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Lots	of	Group	Testing	and	a	Little	Computer	Science	Can	Improve	COVID-19	Screening	
by	Alan	G.	Labouseur,	Ph.D.	

In	his	New	York	Times	column	of	May	7,	2020	[1],	Jordan	Ellenberg	wrote	about	a	World	War	II	era	
technique	called	group	(or	“pooled”)	testing.	It	can	be	used	to	reduce	the	tests	needed	to	screen	a	
large	population	by	simultaneously	testing	multiple	samples.	Back	then	there	was	a	different	sort	of	
social	virus	causing	trouble:	syphilis.	US	Army	economists	Robert	Dorfman	and	David	Rosenblatt	
created	a	group	testing	method	for	detecting	(and	rejecting)	syphilitic	draft	candidates	[2].	In	
today’s	environment	of	scarce	COVID-19	tests,	this	technique	has	renewed	importance.		

Assuming	we	have	an	unbiased	and	uniform	population	to	test,	and	assuming	the	test	is	suf^iciently	
accurate,	sensitive,	and	speci^ic	to	signal	the	presence	of	COVID-19,	combining	biomarkers	(samples)	
from	multiple	patients	into	single	test	can	reduce	the	overall	number	of	tests	we	need.	It’s	based	on	
a	core	principle	of	computer	science:	divide	and	conquer.	Here’s	how	it	works:	Randomly	divide	the	
population	into	small	groups	and	test	(or	“conquer”	in	this	metaphor)	each	group	for	infection.	If	
the	test	comes	out	negative	then	nobody	in	the	group	is	infected.	If	the	test	comes	out	positive	then	
one	or	more	members	of	the	group	are	infected,	but	we	don’t	know	which	one(s)	so	we	have	to	test	
some	more	by	testing	everybody	in	the	group	or	subdividing	into	smaller	groups	and	repeating.	
Here’s	a	recipe	for	the	test	plan:	

We	can	form	a	mental	picture	of	the	divide	and	conquer	approach	by	
thinking	about	choose-your-own-adventure	books	(or	more	recently,	Black	
Mirror:	Bandersnatch	on	Net^lix)	where	each	decision	lets	you	to	branch	off	
in	one	of	many	directions.	Were	we	to	illustrate	all	of	the	possibilities	
starting	with	the	^irst,	we’d	draw	something	that	looks	(a	little)	like	an	
upside-down	tree,	starting	from	the	beginning	and	branching	off	over	and	
over.	That	gets	quite	complex,	but	we	can	simplify	things	by	limiting	each	
decision	to	two	choices.	That’s	called	a	binary	tree,	and	that’s	all	we	need.	
Figure	1	shows	an	example.	For	binary	trees,	as	with	many	aspects	of	
computer	science,	powers	of	2	(that	is:	2,	4,	8,	16,	32,	64,	etc.)	are	important.	

There	are	three	possibilities	to	consider	when	testing	a	group	of	samples:	
(1) there	are	no	infected	samples	
(2) there	is	exactly	one	infected	sample	
(3) there	are	two	or	more	infected	samples	

Given	these	three	cases,	applying	our	binary	divide	and	conquer	approach,	and	following	the	recipe	
above,	we	could	test	groups	of	8	(for	example)	and	then	test	subgroups	of	4	if	any	infection	is	found.	
The	best	case	scenario	is	that	we	determine	all	8	are	infection-free	with	1	test.	See	Case	(1)	in	Figure	
2.	A	second	case	occurs	when	we	^ind	1	infection	with	7	tests:	1	for	the	group	of	eight,	2	for	

Figure 1 - Binary Tree
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subgroups	of	four,	and	4	individual	tests	for	the	(single)	infected	subgroup.	See	Case	(2)	in	Figure	2.	
The	worst	case	scenario	is	when	there	are	two	or	more	infected	samples	in	the	group	and	we	divide	
them	into	subgroups	of	4	and	end	up	using	11	tests:	1	for	the	group	of	eight,	2	for	the	groups	of	four,	
and	8	individual	tests.	See	Case	(3)	in	Figure	2.	Thankfully,	this	worst	case	scenario	is	rare	when	the	
infection	rate	is	low,	but	that	changes	with	the	infection	rate.	

How	do	we	know	this	works?	We	can	determine	the	likelihood	of	each	testing	possibility	based	on	
the	number	of	samples	we	pool	into	each	group	and	the	infection	rate	of	the	disease.	For	example,	
when	testing	groups	of	8	for	a	disease	with	an	infection	rate	of	2%	in	the	manner	noted	above	.	.	.	

