The Master Method

- ALGORITH

M S

EDITION

Alan G. Labouseur, Ph.D.
Alan.Labouseur@Marist.edu

mailto:Alan.Labouseur@Marist.edu
mailto:Alan.Labouseur@Marist.edu

Common Recurrences in Computer Science

Recurrences for algorithms we’ve implemented this semester.
T(n) =T (n-1) + O(1) O(n)

T(n) =T (n-1) + O(n) O(n2)

T(n)=T(,)+0() O(log. n)

T(n) =2T (%) + O(n) O(n log, n)

Common Recurrences in Computer Science

Recurrences for algorithms we’ve implemented this semester.

T(n) =T (n-1) + O(1) O(n) linear search, list traversal

T(n) =T (n-1) + O(n) O(n2)
T(n)=T(,)+0() O(log. n)

T(n) =2T (%) + O(n) O(n log, n)

Common Recurrences in Computer Science

Recurrences for algorithms we’ve implemented this semester.

T(n) =T (n-1) + O(1) O(n)

T(n) =T (n-1) + O(n) O(n2?2) selection, insertion sort

T(n) = T(%) + O(1) O(log, n)

T(n) =2T (%) + O(n) O(n log, n)

Common Recurrences in Computer Science

Recurrences for algorithms we’ve implemented this semester.
T(n) =T (n-1) + O(1) O(n)

T(n) =T (n-1) + O(n) O(n2)

T(n) =T (%) + O(1) O(log, n) binary search

T(n) =2T (%) + O(n) O(n log, n)

Common Recurrences in Computer Science

Recurrences for algorithms we’ve implemented this semester.

T(n) =T (n-1) + O(1)
T(n) =T (n-1) + O(n)

T(n) =T () +0()

O(n)
O(n?3)

O(log2 n)

T(n) = 2T(%) + O(n)

O(n log, n) quicksort, merge sort

Common Recurrences in Computer Science

Recurrences for algorithms we’ve implemented this semester.

T(n) =T (n-1) + O(1) O(n) linear search, list traversal
T(n) =T (n-1) + O(n) O(n?3) selection, insertion sort
T(n) =T (%) + O(1) O(log, n) binary search

T(n) =2T (%) + O(n) O(n log, n) quicksort, merge sort

We can solve these with recursion trees or substitution. But
is there are pattern here? Can this be generalized somehow?

Common Recurrences in Computer Science

Recurrences for algorithms we’ve implemented this semester.

T(n) =T (n-1) + O(1) O(n) linear search, list traversal
T(n) =T (n-1) + O(n) O(n?2) selection, insertion sort
T(n) =T (%) + O(1) O(log, n) binary search

T(n) =2T (%) + O(n) O(n log, n) quicksort, merge sort
Is there are pattern here? Can this be generalized somehow?

Jon Bentley saw the pattern for Divide and Conquer
algorithms and generalized it.

The Master Theorem

——

ADAO64294
;

DOC FLE copy.

Carnegie-Mellon University

CMU-CS-78-154

A General Method for Solving
Divide-and-Conquer Recurrences

Jon Louis Bontloy‘
Dorothea Haken
James B. Saxe
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 16213

13 December 1978

Abstract

A%}
The complexity of divide-and-conquer algorithms is often described by

recurrence relations of the form

T(n) = kT(n/c) + f(n).
The only method currently avallable for solving such recurrences consists of solution
tables for fixed functions f and varying k and c. In this note we describe a unifying
method for solving these recurrences that is both general in applicabllity and easy

to apply without the use of large tables.

\

\
\

1. Aiso with the Department of Mathematics.

This research was supported in part by the Office of Naval Research under

Contract NO0O0O14-76-C-0370.

