big Oh

“Big Oh”

upper-bound

worst case

From the CLRS text, section 3.1

15

Asymptotic Analysis :: Big Oh

“Big Oh”

upper-bound

worst case

From the CLRS text, section 3.1

16

Asymptotic Analysis :: Big Oh

“Big Oh”

upper-bound

worst case

From the CLRS text, section 3.1

17

Asymptotic Analysis :: Big Oh

From the CLRS text, section 3.1

2n2 + 10 is O(n2) for

c = 3 and n0 = 4

18

Asymptotic Analysis :: Big Oh

“Big Oh”

upper-bound

worst case

From the CLRS text, section 3.1

19

Asymptotic Analysis :: Big Omega

From the CLRS text, section 3.1

“Big Omega”

lower-bound

best case

20

Asymptotic Analysis :: Big Omega

From the CLRS text, section 3.1

“Big Omega”

lower-bound

best case

21

Asymptotic Analysis :: Big Omega

From the CLRS text, section 3.1

“Big Omega”

lower-bound

best case

22

Asymptotic Analysis :: Big Theta

“Big Theta”

tight-bound

worst and best range

From the CLRS text, section 3.1

23

Asymptotic Analysis :: Big Theta

“Big Theta”

tight-bound

worst and best range

From the CLRS text, section 3.1

24

Asymptotic Analysis and Growth Functions

Let’s do more examples.