Case	(1)	is	expected	to	happen	85%	of	the	time.	This	is	because	a	2%	infection	rate	means	that,	on	
average,	98%	of	the	population	is	uninfected.	The	likelihood	of	randomly	choosing	8	uninfected	
samples	is	0.98	×	0.98	×	0.98	×	0.98	×	0.98	×	0.98	×	0.98	×	0.98	(put	another	way,	 ),	which	is	
0.85	or	85%.	When	this	occurs	only	one	test	is	needed.	

Case	(3)	happens	slightly	less	than	0.04%	of	the	time	because	the	likelihood	of	randomly	choosing	
two	infected	samples	is	0.02	×	0.02,	or	0.0004	or	0.04%.	(It’s	actually	less,	but	it’s	safe	to	err	on	the	
side	of	an	upper	bound	value.	Also,	the	likelihood	of	randomly	choosing	more	than	two	infected	
samples	is	even	lower,	so	again	we	are	safe	with	this	upper	bound.)	In	this	case,	11	tests	are	needed.	

Case	(2),	the	only	other	possibility,	happens	the	rest	of	the	time,	which	is	14.96%,	and	7	tests	are	
needed.	

So,	for	1000	people	where	20	of	them	(2%)	are	infected	and	980	are	infection-free,	we	could	make	
125	groups	of	8	samples	each	and	work	out	what	we	expect	based	on	the	percentages:	

Case (1): 125 × 0.8500 = 106.25 instances requiring 107 tests (since there are no partial tests)
Case (2): 125 × 0.1496 =  18.70 instances requiring 131 tests
Case (3): 125 × 0.0004 =   0.05 round up to 1 instance requiring 11 tests
———————————————————————————————————————	
That's	249	tests	to	screen	a	population	of	1000	people	for	a	disease	with	an	infection	rate	of	2%.		

Note:	This	assumes	100%	testing	accuracy.	Since	tests	are	rarely	perfect,	we	would	be	wise	to	
incorporate	test	reliability	into	our	model	by	introducing	conditional	probability	and	Bayes’	
theorem.	But	that’s	another	discussion.	

Can	we	do	better?	What	about	those	other	powers	of	two	I	mentioned	earlier?	The	likelihood	of	the	
worst	case	scenario	is	^ixed,	so	we	want	to	balance	the	best	case	with	the	“rest	case”	to	minimize	the	
tests.	Figure	3	charts	the	analysis	we	did	above.			
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Figure 2 - Testing Possibilities - Each black circle is one test.
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In	Figure	3,	the	black	vertical	line	represents	the	infection	rate	of	2%.	(Meaning	x=2 	on	the	
horizontal	axis	between	0	and	100.)	The	green	curve	represents	the	likelihood	of	the	best	case	
scenario	occurring	as	x 	(the	infection	rate)	varies	from	1	to	100	percent.	Where	it	crosses	the	black	
line	(meaning,	when	the	infection	rate	is	2%)	we	see	that	the	likelihood	of	encountering	the	best	
case	is	85.076%.	Note	that	we	can	con^irm	this	value	with	by	the	calculations	we	did	above.	(It’s	
always	nice	when	the	numbers	work	out.)	The	red	line	is	the	worst	case	curve,	which	we	see	
intersects	the	black	line	at	0.04%,	again	matching	our	earlier	calculations.	Finally,	the	orange	line	is	
the	curve	for	the	rest	of	the	cases,	crossing	the	black	line	at	14.923%,	as	we	saw	above.	(We	can	
ignore	minuscule	differences;	these	are	due	to	rounding.)	As	it	turns	out,	groups	of	8	are	very	
effective.	Doing	the	same	analysis	on	groups	of	4	and	16	(the	powers	of	2	on	either	side	of	8)	show	
that	those	testing	protocols	need	335	and	257	tests	respectively	to	screen	a	population	of	1000.	
(See	the	appendix	for	details.)	

There	are	other	analyses	we	could	do	along	these	lines.	For	example,	we	could	^ix	the	group	size	and	
vary	the	infection	rate	to	explore	that	relationship.	There	are	many	fun	ways	to	go.	If	you’re	
interested	in	diving	even	deeper,	the	seminal	treatise	on	the	topic	is	a	book	from	1993	(and	updated	
in	2000)	by	D.	Du	and	F.	Hwang	called	Combinatorial	Group	Testing	and	Its	Applications	[2].	There	is	
also	a	recent	paper	by	M.	Aldridge,	O.	Johnson,		and	J.	Scarlett	on	the	topic	called	Group	Testing:	An	
Information	Theory	Perspective	[3].	

In	summary:	ef^icient	and	widespread	testing	of	large	populations	is	critical	in	these	pandemic	
times;	we	simply	do	not	have	enough	tests.	Lots	of	group	testing	and	a	little	computer	science	can	
improve	COVID-19	screening.	

Figure 3 - Groups of 8, Infection Rate of 2%
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