The Master Theorem

Given a recurrence 1in the form

where a =1 and b > 1 and f(n) is positive, there are three cases:

T(n) = aT () +(n)

1. if f(n) = O(n &) then T(n) = O(n &)
2.1f f(n) = O(n °89) {]

nen T(n) = O©(n &]Jog, n)

3.if f(n) = Q(n °=9) t

nen T'(n) = ©(f(n))

10

The Master Theorem

Gilven a recurrence 1in the form

n
T(n) =aT () +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:

1. if f(n) = O(n'°®9) then T(n) = O(n °89)
2.1f f(n) = O(n '°&»%) then T(n) = O(n '°&< log, n)
3.1f f(n) = Q(n '°&2) then T(n) = O(f(n))

In each case, we compare f(n) with n &<,

11

The Master Theorem

Given a recurrence 1in the form

T(n) = aT (7) + f(n)

where a =1 and b > 1 and f(n) is positive, there are three cases:

if f(n) = O(n '°>»%) then T(n) = O(n ©89)

f(n) n s
f(n) n 'osa

In each case, we compare f(n) with n &<,

Case 1 occurs when f(n) is upper-bound by n '°&¢,
We can think of this (roughly) as f{n) < n o9,

In this case the effort is dominated by n !°&:¢,

Specifically,
f(n) is polynomially
smaller than

n log; a

12

The Master Thg:orem

Given a recurrence 1in the form

T(n) = aT (7) + f(n)

where a =1 and b > 1 and f(n) is positive, there are three cases:

f(n) n o
if f(n) = BO(n > then T(n) = O(n logb“

f(n) n oea

logarithmic factor (because of the height of the recursion tree).

13

The Master Thegrem

Given a recurrence 1in the form

T(n) = aT (7) + f(n)

where a =1 and b > 1 and f(n) is positive, there are three cases:

f(n) n 'osa
f(n) n s

if f(n) = Q(n °*%) then T(n) = ©(f(n))

In each case, we compare f(n) with n &<,

Case 3 occurs when f(n) is lower bound by n 08¢,
We can think of this (roughly) as f(n) > nlo&q,

In this case the effort is dominated by f(n).

Specifically,
f(n) is polynomially
larger than

n log; a

14

The Master Theo;'em

Given a recurrence 1in the form

T(n) = aT (7) + f(n)

where a =1 and b > 1 and f(n) is positive, there are three cases:

f(n) n e
f(n) n lona
f(n) n s

One more requirement:

The sub-problems in these Divide and Conquer algorithms
must be of equal size.

Even then, the Master Theorem does not always apply.

15

The Master Theore“m

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n)=T (g) + 0(1)

The Master Theorerp

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n)=T (g) + 0(1)

= 1T(£) + O(1)

17

The Master Theorem“

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n)=T (g) + 0(1)

/_\=1T)+ 0(1)

a =1

18

The Master Theorem “

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n)=T (g) + 0(1)

/T(E)+O(1)

a” =1 compute n 8¢ = n g1

=2 = N° (because 2°=1)

f(n) =1 =1

19

The Master Theorem

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n)=T (g) + 0(1)

n
=1T (—) + O(1)
a =1 compute n 8¢ = n log.1
=2 = N° (because 2°=1)

f(n) =1 - compare - =1

20

The Master Theorem

T(n) = aT &) +£(n)

wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)

2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)

3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n)=T (g) + 0(1)

n
=1T (—) + O(1)
a =1 compute n 8¢ = n log.1
=2 = N° (because 2°=1)

f(n) =1 - Equal. Case 2 > =1

21

The Master Theore

m

wherea>1 and b > 1

T(n) = aT &) +£(n)

and f(n) 1s positive, there are three cases:

1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)

2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)

3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n)=T (%

) +O(1)

= 1T(£) + O(1)

compute n 8¢ = n log.1

= n° (because 2°=1)

a =1
=2
f(n) =1

Equal. Case 2 > =@

T(n) =0O(n'"s]og,n)

= @@10g2 n)

= O(log, n)

22

The Master Theorem

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n'°&%) then T(n) = O(f(n))

Example: T(n)=T (g) + 0(1)

= 1T(£) + O(1)

a =1 compute n 8¢ = n log.1
=2 = N° (because 2°=1)
f(n) =1 - Equal. Case 2 > =1
T(n) =0O(n'"s]og,n)
= ®(1 log, n)

