Growth Functions

LS

EDITION

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu



mailto:Alan.Labouseur@Marist.edu

ﬁrowth Functions

Remember, algorithms are general recipes for solving problems
not specific of any language or platform. We characterize their
performance in time/speed/effort/complexity with growth
functions.

Examples:

O(n) “Order n” or “Big-oh of n”

O(n2) “Order n squared” or “Big-oh of n squared”
O(log2n) “Order log to the base twoofn”or. ..

We only want the largest (or dominant) function of n and
we ignore constant factors.

1/ n2 + 2112 1s O(n2)
42 nt5 - 8,675,309 is O(n5)
11nlogan+1 is O(n log. n)

42 ni5 + vVn is O(n?-5) because vn = n°5 so n'-5 dominates
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Gr‘(‘)wth Functions

Growth functions let us characterize how the time/effort/space
required to execute the algorithm grows as the size of the input
gTOWS.

Think of this as “complexity”.

We’re concerned with the measures of effort/complexity needed to
correctly solve a problem.

We’re also concerned with how those measures change
proportionally with the size of the input. I.e., how does the effort
scale or grow with the input? What is its “order of growth”?




Common Growth Functions
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Common Growth Functions hanks o MIT6.006

Put in other terms. ..

e Asymptotic Notation: ignore constant factors and low order terms

— Upper bounds (O), lower bounds (£2), tight bounds (©) €, =, is, order
— Time estimate below based on one operation per cycle on a 1 GHz single-core machine

— Particles in universe estimated < 10'%°

input | constant | logarithmic | linear | log-linear | quadratic | polynomial | exponential

n (1) O(logn) | O(n) | O(nlogn) | O(n?) O (n°) 2007)
1000 1 ~ 10 1000 | =~ 10,000 | 1,000,000 1000° 21000 ~ 10301
Time | 1ms 10ns 1 s 10 ps 1ms 10°°7%s | 10%®! millenia

Millisecond 103 =1/1,000

Microsecond 10¢=1/1,000,000

Nanosecond 109 =1/1,000,000,000




A QuiCk lOg RefreSher Thanks to Mary Wootters.

Assume log means log. .
Definition: log(n) is the number so that 2los(®) = n
In other words, log(n) is the number of times you need to

divide n by 2 to get down to 1.
/ T~— halve 5 times
log»(32) = 5 because 32(> 16 > 8 > 4> 2 >|1

logo(64) = 6 because 64> 32> 16> 8 > 4> 2>1
A\__— halve 6 times




A QuiCk lOg RefreSher Thanks to Mary Wootters.

Assume log means log. .
Definition: log(n) is the number so that 2los(®) = n
In other words, log(n) is the number of times you need to

divide n by 2 to get down to 1.
/ T~— halve 5 times
log»(32) = 5 because 32(> 16 > 8 > 4> 2 >|1

logo(64) = 6 because 64> 32> 16> 8 > 4> 2>1
A\__— halve 6 times

7 and 27 =128
logo(256) =8 and 28 =256
' 0 and 29 =512
log-(1024) =10 and 210 =1024

log-(number of particles in the universe) < 280 so
log(n) grows very slowly.




Worst Case Analysis

The “running time” (time/speed/effort/complexity) ot an algorithm
is determined by its worst possible input.

In other words, if we say some recipe is an O(n2) algorithm, that
means that the worst possible running time is proportional to n2 and
never worse than that. It could — under lucky circumstances — be
better (faster) than O(n2), but never worse no matter what.

A common example of where we need to apply this thinking is in
sorting lists.




Worst Case Analysis

The “running time” (time/speed/effort/complexity) ot an algorithm
is determined by its worst possible input.

In other words, if we say some recipe is an O(n2) algorithm, that
means that the worst possible running time is proportional to n2 and
never worse than that. It could — under lucky circumstances — be
better (faster) than O(n2), but never worse no matter what.

A common example of where we need to apply this thinking is in
sorting lists.

Q: Which input to a sort algorlthm 1s worse?
- the elements of the list are “arranged” randomly
- the elements of the list are already sorted in ascending order
- the elements of the list are already sorted in descending order

A: Tt depends on the specifics of the sorting algorithm.

But when we characterize the sorting algorithm as O(something),
that must represent the worst-case input.




Asymptotic Analysis

From the CLRS text, section 3.1
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upper-bound
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Asymptotic Analysis

From the CLRS text, section 3.1
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Asymptotic Analysis :: Big Oh
From the CLRS text, section 3.1

cg(n)

(414 Big Oh b
upper-bound
worst case

n
Ho

J(n) = 0(g(n))

O(g(n)) = {f(n) : there exist positive constants ¢ and n, such that
0< f(n)<cg(n)foralln > ngy} .
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Asymptotic Analysis :: Big Oh

From the CLRS text, section 3.1
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Asymptotic Analysis :: Big Oh

From the CLRS text, section 3.1
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16



Asymptotic Analysis :: Big Oh

From the CLRS text, section 3.1
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Asymptotic Analysis :: Big Oh

From the CLRS text, section 3.1
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Asymptotic Analysis :: Big Omega

From the CLRS text, section 3.1

“Big Omega”
lower-bound
best case

No

f(n) = Q(g(n))

Q(g(n)) = {f(n) : there exist positive constants ¢ and n such that
0<cgn) < f(n)lforalln > ny} .
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Asymptotic Analysis :: Big Omega

From the CLRS text, section 3.1
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Asymptotic Analysis :: Big Omega

From the CLRS text, section 3.1

“Big Omega”
lower-bound
best case

No

f(n) = Q(g(n))

Q(g(n)) = {f(n) : there exist positive constants ¢ and n, such that
0<cgn)< f(n)foralln > ny} .
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Asymptotic Analysis :: Big Theta

From the CLRS text, section 3.1

c28(n)
f(n) “Big Theta,,
tight-bound
c1g(n) worst and best range

n
No

f(n) = 0(gn))

®(g(n)) = {f(n) : there exist positive constants ¢, ¢,, and n, such that
0<cign) < f(n) <cryg(n)foralln > ny} .
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Asymptotic Analysis :: Big Theta

From the CLRS text, section 3.1
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f(n) “Big Theta,,

2 tight-bound
@ worst and best range

no

f(n) = 0(gn))

®O(g(n)) = {f(n): there D0Sitive Cons 1, C», and ngy such that
0 < < f(n) < foralln >|n,t .
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Asymptotic Analysis and Growth Functions

Let’s do more examples.
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