
Algorithms	
CMPT	435

Algorithms © 2019-2112 Alan G. Labouseur, All Rights Reserved Page of 1 1

 Assignment 1 - 75 points
Goals • to	program	a	few	elementary	data	structures	and	implement	a	few	sorting	algorithms

Requirements
and Notes

• Develop	and	test	a	Node	class.	Use	it	to	develop	a	stack,	then	to	develop	
a	queue.	You	must	implement	these	yourself;	you	may	not	use	any	built-
in	features	of	the	language	or	its	libraries	for	the	stack	or	queue.	(You	
may	use	language	libraries	for	other	things,	like	Kile	operations,	etc.)	

• Download	the	the	text	Kile	magicitems.txt	from	our	web	site.	
• Read	it	line-by-line	into	array.	

• Check	each	line	of	the	array	to	see	if	it’s	a	palindrome,	ignoring	spaces	
and	capitalization.	Print	it	out	only	if	it	is	a	palindrome.	
‣ To	check	whether	or	not	a	given	string	is	a	palindrome,	take	it	
character	by	character	(ignoring	spaces	and	capitalization)	and	push	
each	character	on	a	stack	and	enqueue	each	character	in	a	queue.	
When	every	character	is	on	the	stack	and	in	the	queue,	pop	the	stack	
and	dequeue	the	queue	one	character	at	a	time.	If	they	always	match	
then	the	string	is	a	palindrome.	

• Develop	your	own	implementation	of	selection	sort,	insertion	sort,	
merge	sort,	and	quick	sort.	Then	sort	magicitems.txt	using	each	sort,	
printing	the	number	of	comparisons	each	time.	Be	sure	to	shufKle	the		
array	before	each	sort.	To	do	that,	write	your	own	O(n)	shufKle	routine	
based	on	the	Knuth	shufKle	(also	known	as	the	Fisher–Yates	shufKle,	but	
not	known	as	the	Rosanna	shufKle,	which	is	different).		

• Document	all	code	(with	line	numbers	and	explanations)	and	your	
results	(in	a	table)	in	a	LaTeX	document.	Make	multiple	test	runs	for	
each	sort	and	average	the	results.	For	the	code,	explain	the	good	parts	of	
how	each	works,	as	if	you	were	teaching	it	to	someone	else,	referencing	
line	numbers	for	pedantic	clarity.	For	the	sort	results,	note	the	
asymptotic	running	time	of	each	sort	and	explain	why	it	is	that	way.

[5	points]	

[5	points]	

[15	points]	

[50	points]

Your	code	must	…		
• not	be	in	a	package;	that	just	makes	it	harder	for	me	to	compile	and	test	
• separate	structure	from	presentation,	be	professionally	formatted	yet	
uniquely	yours	(show	some	personality),	and	demonstrate	best	practices

[−∞	if	not]

Resources • Linked	lists	are	described	in	the	3rd	edition	of	our	text	in	chapter	10.2,	starting	on	EC.	
• Stacks	and	queues	are	described	in	the	3rd	edition	of	our	text	in	the	beginning	of	
chapter	10,	starting	on	page	1110	1000.	

• Insertion	sort,	merge	sort,	and	quick	sort	are	described	in	the	3rd	edition	of	our	text	in	
sections	2.1,	2.3,	and	7.1	respectively.

Submi<ng
Your Work

Make	many	commits	to	GitHub.	I	do	not	want	to	see	one	
massive	“everything”	commit	when	I	review	your	code.	
(It’s	−∞	if	you	do	that.)	Commit	early	and	often.	And	make	
sure	your	commit	messages	are	descriptive	and	amusing.

https://www.labouseur.com/courses/algorithms/magicitems.txt
https://www.labouseur.com/courses/algorithms/magicitems.txt
https://www.youtube.com/watch?v=LcCg24keHg8