Binary Search is ©(log, n)

23

The Master Theorem

T(n) =aT () +f(n)
where a =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n &) then T(n) = O(n %)
2.1if f(n) = O(n °89) then T(n) = O(n '°&#* log, n)
3.if f(n) = Q(n'°®»%) then T(n) = B(f(n))

Example: T(n) = 2T (1) + O(n)
a =2
=2

f(n) =n

24

The Master Theorem

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = 2T (1) + O(n)
a =2 compute n 1°&¢ = n 108-2
= 9 —_ nl

f(n) =n =n

25

The Master Theorem

T(n) = aT (&) +f(n)

1. if f(n) = O(n °&%) then T(n) = O(n '°&9)

wherea =1 and b > 1 and f(n) is positive, there are three cases:

2.1if f(n) = ©(n '°&9) then T(n) = O(n &< log, n)

3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = 2T (ﬂ) + O(n)

a =2 compute n 1°&¢ = n 108-2
= 9 = nl
f(n) =n - Equal. Case 2 - =1
T(n) =0(n'# log,n)
= 0(nlog, n)

Merge sort.

26

The Master Theorem

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = 2T (1=) + O(1)
a =2 compute n '°&¢ = n 08,2
=4 = Tll/ 2 (because 4/2=2)

f(n) =1 =vn

27

The Master Theorem

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = 2T (1=) + O(1)
a =2 compute n '°&¢ = n 08,2

=4 = Tll/ 2 (because 4/2=2)
f(n) =1 - compare . =vn

28

The Master Theorem

T(n) = aT &) +£(n)

wherea =1 and b > 1 and f(n) is positive, there are three cases:

1. if f(n) = O(n'°®»2) then T(n) = B(n '°&%)

2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = 2T (1=) + O(1)

a =2 compute n 8¢ = n log;2
=4 = Tll/ 2 (because 4/2=2)
f(n)=1 - 1<vnforn>1 - =vn
Case 1

T(n) = 0O(nlea)
= @(Vn)

29

The Master Theorem

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = 2T (1) + O(n)
a =2 compute n '°&¢ = n 08,2
=4 = Tll/ 2 (because 4/2=2)

f(n) =n =vn

30

The Master Theorem

T(n) =aT () +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)

3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = 2T (1) + O(n)

a =2 compute n 8¢ = n log;2
=4 = Tll/ 2 (because 4/2=2)
f(n)=n - n>vn - =vn
Case 3

T(n) =0(f(n))
= 0(n)

31

The Master Theorem
T(n) =aT () +f(n)

wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n?)

32

The Master Theorem
T(n) =aT () +f(n)

wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n?)
=1T (™) + 0(n)

a =1 compute n %8¢ = n los.1

33

The Master Theorem

T(n) = aT &) +£(n)

wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

compute n %8¢ = n los.1

log,1=X

means 1* =1
SO...

34

The Master Theorem

T(n) = aT (3) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

compute n '8¢ = n 1081

log,1=X

means 1 = 1
so X = anything

35

The Master Theorem

where a > 1 and

T(n) = aT &) +£(n)

> 1and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.if f(n) = Q(n'°®»%) then T(n) = B(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n?)

a =1
=1
f(n) =n

-1T (™D + o(n)

compute n %8¢ = n los.1

-n anything?
-n nothing!

— undefined at best

= division by 0 at worst

The Master Theorem

where a > 1 and

T(n) = aT &) +£(n)

> 1and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n?)

a =1
=1
f(n) =n

-1T (™D + o(n)

compute n %8¢ = n los.1

-n anything?
-n nothing!

— undefined at best

= division by 0 at worst

The Master Method does not apply to this recurrence.

Why not?

37

The Master Theorem

where a > 1 and
1. if f(n) =0(n'°
2.if f(n) =B(n'°
3.1f f(n) = Q(n &%) then T(n) = O(f(n))

T(n) = aT () + f(n)
and f(n) 1s positive, there are three cases:
hen T(n) = ©(n '°%9)
hen T(n) = O(n & log, n)

Example: T(n) = T (n-1) + O(n) — selection sort, so we expect O(n?)

-1T (™D + o(n)

compute n %8¢ = n los.1
-n anything?
-n nothing!

— undefined at best

Method does not apply to this recurrence.

= division by 0 at worst

The Master Theorem

T(n) = aT) +f(n)
wherea =1 and b > 1 and f(n) is positive, there are three cases:
1. if f(n) = O(n'°®»?) then T(n) = O(n '°&%)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) =T (n-1) + O(1) — linear search, so we expect O(n)

39

The Master Theorem

T(n) = aT () +f(n)
where a > 1 and @and f(n) 1s positive, there are three cases:
lo t

1. if f(n) = O(n hen T(n) = O(n '°%:9)
2.1f f(n) = O(n '°&%) then T(n) = O(n °&< log, n)
3.1if f(n) = Q(n °&9) then T(n) = B(f(n))

Example: T(n) =T (n-1) + O(1) — linear search, so we expect O(n)
=1T (n_-1) + O(1)

The Master Method does not apply to this recurrence either.

40

The Master Theorem

Why does this work? Remember recursion trees?
A f (1) s ——————————————————.] - f(n)
/g}\

f(n/b) f(n/b) P) — - af(n/b)

f(n/bz)f(n/bz) L0/ f/b?) fn)b2)f(nfb?) f(n)b?) f(1/b)f (1]b2) vt @ f (n]B?)

Y o) e(1) e(1) () &) o) e) o) e() o) O(1) O(1) O(1) wim O(ne09)

nlogba
logy, n—1

Total: ®(n'°% %) + Z a’ f(n/b’)

J=0

41

The Master Theorem

Why does this work? Remember recursion trees?
A f (1) s ——————————————————.] -
/ﬂb\

f(n/b) f(n/b) f(n/b) - af(n/b)

f(n/bz)f(n/bz) /B f0/6?) f/BP)f@/b?) ()b f]b?)f (1)) it @ f (n]B?)

Y e) e() e) o) o) o) ‘ Ol) O(1) .o ©(1) O(1) O(1)wit O@"0)
w logy, n—1

Total: ®(n'°%» %) + Z a’ f(n/b?)
j=0

42

The Master Theorem

Why does this work? Remember recursion trees?

A f (1) s ——————————————————.] -
/g}\
f(n/b) f(n/b) P) N — - af(n/b)
f(n/bz)f(n/bz) F/b?) f/bD) f/bD)ffbD) f(n)b?) f ()2 -f (n]b2) weiie a? f(n]b?)
Y o) o) e e() o) o) e ‘ O) O(1) .. O(1) O(1) O(1) i O(uoera)
w logy, n—1
. log;, a] f
Case 1 when this dominates. Ao S =S ; o (/%)

43

The Master Theorem

Case 3 when

Why does this work? Remember recursion trees? this dominates.
A f (1) s ——————————————————.] -
/é[b\

f(n/b) f(n/b) JLCY) — e af(n/b)

f(n/bz)f(n/b”‘) /B f0/6?) f/BP)f@/b?) ()b f]b?)f (1)) it @ f (n]B?)

Y o) o) o)) o) o) 6 ‘ Ol) O(1) .o ©(1) O(1) O(1)wit O@"0)
w logy, n—1

Total: ®(n'°%» %) + Z a’ f(n/b?)
=0

44

The Master Theorem

Why does this work? Remember recursion trees?

f(n/b)

Y o) o)) o(l) o(1) (1) @{1)

f(n/b)

o

f(n/bz)an/bz) f(n/b*) f(n/b?) f(n/b*)-f(n/b?)

f(n/b?) f(n/b?)-f(n/b?) wwsim a® f(n/b*)

@(1) @{1) O(1) it O (1o)

£ i ®é1) @(51)
N

Case 2 when the work is shared.
logy, n—1

Total: ©(n'°¢ %) + Z a’ f(n/b’)

J=0

45

